1
|
Alibardi L. Immunolocalization of telomerases in human hairs identifies proliferating cells in the bulb matrix and outer root sheath. Tissue Cell 2024; 88:102344. [PMID: 38513553 DOI: 10.1016/j.tice.2024.102344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/22/2024] [Accepted: 02/29/2024] [Indexed: 03/23/2024]
Abstract
Telomerase is present in cells with numerous or even un-limited replicative cycles, and some studies suggest it is a stemness marker. In order to determine whether this is the case for the human hair bulbs, an immunohistochemical and ultrastructural study has been carried out using antibodies against telomerase and PCNA (a cell proliferation marker). The observed labeling is similar for the two antibodies here utilized and is mainly nuclear. More frequent telomerase-positive cells are seen in the matrix epithelium of anagen hair bulbs but sparse labeled cells are also seen in the outer root sheath. In late catagen and also in telogen hair follicles only sparse labeled cells are present in the outer root sheath and few cells also in the secondary germinal epithelium formed at the base of the hair bulb in telogen. Electron microscopic immunogold shows a prevalent nuclear distribution and a lower cytoplasmic distribution in sparse cells of anagen bulb matrix that contain few keratin bundles. The nuclear localization is generally seen over the euchromatin or in areas occupied by more compact chromatin that may indicate an activity of telomerase in chromatin assemblage or dis-assemblage. The study concludes that the localization of telomerase is present in cells undergoing proliferation, namely transit amplifying cells of the outer root sheath that are sparsely detected in the lowermost secondary germinal hair bulb also in telogen.
Collapse
|
2
|
Morbiato E, Cattelan S, Pilastro A, Grapputo A. Sperm production is negatively associated with muscle and sperm telomere length in a species subjected to strong sperm competition. Mol Ecol 2023; 32:5812-5822. [PMID: 37792396 DOI: 10.1111/mec.17158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/29/2023] [Accepted: 09/20/2023] [Indexed: 10/05/2023]
Abstract
Life-history theory suggests that ageing is one of the costs of reproduction. Accordingly, a higher reproductive allocation is expected to increase the deterioration of both the somatic and the germinal lines through enhanced telomere attrition. In most species, males' reproductive allocation mainly regards traits that increase mating and fertilization success, that is sexually selected traits. In this study, we tested the hypothesis that a higher investment in sexually selected traits is associated with a reduced relative telomere length (RTL) in the guppy (Poecilia reticulata), an ectotherm species characterized by strong pre- and postcopulatory sexual selection. We first measured telomere length in both the soma and the sperm over guppies' lifespan to see whether there was any variation in telomere length associated with age. Second, we investigated whether a greater investment in pre- and postcopulatory sexually selected traits is linked to shorter telomere length in both the somatic and the sperm germinal lines, and in young and old males. We found that telomeres lengthened with age in the somatic tissue, but there was no age-dependent variation in telomere length in the sperm cells. Telomere length in guppies was significantly and negatively correlated with sperm production in both tissues and life stages considered in this study. Our findings indicate that telomere length in male guppies is strongly associated with their reproductive investment (sperm production), suggesting that a trade-off between reproduction and maintenance is occurring at each stage of males' life in this species.
