1
|
Downs KM. The mouse allantois: new insights at the embryonic-extraembryonic interface. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210251. [PMID: 36252214 PMCID: PMC9574631 DOI: 10.1098/rstb.2021.0251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/20/2022] [Indexed: 12/23/2022] Open
Abstract
During the early development of Placentalia, a distinctive projection emerges at the posterior embryonic-extraembryonic interface of the conceptus; its fingerlike shape presages maturation into the placental umbilical cord, whose major role is to shuttle fetal blood to and from the chorion for exchange with the mother during pregnancy. Until recently, the biology of the cord's vital vascular anlage, called the body stalk/allantois in humans and simply the allantois in rodents, has been largely unknown. Here, new insights into the development of the mouse allantois are featured, from its origin and mechanism of arterial patterning through its union with the chorion. Key to generating the allantois and its critical functions are the primitive streak and visceral endoderm, which together are sufficient to create the entire fetal-placental connection. Their newly discovered roles at the embryonic-extraembryonic interface challenge conventional wisdom, including the physical limits of the primitive streak, its function as sole purveyor of mesoderm in the mouse, potency of visceral endoderm, and the putative role of the allantois in the germ line. With this working model of allantois development, understanding a plethora of hitherto poorly understood orphan diseases in humans is now within reach. This article is part of the theme issue 'Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom'.
Collapse
Affiliation(s)
- Karen M. Downs
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI 53705, USA
| |
Collapse
|
2
|
Nahaboo W, Eski SE, Despin-Guitard E, Vermeersch M, Versaevel M, Saykali B, Monteyne D, Gabriele S, Magin TM, Schwarz N, Leube RE, Zwijsen A, Perez-Morga D, Singh SP, Migeotte I. Keratin filaments mediate the expansion of extra-embryonic membranes in the post-gastrulation mouse embryo. EMBO J 2022; 41:e108747. [PMID: 35266581 PMCID: PMC8982622 DOI: 10.15252/embj.2021108747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 01/22/2023] Open
Abstract
Mesoderm arises at gastrulation and contributes to both the mouse embryo proper and its extra-embryonic membranes. Two-photon live imaging of embryos bearing a keratin reporter allowed recording filament nucleation and elongation in the extra-embryonic region. Upon separation of amniotic and exocoelomic cavities, keratin 8 formed apical cables co-aligned across multiple cells in the amnion, allantois, and blood islands. An influence of substrate rigidity and composition on cell behavior and keratin content was observed in mesoderm explants. Embryos lacking all keratin filaments displayed a deflated extra-embryonic cavity, a narrow thick amnion, and a short allantois. Single-cell RNA sequencing of sorted mesoderm cells and micro-dissected amnion, chorion, and allantois, provided an atlas of transcriptomes with germ layer and regional information. It defined the cytoskeleton and adhesion expression profile of mesoderm-derived keratin 8-enriched cells lining the exocoelomic cavity. Those findings indicate a novel role for keratin filaments in the expansion of extra-embryonic structures and suggest mechanisms of mesoderm adaptation to the environment.
