1
|
Chen Z, He J, Guo Y, Hao Y, Lv W, Chen Z, Wang J, Yang Y, Wang K, Liu Z, Ouyang Q, Su Z, Hu P, Xiao G. Adherent junctions: Physiology, role in hydrocephalus and potential therapeutic targets. IBRO Neurosci Rep 2025; 18:283-292. [PMID: 39995568 PMCID: PMC11849119 DOI: 10.1016/j.ibneur.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/14/2025] [Accepted: 02/03/2025] [Indexed: 02/26/2025] Open
Abstract
In all epithelial cells, the adherent junctions (AJs) with cadherin as the core play an important role in the maintenance of the connection and the formation of apical-basal polarity. The ependymal cells close to the ventricular system rely on AJs with N-cadherin at the core to maintain their normal morphology and function. Therefore, it has an important impact on the function and disease of the central nervous system. Hydrocephalus is a pathological phenomenon of excessive cerebrospinal fluid accumulating in the ventricular system accompanied by continuous ventricular dilatation, which can be divided into obstructive hydrocephalus and communicating hydrocephalus according to the pathogenesis. Obstructive hydrocephalus is often associated with excessive ependymal cells produced by differentiation of radial glial cells. The etiology of communicating hydrocephalus is mainly related to the dyskinesia of cerebrospinal fluid. In addition, the damage of the brain barrier can lead to brain edema and aggravate the symptoms. At present, the researches on the pathogenesis of hydrocephalus are mainly focused on the development of ependymal cells and cilia, while less attention has been paid to molecules such as AJs, which play an important role in maintaining the polarity of ependymal cells. This paper discusses the formation and function of AJs and their role in preventing hydrocephalus by preserving the polarity of ependymal cilia, regulating the number of ependymal cells, and upholding the brain barrier integrity to impede hydrocephalus exacerbation, which provides a new direction for the study of hydrocephalus.
Collapse
Affiliation(s)
- Zhiye Chen
- Department of Diagnostic Radiology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan 410008, PR China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Jian He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Yating Guo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Yue Hao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Wentao Lv
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Zexin Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Junqiang Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Yijian Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Kaiyue Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Zhikun Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Qian Ouyang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- Department of Neurosurgery, Zhuzhou Hospital, Central South University Xiangya School of Medicine, Zhuzhou, Hunan 412000, PR China
| | - Zhangjie Su
- Department of Neurosurgery, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge CB21 2QQ, UK
| | - Pingsheng Hu
- Department of Diagnostic Radiology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan 410008, PR China
| | - Gelei Xiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| |
Collapse
|
2
|
Choi W, Goldfarb D, Yan F, Major MB, Fanning AS, Peifer M. Proximity proteomics provides a new resource for exploring the function of Afadin and the complexity of cell-cell adherens junctions. Biol Open 2025; 14:bio061811. [PMID: 39882731 PMCID: PMC11810119 DOI: 10.1242/bio.061811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/27/2024] [Indexed: 01/31/2025] Open
Abstract
The network of proteins at the interface between cell-cell adherens junctions and the actomyosin cytoskeleton provides robust yet dynamic connections that facilitate cell shape change and motility. While this was initially thought to be a simple linear connection via classic cadherins and their associated catenins, we now have come to appreciate that many more proteins are involved, providing robustness and mechanosensitivity. Defining the full set of proteins in this network remains a key objective in our field. Proximity proteomics provides a means to define these networks. Mammalian Afadin and its Drosophila homolog Canoe are key parts of this protein network, facilitating diverse cell shape changes during gastrulation and other events of embryonic morphogenesis. Here we report results of several proximity proteomics screens, defining proteins in the neighborhood of both the N- and C-termini of mammalian Afadin in the premier epithelial model, MDCK cells. We compare our results with previous screens done in other cell types, and with proximity proteomics efforts with other junctional proteins. These reveal the value of multiple screens in defining the full network of neighbors and offer interesting insights into the overlap in protein composition between different epithelial cell junctions.