Collapse
Affiliation(s)
- Elisa Morbiato
- Department of Biology, University of Padova, Padova, Italy
| | - Silvia Cattelan
- Department of Biology, University of Padova, Padova, Italy
- Fritz Lipmann Institute - Leibniz Institute on Aging, Jena, Germany
| | - Andrea Pilastro
- Department of Biology, University of Padova, Padova, Italy
- National Biodiversity Future Center, Palermo, Italy
| | - Alessandro Grapputo
- Department of Biology, University of Padova, Padova, Italy
- National Biodiversity Future Center, Palermo, Italy
| |
Collapse
|
3
|
Friesen CR, Wapstra E, Olsson M. Of telomeres and temperature: Measuring thermal effects on telomeres in ectothermic animals. Mol Ecol 2022; 31:6069-6086. [PMID: 34448287 DOI: 10.1111/mec.16154] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/20/2021] [Accepted: 08/23/2021] [Indexed: 01/31/2023]
Abstract
Ectotherms are classic models for understanding life-history tradeoffs, including the reproduction-somatic maintenance tradeoffs that may be reflected in telomere length and their dynamics. Importantly, life-history traits of ectotherms are tightly linked to their thermal environment, with diverse or synergistic mechanistic explanations underpinning the variation. Telomere dynamics potentially provide a mechanistic link that can be used to monitor thermal effects on individuals in response to climatic perturbations. Growth rate, age and developmental stage are all affected by temperature, which interacts with telomere dynamics in complex and intriguing ways. The physiological processes underpinning telomere dynamics can be visualized and understood using thermal performance curves (TPCs). TPCs reflect the evolutionary history and the thermal environment during an individual's ontogeny. Telomere maintenance should be enhanced at or near the thermal performance optimum of a species, population and individual. The thermal sensitivity of telomere dynamics should reflect the interacting TPCs of the processes underlying them. The key processes directly underpinning telomere dynamics are mitochondrial function (reactive oxygen production), antioxidant activity, telomerase activity and telomere endcap protein status. We argue that identifying TPCs for these processes will significantly help design robust, repeatable experiments and field studies of telomere dynamics in ectotherms. Conceptually, TPCs are a valuable framework to predict and interpret taxon- and population-specific telomere dynamics across thermal regimes. The literature of thermal effects on telomeres in ectotherms is sparse and mostly limited to vertebrates, but our conclusions and recommendations are relevant across ectothermic animals.
Collapse
Affiliation(s)
- Christopher R Friesen
- School of Earth, Atmospheric and Life Sciences, The University of Wollongong, Wollongong, New South Wales, Australia.,School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Erik Wapstra
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Mats Olsson
- School of Earth, Atmospheric and Life Sciences, The University of Wollongong, Wollongong, New South Wales, Australia.,Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
4
|
McLennan D, Auer SK, McKelvey S, McKelvey L, Anderson G, Boner W, Duprez JS, Metcalfe NB. Habitat restoration weakens negative environmental effects on telomere dynamics. Mol Ecol 2022; 31:6100-6113. [PMID: 33973299 DOI: 10.1111/mec.15980] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/16/2021] [Accepted: 04/27/2021] [Indexed: 02/01/2023]
Abstract
Habitat quality can have far-reaching effects on organismal fitness, an issue of concern given the current scale of habitat degradation. Many temperate upland streams have reduced nutrient levels due to human activity. Nutrient restoration confers benefits in terms of invertebrate food availability and subsequent fish growth rates. Here we test whether these mitigation measures also affect the rate of cellular ageing of the fish, measured in terms of the telomeres that cap the ends of eukaryotic chromosomes. We equally distributed Atlantic salmon eggs from the same 30 focal families into 10 human-impacted oligotrophic streams in northern Scotland. Nutrient levels in five of the streams were restored by simulating the deposition of a small number of adult Atlantic salmon Salmo salar carcasses at the end of the spawning period, while five reference streams were left as controls. Telomere lengths and expression of the telomerase reverse transcriptase (TERT) gene that may act to lengthen telomeres were then measured in the young fish when 15 months old. While TERT expression was unrelated to any of the measured variables, telomere lengths were shorter in salmon living at higher densities and in areas with a lower availability of the preferred substrate (cobbles and boulders). However, the adverse effects of these habitat features were much reduced in the streams receiving nutrients. These results suggest that adverse environmental pressures are weakened when nutrients are restored, presumably because the resulting increase in food supply reduces levels of both competition and stress.