Collapse
Affiliation(s)
- Wallis Nahaboo
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Sema Elif Eski
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Evangéline Despin-Guitard
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Marjorie Vermeersch
- Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles, Gosselies, Belgium
| | - Marie Versaevel
- Mechanobiology and Soft Matter Group, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Bechara Saykali
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Daniel Monteyne
- Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles, Gosselies, Belgium
| | - Sylvain Gabriele
- Mechanobiology and Soft Matter Group, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Thomas M Magin
- Division of Cell & Developmental Biology, Institute of Biology, Leipzig University, Leipzig, Germany
| | - Nicole Schwarz
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | | | - David Perez-Morga
- Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles, Gosselies, Belgium.,Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, Gosselies, Belgium
| | - Sumeet Pal Singh
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Isabelle Migeotte
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
3
|
Downs KM, Rodriguez AM. The mouse fetal-placental arterial connection: A paradigm involving the primitive streak and visceral endoderm with implications for human development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 9:e362. [PMID: 31622045 DOI: 10.1002/wdev.362] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 08/02/2019] [Accepted: 08/24/2019] [Indexed: 01/12/2023]
Abstract
In Placentalia, the fetus depends upon an organized vascular connection with its mother for survival and development. Yet, this connection was, until recently, obscure. Here, we summarize how two unrelated tissues, the primitive streak, or body axis, and extraembryonic visceral endoderm collaborate to create and organize the fetal-placental arterial connection in the mouse gastrula. The primitive streak reaches into the extraembryonic space, where it marks the site of arterial union and creates a progenitor cell pool. Through contact with the streak, associated visceral endoderm undergoes an epithelial-to-mesenchymal transition, contributing extraembryonic mesoderm to the placental arterial vasculature, and to the allantois, or pre-umbilical tissue. In addition, visceral endoderm bifurcates into the allantois where, with the primitive streak, it organizes the nascent umbilical artery and promotes allantoic elongation to the chorion, the site of fetal-maternal exchange. Brachyury mediates streak extension and vascular patterning, while Hedgehog is involved in visceral endoderm's conversion to mesoderm. A unique CASPASE-3-positive cell separates streak- and non-streak-associated domains in visceral endoderm. Based on these new insights at the posterior embryonic-extraembryonic interface, we conclude by asking whether so-called primordial germ cells are truly antecedents to the germ line that segregate within the allantois, or whether they are placental progenitor cells. Incorporating these new working hypotheses into mutational analyses in which the placentae are affected will aid understanding a spectrum of disorders, including orphan diseases, which often include abnormalities of the umbilical cord, yolk sac, and hindgut, whose developmental relationship to each other has, until now, been poorly understood. This article is categorized under: Birth Defects > Associated with Preimplantation and Gastrulation Early Embryonic Development > Gastrulation and Neurulation.
Collapse
Affiliation(s)
- Karen M Downs
- Department of Cell and Regenerative Biology, University of Wisconsin Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Adriana M Rodriguez
- Department of Cell and Regenerative Biology, University of Wisconsin Madison School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
4
|
Downs KM. Extragonadal primordial germ cells or placental progenitor cells? Reprod Biomed Online 2018; 36:6-11. [DOI: 10.1016/j.rbmo.2017.09.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 09/22/2017] [Accepted: 09/26/2017] [Indexed: 01/19/2023]
|
5
|
Rodriguez AM, Downs KM. Visceral endoderm and the primitive streak interact to build the fetal-placental interface of the mouse gastrula. Dev Biol 2017; 432:98-124. [PMID: 28882402 PMCID: PMC5980994 DOI: 10.1016/j.ydbio.2017.08.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/01/2017] [Accepted: 08/23/2017] [Indexed: 12/23/2022]
Abstract
Hypoblast/visceral endoderm assists in amniote nutrition, axial positioning and formation of the gut. Here, we provide evidence, currently limited to humans and non-human primates, that hypoblast is a purveyor of extraembryonic mesoderm in the mouse gastrula. Fate mapping a unique segment of axial extraembryonic visceral endoderm associated with the allantoic component of the primitive streak, and referred to as the "AX", revealed that visceral endoderm supplies the placentae with extraembryonic mesoderm. Exfoliation of the AX was dependent upon contact with the primitive streak, which modulated Hedgehog signaling. Resolution of the AX's epithelial-to-mesenchymal transition (EMT) by Hedgehog shaped the allantois into its characteristic projectile and individualized placental arterial vessels. A unique border cell separated the delaminating AX from the yolk sac blood islands which, situated beyond the limit of the streak, were not formed by an EMT. Over time, the AX became the hindgut lip, which contributed extensively to the posterior interface, including both embryonic and extraembryonic tissues. The AX, in turn, imparted antero-posterior (A-P) polarity on the primitive streak and promoted its elongation and differentiation into definitive endoderm. Results of heterotopic grafting supported mutually interactive functions of the AX and primitive streak, showing that together, they self-organized into a complete version of the fetal-placental interface, forming an elongated structure that exhibited A-P polarity and was composed of the allantois, an AX-derived rod-like axial extension reminiscent of the embryonic notochord, the placental arterial vasculature and visceral endoderm/hindgut.