Collapse
Affiliation(s)
- Wangsun Choi
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Dennis Goldfarb
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA63110
- Institute for Informatics, Data Science & Biostatistics, Washington University School of Medicine, St. Louis, MO, USA63110
| | - Feng Yan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael B. Major
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA63110
| | - Alan S. Fanning
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mark Peifer
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
3
|
Choi W, Goldfarb D, Yan F, Major MB, Fanning AS, Peifer M. Proximity proteomics provides a new resource for exploring the function of Afadin and the complexity of cell-cell adherens junctions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.07.622507. [PMID: 39574742 PMCID: PMC11581034 DOI: 10.1101/2024.11.07.622507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
The network of proteins at the interface between cell-cell adherens junctions and the actomyosin cytoskeleton provides robust yet dynamic connections that facilitate cell shape change and motility. While this was initially thought to be a simple linear connection via classic cadherins and their associated catenins, we now have come to appreciate that many more proteins are involved, providing robustness and mechanosensitivity. Defining the full network of proteins in this network remains a key objective in our field. Proximity proteomics provides a means to define these networks. Mammalian Afadin and its Drosophila homolog Canoe are key parts of this protein network, facilitating diverse cell shape changes during gastrulation and other events of embryonic morphogenesis. Here we report results of several proximity proteomics screens, defining proteins in the neighborhood of both the N- and C-termini of mammalian Afadin in the premier epithelial model, MDCK cells. We compare our results with previous screens done in other cell types, and with proximity proteomics efforts with other junctional proteins. These reveal the value of multiple screens in defining the full network of neighbors and offer interesting insights into the overlap in protein composition between different epithelial cell junctions.
Collapse
Affiliation(s)
- Wangsun Choi
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Dennis Goldfarb
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA 63110
- Institute for Informatics, Data Science & Biostatistics, Washington University School of Medicine, St. Louis, MO, USA 63110
| | - Feng Yan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - M. Ben Major
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA 63110
| | - Alan S. Fanning
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Mark Peifer
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| |
Collapse
|
4
|
Kamińska A, Lustofin S, Brzoskwinia M, Duliban M, Cyran-Gryboś J, Bilińska B, Hejmej A. Androgens and Notch signaling cooperate in seminiferous epithelium to regulate genes related to germ cell development and apoptosis. Reprod Biol 2024; 24:100878. [PMID: 38490111 DOI: 10.1016/j.repbio.2024.100878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 03/17/2024]
Abstract
It was reported previously that in adult males disruption of both androgen and Notch signaling impairs spermatid development and germ cell survival in rodent seminiferous epithelium. To explain the molecular mechanisms of these effects, we focused on the interaction between Notch signaling and androgen receptor (AR) in Sertoli cells and investigate its role in the control of proteins involved in apical ectoplasmic specializations, actin remodeling during spermiogenesis, and induction of germ cell apoptosis. First, it was revealed that in rat testicular explants ex vivo both testosterone and Notch signaling modulate AR expression and cooperate in the regulation of spermiogenesis-related genes (Nectin2, Afdn, Arp2, Eps8) and apoptosis-related genes (Fasl, Fas, Bax, Bcl2). Further, altered expression of these genes was found following exposure of Sertoli cells (TM4 cell line) and germ cells (GC-2 cell line) to ligands for Notch receptors (Delta-like1, Delta-like4, and Jagged1) and/or Notch pathway inhibition. Finally, direct interactions of Notch effector, Hairy/enhancer-of-split related with YRPW motif protein 1, and the promoter of Ar gene or AR protein were revealed in TM4 Sertoli cells. In conclusion, Notch pathway activity in Sertoli and germ cells regulates genes related to germ cell development and apoptosis acting both directly and indirectly by influencing androgen signaling in Sertoli cells.