Collapse
Affiliation(s)
- Darryl McLennan
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Sonya K Auer
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK.,Department of Biology, Williams College, Williamstown, MA, USA
| | | | | | - Graeme Anderson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Winnie Boner
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Jessica S Duprez
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Neil B Metcalfe
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
5
|
Alibardi L. Microscopy suggests that glutathione S‐transferase is stored in large granules of myeloid cells in bone marrow and sparse granulocytes of the regenerating tail of lizard. ACTA ZOOL-STOCKHOLM 2021. [DOI: 10.1111/azo.12413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova and Department of Biology University of Bologna Bologna Italy
| |
Collapse
|
6
|
Alibardi L. Review: Regeneration of the tail in lizards appears regulated by a balanced expression of oncogenes and tumor suppressors. Ann Anat 2021; 239:151824. [PMID: 34478856 DOI: 10.1016/j.aanat.2021.151824] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Tail regeneration in lizards is the only case of large multi-tissue organ regeneration in amniotes. METHODS The present Review summarizes numerous immunolocalization and gene-expression studies indicating that after tail amputation in lizards the stump is covered in 7-10 days by the migration of keratinocytes. This allows the accumulation of mesenchymal-fibroblasts underneath the wound epidermis and forms a regenerative blastema and a new tail. RESULTS During migration keratinocytes transit from a compact epidermis into relatively free keratinocytes in a process of "Epithelial Mesenchymal Transition" (EMT). While EMT has been implicated in carcinogenesis no malignant transformation is observed during these cell movements in the regenerative blastema. Immunolabeling for E-cadherin and snail shows that these proteins are present in the cytoplasm and nuclei of migrating keratinocytes. The basal layer of the wound epithelium of the apical blastema express onco-proteins (wnt2b, egfr, c-myc, fgfs, fgfr, rhov, etc.) and tumor suppressors (p53/63, fat2, ephr, apc, retinoblastoma, arhgap28 etc.). This suggests that their balanced action regulates proliferation of the blastema. CONCLUSIONS While apical epidermis and mesenchyme are kept under a tight proliferative control, in more proximal regions of the regenerating tail the expression of tumor-suppressors triggers the differentiation of numerous tissues, forming the large myomeres, axial cartilage, simple spinal cord and nerves, new scales, arteries and veins, fat deposits, dermis and other connective tissues. Understanding gene expression patterns of developmental pathways activated during tail regeneration in lizards is useful for cancer research and for future attempts to induce organ regeneration in other amniotes including humans.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova and Dipartmento di Biologia, Universita' di Bologna, Italy.
| |
Collapse
|
7
|
Alibardi L. Immunostaining of telomerase in embryonic and juvenile feather follicle of the chick labels proliferating cells for feather formation. ZOOLOGY 2020; 146:125846. [PMID: 33813250 DOI: 10.1016/j.zool.2020.125846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/05/2020] [Accepted: 09/16/2020] [Indexed: 11/26/2022]
Abstract
Feathers regenerate through proliferation of cells derived from follicle stem cells. Immunoloblotting for telomerase in chick embryonic and juvenile feathers shows immunopositive bands around 100 kDa, 75 and 60 kDa only in embryonic feathers, indicating fragmentation of the protein due to physiological processing or artifacts derived from protein extraction. Immunolabeling for telomerase is present in the cytoplasm and nuclei of cells of the collar epithelium and bulge located in the follicle, and in sparse cells of the dermal papilla. PCNA-immunolabeling indicates that the collar and dermal papilla contain numerous proliferating cells, including the ramogenic zone where barb ridges are formed. Ultrastructural labeling indicates that a telomerase-like protein or its fragment is localized in nucleoli and in sparse nuclear clumps, likely representing Cajal bodies. The cytoplasm shows sparse immune-gold particles, also associated to mitochondria and sparse keratin filaments. An intense labeling is present in some areas of condensing chromosomes in dividing cells. Since telomerase positive cells are also seen in suprabasal layers of the collar epithelium and in the ramogenic zone, it is suggested that they represent dividing cells, most likely transit amplifying cells that give rise to the corneocytes of feathers. The significance of telomerase localization in chromatin is unknown.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova and Department of Biology, University of Bologna, Bologna, Italy.