Collapse
Affiliation(s)
- Adriana M Rodriguez
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Karen M Downs
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA.
| |
Collapse
|
6
|
Rodriguez AM, Jin DX, Wolfe AD, Mikedis MM, Wierenga L, Hashmi MP, Viebahn C, Downs KM. Brachyury drives formation of a distinct vascular branchpoint critical for fetal-placental arterial union in the mouse gastrula. Dev Biol 2017; 425:208-222. [PMID: 28389228 DOI: 10.1016/j.ydbio.2017.03.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/16/2017] [Accepted: 03/31/2017] [Indexed: 01/28/2023]
Abstract
How the fetal-placental arterial connection is made and positioned relative to the embryonic body axis, thereby ensuring efficient and directed blood flow to and from the mother during gestation, is not known. Here we use a combination of genetics, timed pharmacological inhibition in living mouse embryos, and three-dimensional modeling to link two novel architectural features that, at present, have no status in embryological atlases. The allantoic core domain (ACD) is the extraembryonic extension of the primitive streak into the allantois, or pre-umbilical tissue; the vessel of confluence (VOC), situated adjacent to the ACD, is an extraembryonic vessel that marks the site of fetal-placental arterial union. We show that genesis of the fetal-placental connection involves the ACD and VOC in a series of steps, each one dependent upon the last. In the first, Brachyury (T) ensures adequate extension of the primitive streak into the allantois, which in turn designates the allantoic-yolk sac junction. Next, the streak-derived ACD organizes allantoic angioblasts to the axial junction; upon signaling from Fibroblast Growth Factor Receptor-1 (FGFR1), these endothelialize and branch, forming a sprouting VOC that unites the umbilical and omphalomesenteric arteries with the fetal dorsal aortae. Arterial union is followed by the appearance of the medial umbilical roots within the VOC, which in turn designate the correct axial placement of the lateral umbilical roots/common iliac arteries. In addition, we show that the ACD and VOC are conserved across Placentalia, including humans, underscoring their fundamental importance in mammalian biology. We conclude that T is required for correct axial positioning of the VOC via the primitive streak/ACD, while FGFR1, through its role in endothelialization and branching, further patterns it. Together, these genetic, molecular and structural elements safeguard the fetus against adverse outcomes that can result from vascular mispatterning of the fetal-placental arterial connection.
Collapse
Affiliation(s)
- Adriana M Rodriguez
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Dexter X Jin
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Adam D Wolfe
- Department of Pediatrics, Division of Pediatric Hematology, Oncology & Bone Marrow Transplant, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Maria M Mikedis
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Lauren Wierenga
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Maleka P Hashmi
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Christoph Viebahn
- Institute of Anatomy and Embryology, University Medical Center Göttingen, Göttingen, Germany
| | - Karen M Downs
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
7
|
Hassan W, Viebahn C. A correlative study of the allantois in pig and rabbit highlighting the diversity of extraembryonic tissues in four mammalian species, including mouse and man. J Morphol 2017; 278:600-620. [PMID: 28165148 DOI: 10.1002/jmor.20657] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 12/30/2016] [Accepted: 01/04/2017] [Indexed: 12/25/2022]
Abstract
Despite its conserved role in placenta and umbilical cord formation, the mammalian allantois shows remarkable diversity in size and form as well as in the timing of its appearance and attachment to the chorion. In the mouse, the common allantoic diverticulum is lacking; instead, the allantoic core domain is defined as a progenitor center for allantoic development. In this study, the allantoises of the pig and the rabbit as two nonrodent mammals of increasing significance in biomedical research are compared (1) morphologically using high resolution light and electron microscopy and (2) molecularly using brachyury mRNA expression as a mesodermal marker. Multiple small allantoic diverticula in the rabbit contrast with a single large cavity filling the entire allantois of the pig, but neither pig nor rabbit allantois expresses brachyury. The mesothelium on the allantois surface shows regional variability of cell contacts and microvilli, while blood vessels appear randomly around the allantoic diverticula in a mesodermal layer of variable thickness. Primordial germ cell-like cells are found in the allantois of the pig but not of the rabbit. To understand further the relevance of this developmental and morphological diversity, we compare the allantois development of pig and rabbit with early developmental landmarks of mouse and man. Our findings suggest that (1) tissue interaction between endoderm and mesoderm is important for allantoic development and vascular differentiation in species with a rudimentary allantoic diverticulum, (2) allantoic mesothelium plays a specific role in chorioallantoic attachment, allantoic differentiation and vascularization, and (3) there is a pronounced diversity in the extraembryonic migratory pathways of primordial germ cells among mammals. Finally, the phylogenetically basal characteristics of the pig allantois are suggestive of a functional similarity in mammals with a large allantois before placentation and in (aplacental) sauropsids with a chorioallantoic membrane well-adjusted to material exchange function.