Collapse
Affiliation(s)
- Alicja Kamińska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Sylwia Lustofin
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Małgorzata Brzoskwinia
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Michał Duliban
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Joanna Cyran-Gryboś
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Barbara Bilińska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Anna Hejmej
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
5
|
The oncogenic JAG1 intracellular domain is a transcriptional cofactor that acts in concert with DDX17/SMAD3/TGIF2. Cell Rep 2022; 41:111626. [DOI: 10.1016/j.celrep.2022.111626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/19/2022] [Accepted: 10/18/2022] [Indexed: 11/23/2022] Open
|
6
|
Vázquez-Ulloa E, Lin KL, Lizano M, Sahlgren C. Reversible and bidirectional signaling of notch ligands. Crit Rev Biochem Mol Biol 2022; 57:377-398. [PMID: 36048510 DOI: 10.1080/10409238.2022.2113029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The Notch signaling pathway is a direct cell-cell communication system involved in a wide variety of biological processes, and its disruption is observed in several pathologies. The pathway is comprised of a ligand-expressing (sender) cell and a receptor-expressing (receiver) cell. The canonical ligands are members of the Delta/Serrate/Lag-1 (DSL) family of proteins. Their binding to a Notch receptor in a neighboring cell induces a conformational change in the receptor, which will undergo regulated intramembrane proteolysis (RIP), liberating the Notch intracellular domain (NICD). The NICD is translocated to the nucleus and promotes gene transcription. It has been demonstrated that the ligands can also undergo RIP and nuclear translocation, suggesting a function for the ligands in the sender cell and possible bidirectionality of the Notch pathway. Although the complete mechanism of ligand processing is not entirely understood, and its dependence on Notch receptors has not been ruled out. Also, ligands have autonomous functions beyond Notch activation. Here we review the concepts of reverse and bidirectional signalization of DSL proteins and discuss the characteristics that make them more than just ligands of the Notch pathway.
Collapse
Affiliation(s)
- Elenaé Vázquez-Ulloa
- Faculty of Science and Engineering/Cell Biology, Åbo Akademi University, Turku, Finland.,Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
| | - Kai-Lan Lin
- Faculty of Science and Engineering/Cell Biology, Åbo Akademi University, Turku, Finland.,Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
| | - Marcela Lizano
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Departamento de Medicina Genomica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Cecilia Sahlgren
- Faculty of Science and Engineering/Cell Biology, Åbo Akademi University, Turku, Finland.,Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland.,Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
7
|
Huxham J, Tabariès S, Siegel PM. Afadin (AF6) in cancer progression: A multidomain scaffold protein with complex and contradictory roles. Bioessays 2020; 43:e2000221. [PMID: 33165933 DOI: 10.1002/bies.202000221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/17/2020] [Accepted: 09/24/2020] [Indexed: 11/09/2022]
Abstract
Adherens (AJ) and tight junctions (TJ) maintain cell-cell adhesions and cellular polarity in normal tissues. Afadin, a multi-domain scaffold protein, is commonly found in both adherens and tight junctions, where it plays both structural and signal-modulating roles. Afadin is a complex modulator of cellular processes implicated in cancer progression, including signal transduction, migration, invasion, and apoptosis. In keeping with the complexities associated with the roles of adherens and tight junctions in cancer, afadin exhibits both tumor suppressive and pro-metastatic functions. In this review, we will explore the dichotomous roles that afadin plays during cancer progression.
Collapse
Affiliation(s)
- Jennifer Huxham
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Sébastien Tabariès
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Peter M Siegel
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada.,Department of Biochemistry, McGill University, Montréal, Québec, Canada.,Department of Anatomy & Cell Biology, McGill University, Montréal, Québec, Canada.,Department of Oncology, McGill University, Montréal, Québec, Canada
| |
Collapse
|
8
|
Amacher JF, Brooks L, Hampton TH, Madden DR. Specificity in PDZ-peptide interaction networks: Computational analysis and review. JOURNAL OF STRUCTURAL BIOLOGY-X 2020; 4:100022. [PMID: 32289118 PMCID: PMC7138185 DOI: 10.1016/j.yjsbx.2020.100022] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/26/2020] [Accepted: 02/29/2020] [Indexed: 01/03/2023]
Abstract
Globular PDZ domains typically serve as protein-protein interaction modules that regulate a wide variety of cellular functions via recognition of short linear motifs (SLiMs). Often, PDZ mediated-interactions are essential components of macromolecular complexes, and disruption affects the entire scaffold. Due to their roles as linchpins in trafficking and signaling pathways, PDZ domains are attractive targets: both for controlling viral pathogens, which bind PDZ domains and hijack cellular machinery, as well as for developing therapies to combat human disease. However, successful therapeutic interventions that avoid off-target effects are a challenge, because each PDZ domain interacts with a number of cellular targets, and specific binding preferences can be difficult to decipher. Over twenty-five years of research has produced a wealth of data on the stereochemical preferences of individual PDZ proteins and their binding partners. Currently the field lacks a central repository for this information. Here, we provide this important resource and provide a manually curated, comprehensive list of the 271 human PDZ domains. We use individual domain, as well as recent genomic and proteomic, data in order to gain a holistic view of PDZ domains and interaction networks, arguing this knowledge is critical to optimize targeting selectivity and to benefit human health.