| |
Collapse
|
8
|
Friesen CR, Rollings N, Wilson M, Whittington CM, Shine R, Olsson M. Covariation in superoxide, sperm telomere length and sperm velocity in a polymorphic reptile. Behav Ecol Sociobiol 2020. [DOI: 10.1007/s00265-020-02855-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
McLennan D, Recknagel H, Elmer KR, Monaghan P. Distinct telomere differences within a reproductively bimodal common lizard population. Funct Ecol 2019; 33:1917-1927. [PMID: 31762528 PMCID: PMC6853248 DOI: 10.1111/1365-2435.13408] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/18/2019] [Accepted: 07/03/2019] [Indexed: 12/21/2022]
Abstract
Different strategies of reproductive mode, either oviparity (egg-laying) or viviparity (live-bearing), will be associated with a range of other life-history differences that are expected to affect patterns of ageing and longevity. It is usually difficult to compare the effects of alternative reproductive modes because of evolutionary and ecological divergence. However, the very rare exemplars of reproductive bimodality, in which different modes exist within a single species, offer an opportunity for robust and controlled comparisons.One trait of interest that could be associated with life history, ageing and longevity is the length of the telomeres, which form protective caps at the chromosome ends and are generally considered a good indicator of cellular health. The shortening of these telomeres has been linked to stressful conditions; therefore, it is possible that differing reproductive costs will influence patterns of telomere loss. This is important because a number of studies have linked a shorter telomere length to reduced survival.Here, we have studied maternal and offspring telomere dynamics in the common lizard (Zootoca vivipara). Our study has focused on a population where oviparous and viviparous individuals co-occur in the same habitat and occasionally interbreed to form admixed individuals.While viviparity confers many advantages for offspring, it might also incur substantial costs for the mother, for example require more energy. Therefore, we predicted that viviparous mothers would have relatively shorter telomeres than oviparous mothers, with admixed mothers having intermediate telomere lengths. There is thought to be a heritable component to telomere length; therefore, we also hypothesized that offspring would follow the same pattern as the mothers.Contrary to our predictions, the viviparous mothers and offspring had the longest telomeres, and the oviparous mothers and offspring had the shortest telomeres. The differing telomere lengths may have evolved as an effect of the life-history divergence between the reproductive modes, for example due to the increased growth rate that viviparous individuals may undergo to reach a similar size at reproduction. A free http://onlinelibrary.wiley.com/doi/10.1111/1365-2435.13408/suppinfo can be found within the Supporting Information of this article.
Collapse
Affiliation(s)
- Darryl McLennan
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
- Department of Fish Ecology and EvolutionEAWAGKastanienbaumSwitzerland
| | - Hans Recknagel
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
| | - Kathryn R. Elmer
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
| | - Pat Monaghan
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
| |
Collapse
|
10
|
Fitzpatrick LJ, Olsson M, Parsley LM, Pauliny A, While GM, Wapstra E. Tail loss and telomeres: consequences of large-scale tissue regeneration in a terrestrial ectotherm. Biol Lett 2019; 15:20190151. [PMID: 31288685 DOI: 10.1098/rsbl.2019.0151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Large-scale tissue regeneration has potential consequences for telomere length through increases in cell division and changes in metabolism which increase the potential for oxidative stress damage to telomeres. The effects of regeneration on telomere dynamics have been studied in fish and marine invertebrates, but the literature is scarce for terrestrial species. We experimentally induced tail autotomy in a lizard ( Niveoscincus ocellatus) and assessed relative telomere length (RTL) in blood samples before and after partial tail regeneration while concurrently measuring reactive oxygen species (ROS) levels. The change in ROS levels was a significant explanatory variable for the change in RTL over the 60-day experiment. At the average value of ROS change, the mean RTL increased significantly in the control group (intact tails), but there was no such evidence in the regenerating group. By contrast, ROS levels decreased significantly in the regenerating group, but there was no such evidence in the control group. Combined, these results suggest that tail regeneration following autotomy involves a response to oxidative stress and this potentially comes at a cost to telomere repair. This change in telomere maintenance demonstrates a potential long-term cost of tail regeneration beyond the regrowth of tissue itself.