Collapse
Affiliation(s)
- Waad Hassan
- Institute of Anatomy and Embryology, University Medical Center Göttingen, Göttingen, Germany
| | - Christoph Viebahn
- Institute of Anatomy and Embryology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
8
|
Mikedis MM, Downs KM. PRDM1/BLIMP1 is widely distributed to the nascent fetal-placental interface in the mouse gastrula. Dev Dyn 2016; 246:50-71. [PMID: 27696611 DOI: 10.1002/dvdy.24461] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/11/2016] [Accepted: 09/11/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND PRDM1 is a transcriptional repressor that contributes to primordial germ cell (PGC) development. During early gastrulation, epiblast-derived PRDM1 is thought to be restricted to a lineage-segregated germ line in the allantois. However, given recent findings that PGCs overlap an allantoic progenitor pool that contributes widely to the fetal-umbilical interface, posterior PRDM1 may also contribute to soma. RESULTS Within the posterior mouse gastrula (early streak, 12-s stages, embryonic days ∼6.75-9.0), PRDM1 localized to all tissues containing putative PGCs; however, PRDM1 was also found in all three primary germ layers, their derivatives, and two presumptive growth centers, the allantoic core domain and ventral ectodermal ridge. While PRDM1 and STELLA colocalized predominantly within the hindgut, where putative PGCs reside, other colocalizing cells were found in non-PGC sites. Additional PRDM1 and STELLA cells were found independent of each other throughout the posterior region, including the hindgut. The Prdm1-Cre-driven reporter supported PRDM1 localization in the majority of sites; however, some Prdm1 descendants were found in sites independent of PRDM1 protein, including allantoic mesothelium and hindgut endoderm. CONCLUSIONS Posterior PRDM1 contributes more broadly to the developing fetal-maternal connection than previously recognized, and PRDM1 and STELLA, while overlapping in putative PGCs, also co-localize in several other tissues. Developmental Dynamics 246:50-71, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Maria M Mikedis
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Karen M Downs
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
9
|
Abstract
Current dogma is that mouse primordial germ cells (PGCs) segregate within the allantois, or source of the umbilical cord, and translocate to the gonads, differentiating there into sperm and eggs. In light of emerging data on the posterior embryonic-extraembryonic interface, and the poorly studied but vital fetal-umbilical connection, we have reviewed the past century of experiments on mammalian PGCs and their relation to the allantois. We demonstrate that, despite best efforts and valuable data on the pluripotent state, what is and is not a PGC in vivo is obscure. Furthermore, sufficient experimental evidence has yet to be provided either for an extragonadal origin of mammalian PGCs or for their segregation within the posterior region. Rather, most evidence points to an alternative hypothesis that PGCs in the mouse allantois are part of a stem/progenitor cell pool that exhibits all known PGC "markers" and that builds/reinforces the fetal-umbilical interface, common to amniotes. We conclude by suggesting experiments to distinguish the mammalian germ line from the soma.
Collapse
|
10
|
Biechele S, Cockburn K, Lanner F, Cox BJ, Rossant J. Porcn-dependent Wnt signaling is not required prior to mouse gastrulation. Development 2013; 140:2961-71. [PMID: 23760955 DOI: 10.1242/dev.094458] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In mice and humans the X-chromosomal porcupine homolog (Porcn) gene is required for the acylation and secretion of all 19 Wnt ligands and thus represents a bottleneck for all Wnt signaling. We have generated a mouse line carrying a floxed allele for Porcn and used zygotic, oocyte-specific and visceral endoderm-specific deletions to investigate embryonic and extra-embryonic requirements for Wnt ligand secretion. We show that there is no requirement for Porcn-dependent secretion of Wnt ligands during preimplantation development of the mouse embryo. Porcn-dependent Wnts are first required for the initiation of gastrulation, where Porcn function is required in the epiblast but not the visceral endoderm. Heterozygous female embryos, which are mutant in both trophoblast and visceral endoderm due to imprinted X chromosome inactivation, complete gastrulation but display chorio-allantoic fusion defects similar to Wnt7b mutants. Our studies highlight the importance of Wnt3 and Wnt7b for embryonic and placental development but suggest that endogenous Porcn-dependent Wnt secretion does not play an essential role in either implantation or blastocyst lineage specification.