Collapse
Affiliation(s)
- Jeanine F Amacher
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.,Department of Chemistry, Western Washington University, Bellingham, WA 98225, USA
| | - Lionel Brooks
- Department of Biology, Western Washington University, Bellingham, WA 98225, USA
| | - Thomas H Hampton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Dean R Madden
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| |
Collapse
|
9
|
Zagory JA, Dietz W, Park A, Fenlon M, Xu J, Utley S, Mavila N, Wang KS. Notch signaling promotes ductular reactions in biliary atresia. J Surg Res 2017; 215:250-256. [DOI: 10.1016/j.jss.2017.03.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/13/2017] [Accepted: 03/29/2017] [Indexed: 12/29/2022]
|
10
|
Vargas C, Radziwill G, Krause G, Diehl A, Keller S, Kamdem N, Czekelius C, Kreuchwig A, Schmieder P, Doyle D, Moelling K, Hagen V, Schade M, Oschkinat H. Small-molecule inhibitors of AF6 PDZ-mediated protein-protein interactions. ChemMedChem 2014; 9:1458-62. [PMID: 24668962 DOI: 10.1002/cmdc.201300553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/13/2014] [Indexed: 10/25/2022]
Abstract
PDZ (PSD-95, Dlg, ZO-1) domains are ubiquitous interaction modules that are involved in many cellular signal transduction pathways. Interference with PDZ-mediated protein-protein interactions has important implications in disease-related signaling processes. For this reason, PDZ domains have gained attention as potential targets for inhibitor design and, in the long run, drug development. Herein we report the development of small molecules to probe the function of the PDZ domain from human AF6 (ALL1-fused gene from chromosome 6), which is an essential component of cell-cell junctions. These compounds bind to AF6 PDZ with substantially higher affinity than the peptide (Ile-Gln-Ser-Val-Glu-Val) derived from its natural ligand, EphB2. In intact cells, the compounds inhibit the AF6-Bcr interaction and interfere with epidermal growth factor (EGF)-dependent signaling.