Collapse
Affiliation(s)
- L J Fitzpatrick
- 1 School of Natural Sciences, University of Tasmania , Hobart , Australia
| | - M Olsson
- 2 Department of Biological and Environmental Sciences, University of Gothenburg , Gothenburg , Sweden
| | - L M Parsley
- 1 School of Natural Sciences, University of Tasmania , Hobart , Australia.,3 School of Biological Sciences, University of Canterbury , Christchurch , New Zealand
| | - A Pauliny
- 2 Department of Biological and Environmental Sciences, University of Gothenburg , Gothenburg , Sweden
| | - G M While
- 1 School of Natural Sciences, University of Tasmania , Hobart , Australia
| | - E Wapstra
- 1 School of Natural Sciences, University of Tasmania , Hobart , Australia
| |
Collapse
|
11
|
Olsson M, Wapstra E, Friesen C. Ectothermic telomeres: it's time they came in from the cold. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2016.0449. [PMID: 29335373 PMCID: PMC5784069 DOI: 10.1098/rstb.2016.0449] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2017] [Indexed: 12/17/2022] Open
Abstract
We review the evolutionary ecology and genetics of telomeres in taxa that cannot elevate their body temperature to a preferred level through metabolism but do so by basking or seeking out a warm environment. This group of organisms contains all living things on earth, apart from birds and mammals. One reason for our interest in this synthetic group is the argument that high, stable body temperature increases the risk of malignant tumours if long, telomerase-restored telomeres make cells 'live forever'. If this holds true, ectotherms should have significantly lower cancer frequencies. We discuss to what degree there is support for this 'anti-cancer' hypothesis in the current literature. Importantly, we suggest that ectothermic taxa, with variation in somatic telomerase expression across tissue and taxa, may hold the key to understanding ongoing selection and evolution of telomerase dynamics in the wild. We further review endotherm-specific effects of growth on telomeres, effects of autotomy ('tail dropping') on telomere attrition, and costs of maintaining sexual displays measured in telomere attrition. Finally, we cover plant ectotherm telomeres and life histories in a separate 'mini review'.This article is part of the theme issue 'Understanding diversity in telomere dynamics'.
Collapse
Affiliation(s)
- Mats Olsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Medicinaregatan 18, Box 463, 405 30 Gothenburg, Sweden .,School of Biological Sciences, The University of Wollongong, 2522 Wollongong, New South Wales, Australia
| | - Erik Wapstra
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart 7001, Tasmania, Australia
| | - Christopher Friesen
- School of Life and Environmental Sciences, University of Sydney, Heydon-Laurence Bldg A08, Science Road, Sydney, NSW 2006, Australia
| |
Collapse
|
12
|
Alibardi L. Immunolocalization of serpins in the regenerating tail of lizard suggests a role for epidermal and neural barrier formation. ZOOLOGY 2018; 131:1-9. [DOI: 10.1016/j.zool.2018.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/14/2018] [Accepted: 09/17/2018] [Indexed: 10/28/2022]
|
13
|
Alibardi L. Ultrastructural immunolocalization of telomerase and hyaluronate in migrating keratinocytes in a case of oro-pharyngeal squamous cancer. Pathol Res Pract 2018; 215:215-221. [PMID: 30409452 DOI: 10.1016/j.prp.2018.10.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/28/2018] [Accepted: 10/31/2018] [Indexed: 10/27/2022]
Abstract
The ultrastructural immunolocalization of telomerase and hyaluronate has been studied in a case of oropharyngeal squamous carcinoma. Immunofluorescence shows that telomerase immunolabeling is present in the cytoplasm and in nuclei of some keratinocytes during their migration into the underlying connective tissue. The electron microscope shows that the nuclear localization of telomerase mainly occurs in the large nucleoli and in likely Cajal bodies, the sites of assembling and maturation of proteins forming the telomerase complex. Aside ribosomes, the nucleolus has a role in the biosynthesis of this reverse transcriptase during cell proliferation in normal tissues and in tumors. The cytoplasmic labeling for telomerase is frequently associated with an irregular network of keratin bundles but the significance of this observation is unclear. Hyaluronate, detected through ultrastructural immunolocalization of a hyaluronate binding protein, is abundant mostly along the cell membrane of the detaching basal keratinocytes during epithelial mesenchymal transition. A coat of hyaluronate surrounds the free keratinocytes of the squamous epithelium and is present around the connective cells present underneath. The study supports the hypothesis that hyaluronate forms a pathway along which epithelial cells can migrate during epidermal mesenchymal transition and may also shield cancer cells from immune cells.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova and Department of Biology of University of Bologna, Italy