Collapse
Affiliation(s)
- Steffen Biechele
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, Toronto, ON M5G 1X8, Canada
| | | | | | | | | |
Collapse
|
11
|
Mikedis MM, Downs KM. Widespread but tissue-specific patterns of interferon-induced transmembrane protein 3 (IFITM3, FRAGILIS, MIL-1) in the mouse gastrula. Gene Expr Patterns 2013; 13:225-39. [PMID: 23639725 DOI: 10.1016/j.gep.2013.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 04/16/2013] [Accepted: 04/19/2013] [Indexed: 10/26/2022]
Abstract
Interferon-induced transmembrane protein 3 (IFITM3; FRAGILIS; MIL-1) is part of a larger family of important small interferon-induced transmembrane genes and proteins involved in early development, cell adhesion, and cell proliferation, and which also play a major role in response to bacterial and viral infections and, more recently, in pronounced malignancies. IFITM3, together with tissue-nonspecific alkaline phosphatase (TNAP), PRDM1, and STELLA, has been claimed to be a hallmark of segregated primordial germ cells (PGCs) (Saitou et al., 2002). However, whether IFITM3, like STELLA, is part of a broader stem/progenitor pool that builds the posterior region of the mouse conceptus (Mikedis and Downs, 2012) is obscure. To discover the whereabouts of IFITM3 during mouse gastrulation (~E6.5-9.0), systematic immunohistochemical analysis was carried out at closely spaced 2-4-h intervals. Results revealed diverse, yet consistent, profiles of IFITM3 localization throughout the gastrula. Within the putative PGC trajectory and surrounding posterior tissues, IFITM3 localized as a large cytoplasmic spot with or without staining in the plasma membrane. IFITM3, like STELLA, was also found in the ventral ectodermal ridge (VER), a posterior progenitor pool that builds the tailbud. The large cytoplasmic spot with plasma membrane staining was exclusive to the posterior region; the visceral yolk sac, non-posterior tissues, and epithelial tissues exhibited spots of IFITM3 without cell surface staining. Colocalization of the intracellular IFITM3 spot with the endoplasmic reticulum, Golgi apparatus, or endolysosomes was not observed. That relatively high levels of IFITM3 were found throughout the posterior primitive streak and its derivatives is consistent with evidence that IFITM3, like STELLA, is part of a larger stem/progenitor cell pool at the posterior end of the primitive streak that forms the base of the allantois and builds the fetal-umbilical connection, thus further obfuscating practical phenotypic distinctions between so-called PGCs and surrounding soma.
Collapse
Affiliation(s)
- Maria M Mikedis
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | | |
Collapse
|
12
|
Mikedis MM, Downs KM. STELLA-positive subregions of the primitive streak contribute to posterior tissues of the mouse gastrula. Dev Biol 2012; 363:201-18. [PMID: 22019303 PMCID: PMC3288210 DOI: 10.1016/j.ydbio.2011.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 08/26/2011] [Accepted: 10/02/2011] [Indexed: 11/21/2022]
Abstract
The developmental relationship between the posterior embryonic and extraembryonic regions of the mammalian gastrula is poorly understood. Although many different cell types are deployed within this region, only the primordial germ cells (PGCs) have been closely studied. Recent evidence has suggested that the allantois, within which the PGCs temporarily take up residence, contains a pool of cells, called the Allantoic Core Domain (ACD), critical for allantoic elongation to the chorion. Here, we have asked whether the STELLA-positive cells found within this region, thought to be specified PGCs, are actually part of the ACD and to what extent they, and other ACD cells, contribute to the allantois and fetal tissues. To address these hypotheses, STELLA was immunolocalized to the mouse gastrula between Early Streak (ES) and 12-somite pair (-s) stages (~6.75-9.0 days post coitum, dpc) in histological sections. STELLA was found in both the nucleus and cytoplasm in a variety of cell types, both within and outside of the putative PGC trajectory. Fate-mapping the headfold-stage (~7.75-8.0 dpc) posterior region, by which time PGCs are thought to be segregated into a distinct lineage, revealed that the STELLA-positive proximal ACD and intraembryonic posterior primitive streak (IPS) contributed to a wide range of somatic tissues that encompassed derivatives of the three primary germ layers. This contribution included STELLA-positive cells localizing to tissues both within and outside of the putative PGC trajectory. Thus, while STELLA may identify a subpopulation of cells destined for the PGC lineage, our findings reveal that it may be part of a broader niche that encompasses the ACD and through which the STELLA population may contribute cells to a wide variety of posterior tissues of the mouse gastrula.