Collapse
Affiliation(s)
- Carolyn Vargas
- Leibniz Institute of Molecular Pharmacology (FMP), Robert-Rössle-Str. 10, 13125 Berlin (Germany); Current address: Molecular Biophysics, University of Kaiserslautern, Erwin-Schrödinger-Str. 13, 67663 Kaiserslautern (Germany)
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Popovic M, Zlatev V, Hodnik V, Anderluh G, Felli IC, Pongor S, Pintar A. Flexibility of the PDZ-binding motif in the micelle-bound form of Jagged-1 cytoplasmic tail. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1818:1706-16. [PMID: 22465068 DOI: 10.1016/j.bbamem.2012.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 03/13/2012] [Accepted: 03/14/2012] [Indexed: 01/07/2023]
Abstract
Human Jagged-1, one of the ligands of Notch receptors, is a transmembrane protein composed of a large extracellular region and a 125-residue cytoplasmic tail which bears a C-terminal PDZ recognition motif. To investigate the interaction between Jagged-1 cytoplasmic tail and the inner leaflet of the plasma membrane we determined, by solution NMR, the secondary structure and dynamics of the recombinant protein corresponding to the intracellular region of Jagged-1, J1_tmic, bound to negatively charged lysophospholipid micelles. NMR showed that the PDZ binding motif is preceded by four alpha-helical segments and that, despite the extensive interaction between J1_tmic and the micelle, the PDZ binding motif remains highly flexible. Binding of J1_tmic to negatively charged, but not to zwitterionic vesicles, was confirmed by surface plasmon resonance. To study the PDZ binding region in more detail, we prepared a peptide corresponding to the last 24 residues of Jagged-1, J1C24, and different phosphorylated variants of it. J1C24 displays a marked helical propensity and undergoes a coil-helix transition in the presence of negatively charged, but not zwitterionic, lysophospholipid micelles. Phosphorylation at different positions drastically decreases the helical propensity of the peptides and abolishes the coil-helix transition triggered by lysophospholipid micelles. We propose that phosphorylation of residues upstream of the PDZ binding motif may shift the equilibrium from an ordered, membrane-bound, interfacial form of Jagged-1 C-terminal region to a more disordered form with an increased accessibility of the PDZ recognition motif, thus playing an indirect role in the interaction between Jagged-1 and the PDZ-containing target protein.
Collapse
Affiliation(s)
- Matija Popovic
- International Centre for Genetic Engineering and Biotechnology, AREA Science Park Padriciano 99, 1-34149 Trieste, Italy
| | | | | | | | | | | | | |
Collapse
|
12
|
Zhang J, Petit CM, King DS, Lee AL. Phosphorylation of a PDZ domain extension modulates binding affinity and interdomain interactions in postsynaptic density-95 (PSD-95) protein, a membrane-associated guanylate kinase (MAGUK). J Biol Chem 2011; 286:41776-41785. [PMID: 21965656 DOI: 10.1074/jbc.m111.272583] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Postsynaptic density-95 is a multidomain scaffolding protein that recruits glutamate receptors to postsynaptic sites and facilitates signal processing and connection to the cytoskeleton. It is the leading member of the membrane-associated guanylate kinase family of proteins, which are defined by the PSD-95/Discs large/ZO-1 (PDZ)-Src homology 3 (SH3)-guanylate kinase domain sequence. We used NMR to show that phosphorylation of conserved tyrosine 397, which occurs in vivo and is located in an atypical helical extension (α3), initiates a rapid equilibrium of docked and undocked conformations. Undocking reduced ligand binding affinity allosterically and weakened the interaction of PDZ3 with SH3 even though these domains are separated by a ~25-residue linker. Additional phosphorylation at two linker sites further disrupted the interaction, implicating α3 and the linker in tuning interdomain communication. These experiments revealed a novel mode of regulation by a detachable PDZ element and offer a first glimpse at the dynamic interaction of PDZ and SH3-guanylate kinase domains in membrane-associated guanylate kinases.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Chad M Petit
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | - David S King
- Howard Hughes Medical Institute Mass Spectrometry Laboratory and Department of Molecular and Cell Biology, University of California, Berkeley, California 94720
| | - Andrew L Lee
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599; Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599.