| |
Collapse
|
14
|
Alibardi L. Immunodetection of High Mobility Group Proteins in the regenerating tail of lizard mainly indicates activation for cell proliferation. ACTA ZOOL-STOCKHOLM 2018. [DOI: 10.1111/azo.12259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova and Department of BiologyUniversity of Bologna Bologna Italy
| |
Collapse
|
15
|
Olsson M, Wapstra E, Friesen CR. Evolutionary ecology of telomeres: a review. Ann N Y Acad Sci 2017; 1422:5-28. [DOI: 10.1111/nyas.13443] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/30/2017] [Accepted: 07/06/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Mats Olsson
- Department of Biological and Environmental Sciences University of Gothenburg Gothenburg Sweden
- School of Biological Sciences The University of Wollongong Wollongong New South Wales Australia
| | - Erik Wapstra
- School of Biological Sciences University of Tasmania Hobart Tasmania Australia
| | - Christopher R. Friesen
- School of Life and Environmental Sciences University of Sydney Sydney New South Wales Australia
| |
Collapse
|
16
|
Alibardi L. Immunohistochemical and western blot analysis suggest that the soluble forms of FGF1-2 and FGFR1-2 sustain tail regeneration in the lizard. Ann Anat 2017; 214:67-74. [PMID: 28823877 DOI: 10.1016/j.aanat.2017.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/27/2017] [Accepted: 07/28/2017] [Indexed: 12/31/2022]
Abstract
Fibroblast Growth Factors 1-2 (FGF1-2) stimulate tail regeneration in lizards and therefore the distribution of their receptors, FGFR1-2, in the regenerating tail of the lizard. Podarcis muralis has been studied using immunofluorescence and western blotting. Immunoreactive protein bands at 15-16kDa for FGF1-2 in addition to those at 50-65kDa are detected in the regenerating epidermis, but weak bands at 35, 45 and 50kDa appear from the regenerating connective tissues. Strongly immunolabeled bands for FGFR1 at 32, 60, and 80kDa and less intense for FGFR2 only appear in the regenerating tail. In normal tail epidermis and dermis, higher MW forms are present at 80 and 115-140kDa, respectively, but they disappear in the regenerating epidermis and dermis where low MW forms of FGFR1-2 are found at 50-70kDa. Immunolocalization confirms that most FGFR1-2 are present in the wound epidermis, Apical Epidermal Peg, ependymal tube while immunolabeling lowers in regenerating muscles, blastema cells, cartilage and connectives tissues. The likely release of FGFs from the Apical Epidermal Peg and ependyma and the presence of their receptors in these tissues may determine the autocrine stimulation of proliferation and a paracrine stimulation of the blastema cells through their FGF Receptors.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab and Department of Biology of the University of Bologna, via Selmi 3, 40126 Bologna, Italy.
| |
Collapse
|
17
|
Alibardi L. Review: Biological and Molecular Differences between Tail Regeneration and Limb Scarring in Lizard: An Inspiring Model Addressing Limb Regeneration in Amniotes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 328:493-514. [DOI: 10.1002/jez.b.22754] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 05/16/2017] [Accepted: 05/24/2017] [Indexed: 01/29/2023]
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab and Department of Biology; University of Bologna; Bologna Italy
| |
Collapse
|
18
|
Vitulo N, Dalla Valle L, Skobo T, Valle G, Alibardi L. Transcriptome analysis of the regenerating tail vs. the scarring limb in lizard reveals pathways leading to successful vs. unsuccessful organ regeneration in amniotes. Dev Dyn 2017; 246:116-134. [DOI: 10.1002/dvdy.24474] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/12/2016] [Accepted: 11/16/2016] [Indexed: 12/29/2022] Open
Affiliation(s)
- Nicola Vitulo
- Department of Biotechnology; University of Verona; Italy
| | | | - Tatjana Skobo
- Department of Biology; University of Padova; Padova Italy
| | - Giorgio Valle
- Department of Biology; University of Padova; Padova Italy
| | | |
Collapse
|
19
|
Alibardi L. Immunolocalization of c-myc-positive cells in lizard tail after amputation suggests cell activation and proliferation for tail regeneration. ACTA ZOOL-STOCKHOLM 2015. [DOI: 10.1111/azo.12153] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab and Department of Bigea; University of Bologna; Bologna Italy