Collapse
Affiliation(s)
- Maria M. Mikedis
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Ave, Madison, WI 53706, Tel: 608-265-5411, Fax: 608-262-7306
| | - Karen M. Downs
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Ave, Madison, WI 53706, Tel: 608-265-5411, Fax: 608-262-7306
| |
Collapse
|
13
|
Rhee JM, Iannaccone PM. Mapping mouse hemangioblast maturation from headfold stages. Dev Biol 2012; 365:1-13. [PMID: 22426104 DOI: 10.1016/j.ydbio.2012.02.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 02/14/2012] [Accepted: 02/15/2012] [Indexed: 11/18/2022]
Abstract
The mouse posterior primitive streak at neural plate/headfold stages (NP/HF, ~7.5 dpc-8 dpc) represents an optimal window from which hemangioblasts can be isolated. We performed immunohistochemistry on this domain using established monoclonal antibodies for proteins that affect blood and endothelial fates. We demonstrate that HoxB4 and GATA1 are the first set of markers that segregate independently to endothelial or blood populations during NP/HF stages of mouse embryonic development. In a subset of cells, both proteins are co-expressed and immunoreactivities appear mutually excluded within nuclear spaces. We searched for this particular state at later sites of hematopoietic stem cell emergence, viz., the aorta-gonad-mesonephros (AGM) and the fetal liver at 10.5-11.5 dpc, and found that only a rare number of cells displayed this character. Based on this spatial-temporal argument, we propose that the earliest blood progenitors emerge either directly from the epiblast or through segregation within the allantoic core domain (ACD) through reduction of cell adhesion and pSmad1/5 nuclear signaling, followed by a stochastic decision toward a blood or endothelial fate that involves GATA1 and HoxB4, respectively. A third form in which binding distributions are balanced may represent a common condition shared by hemangioblasts and HSCs. We developed a heuristic model of hemangioblast maturation, in part, to be explicit about our assumptions.
Collapse
Affiliation(s)
- Jerry M Rhee
- Children's Memorial Research Center, Department of Pediatrics, Developmental Biology Program, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | | |
Collapse
|
14
|
Daane JM, Downs KM. Hedgehog signaling in the posterior region of the mouse gastrula suggests manifold roles in the fetal-umbilical connection and posterior morphogenesis. Dev Dyn 2011; 240:2175-93. [PMID: 22016185 PMCID: PMC3265168 DOI: 10.1002/dvdy.22711] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although many fetal birth defects, particularly those of the body wall and gut, are associated with abnormalities of the umbilical cord, the developmental relationship between these structures is largely obscure. Recently, genetic analysis of mid-gestation mouse embryos revealed that defects in Hedgehog signaling led to omphalocoele, or failure of the body wall to close at the umbilical ring (Matsumaru et al. [ 2011] PLos One 6:e16260). However, systematic spatiotemporal localization of Hedgehog signaling in the allantois, or umbilical precursor tissue, and the surrounding regions has not been documented. Here, a combination of reagents, including the Ptc1:lacZ and Runx1:lacZ reporter mice, immunohistochemistry for Smoothened (Smo), Sonic Hedgehog (Shh), and Indian hedgehog (Ihh), and detailed PECAM-1/Flk-1/Runx-1 analysis, revealed robust Hedgehog signaling in previously undocumented posterior sites over an extended period of time (∼7.0-9.75 dpc). These included the recently described proximal walls of the allantois (Ventral and Dorsal Cuboidal Mesothelia; VCM and DCM, respectively); the ventral embryonic surface continuous with them; hemogenic arterial endothelia; hematopoietic cells; the hindgut; ventral ectodermal ridge (VER); chorionic ectoderm; and the intraplacental yolk sac (IPY), which appeared to be a site of placental hematopoiesis. This map of Hedgehog signaling in the posterior region of the mouse conceptus will provide a valuable foundation upon which to elucidate the origin of many posterior midline abnormalities, especially those of the umbilical cord and associated fetal defects. Developmental Dynamics 240:2175-2193, 2011. © 2011 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Jacob M. Daane
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706
| | - Karen M. Downs
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706
| |
Collapse
|