| |
Collapse
|
20
|
Alibardi L. Immunocalization of telomerase in cells of lizard tail after amputation suggests cell activation for tail regeneration. Tissue Cell 2015; 48:63-71. [PMID: 26697743 DOI: 10.1016/j.tice.2015.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/25/2015] [Accepted: 10/25/2015] [Indexed: 01/28/2023]
Abstract
Tail amputation (autotomy) in most lizards elicits a remarkable regenerative response leading to a new although simplified tail. No information on the trigger mechanism following wounding is known but cells from the stump initiate to proliferate and form a regenerative blastema. The present study shows that telomerases are mainly activated in the nuclei of various connective and muscle satellite cells of the stump, and in other tissues, probably responding to the wound signals. Western blotting detection also indicates that telomerase positive bands increases in the regenerating blastema in comparison to the normal tail. Light and ultrastructural immunocytochemistry localization of telomerase shows that 4-14 days post-amputation in lizards immunopositive nuclei of sparse cells located among the wounded tissues are accumulating into the forming blastema. These cells mainly include fibroblasts and fat cells of the connective tissue and satellite cells of muscles. Also some immature basophilic and polychromatophilic erytroblasts, lymphoblasts and myelocytes present within the Bone Marrow of the vertebrae show telomerase localization in their nuclei, but their contribution to the formation of the regenerative blastema remains undetermined. The study proposes that one of the initial mechanisms triggering cell proliferation for the formation of the blastema in lizards involve gene activation for the production of telomerase that stimulates the following signaling pathways for cell division and migration.
Collapse
Affiliation(s)
- L Alibardi
- Comparative Histolab and Department of Bigea, University of Bologna, via Selmi 3, 40126 Bologna, Italy.
| |
Collapse
|
21
|
Alibardi L. Immunodetection of telomerase-like immunoreactivity in normal and regenerating tail of amphibians suggests it is related to their regenerative capacity. ACTA ACUST UNITED AC 2015; 323:757-766. [DOI: 10.1002/jez.1989] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 07/20/2015] [Accepted: 08/18/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab and Department of Bigea; Universita di Bologna; Bologna Italy
| |
Collapse
|
22
|
Alibardi L. Regeneration of Articular Cartilage in Lizard Knee from Resident Stem/Progenitor Cells. Int J Mol Sci 2015; 16:20731-47. [PMID: 26340619 PMCID: PMC4613228 DOI: 10.3390/ijms160920731] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/09/2015] [Accepted: 08/10/2015] [Indexed: 11/16/2022] Open
Abstract
The epiphysis of femur and tibia in the lizard Podarcis muralis can extensively regenerate after injury. The process involves the articular cartilage and metaphyseal (growth) plate after damage. The secondary ossification center present between the articular cartilage and the growth plate is replaced by cartilaginous epiphyses after about one month of regeneration at high temperature. The present study analyzes the origin of the chondrogenic cells from putative stem cells located in the growing centers of the epiphyses. The study is carried out using immunocytochemistry for the detection of 5BrdU-labeled long retaining cells and for the localization of telomerase, an enzyme that indicates stemness. The observations show that putative stem cells retaining 5BrdU and positive for telomerase are present in the superficial articular cartilage and metaphyseal growth plate located in the epiphyses. This observation suggests that these areas represent stem cell niches lasting for most of the lifetime of lizards. In healthy long bones of adult lizards, the addition of new chondrocytes from the stem cells population in the articular cartilage and the metaphyseal growth plate likely allows for slow, continuous longitudinal growth. When the knee is injured in the adult lizard, new populations of chondrocytes actively producing chondroitin sulfate proteoglycan are derived from these stem cells to allow for the formation of completely new cartilaginous epiphyses, possibly anticipating the re-formation of secondary centers in later stages. The study suggests that in this lizard species, the regenerative ability of the epiphyses is a pre-adaptation to the regeneration of the articular cartilage.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab and Department of Bigea, University of Bologna, via Selmi 3, 40126 Bologna, Italy.
| |
Collapse
|