| |
Collapse
|
13
|
Podvin S, Gonzalez AM, Miller MC, Dang X, Botfield H, Donahue JE, Kurabi A, Boissaud-Cooke M, Rossi R, Leadbeater WE, Johanson CE, Coimbra R, Stopa EG, Eliceiri BP, Baird A. Esophageal cancer related gene-4 is a choroid plexus-derived injury response gene: evidence for a biphasic response in early and late brain injury. PLoS One 2011; 6:e24609. [PMID: 21935431 PMCID: PMC3173480 DOI: 10.1371/journal.pone.0024609] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 08/14/2011] [Indexed: 01/07/2023] Open
Abstract
By virtue of its ability to regulate the composition of cerebrospinal fluid (CSF), the choroid plexus (CP) is ideally suited to instigate a rapid response to traumatic brain injury (TBI) by producing growth regulatory proteins. For example, Esophageal Cancer Related Gene-4 (Ecrg4) is a tumor suppressor gene that encodes a hormone-like peptide called augurin that is present in large concentrations in CP epithelia (CPe). Because augurin is thought to regulate senescence, neuroprogenitor cell growth and differentiation in the CNS, we evaluated the kinetics of Ecrg4 expression and augurin immunoreactivity in CPe after CNS injury. Adult rats were injured with a penetrating cortical lesion and alterations in augurin immunoreactivity were examined by immunohistochemistry. Ecrg4 gene expression was characterized by in situ hybridization. Cell surface augurin was identified histologically by confocal microscopy and biochemically by sub-cellular fractionation. Both Ecrg4 gene expression and augurin protein levels were decreased 24-72 hrs post-injury but restored to uninjured levels by day 7 post-injury. Protein staining in the supraoptic nucleus of the hypothalamus, used as a control brain region, did not show a decrease of auguin immunoreactivity. Ecrg4 gene expression localized to CPe cells, and augurin protein to the CPe ventricular face. Extracellular cell surface tethering of 14 kDa augurin was confirmed by cell surface fractionation of primary human CPe cells in vitro while a 6-8 kDa fragment of augurin was detected in conditioned media, indicating release from the cell surface by proteolytic processing. In rat CSF however, 14 kDa augurin was detected. We hypothesize the initial release and proteolytic processing of augurin participates in the activation phase of injury while sustained Ecrg4 down-regulation is dysinhibitory during the proliferative phase. Accordingly, augurin would play a constitutive inhibitory function in normal CNS while down regulation of Ecrg4 gene expression in injury, like in cancer, dysinhibits proliferation.
Collapse
Affiliation(s)
- Sonia Podvin
- Department of Surgery, School of Medicine, University of California San Diego, San Diego, California, United States of America
| | - Ana-Maria Gonzalez
- Department of Neuropharmacology and Neurobiology, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom
| | - Miles C. Miller
- Departments of Neurosurgery and Pathology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Xitong Dang
- Department of Surgery, School of Medicine, University of California San Diego, San Diego, California, United States of America
| | - Hannah Botfield
- Department of Neuropharmacology and Neurobiology, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom
| | - John E. Donahue
- Departments of Neurosurgery and Pathology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Arwa Kurabi
- Department of Surgery, School of Medicine, University of California San Diego, San Diego, California, United States of America
| | - Matthew Boissaud-Cooke
- Department of Neuropharmacology and Neurobiology, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom
| | - Ryan Rossi
- Departments of Neurosurgery and Pathology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Wendy E. Leadbeater
- Department of Neuropharmacology and Neurobiology, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom
| | - Conrad E. Johanson
- Departments of Neurosurgery and Pathology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Raul Coimbra
- Department of Surgery, School of Medicine, University of California San Diego, San Diego, California, United States of America
| | - Edward G. Stopa
- Departments of Neurosurgery and Pathology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Brian P. Eliceiri
- Department of Surgery, School of Medicine, University of California San Diego, San Diego, California, United States of America
| | - Andrew Baird
- Department of Surgery, School of Medicine, University of California San Diego, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
14
|
Sigalov AB. Uncoupled binding and folding of immune signaling-related intrinsically disordered proteins. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2011; 106:525-36. [DOI: 10.1016/j.pbiomolbio.2011.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 08/10/2011] [Indexed: 10/17/2022]
|
15
|
Bayless KJ, Johnson GA. Role of the cytoskeleton in formation and maintenance of angiogenic sprouts. J Vasc Res 2011; 48:369-85. [PMID: 21464572 DOI: 10.1159/000324751] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 01/10/2011] [Indexed: 12/19/2022] Open
Abstract
Angiogenesis is the formation of new blood vessels from pre-existing structures, and is a key step in tissue and organ development, wound healing and pathological events. Changes in cell shape orchestrated by the cytoskeleton are integral to accomplishing the various steps of angiogenesis, and an intact cytoskeleton is also critical for maintaining newly formed structures. This review focuses on how the 3 main cytoskeletal elements--microfilaments, microtubules, and intermediate filaments--regulate the formation and maintenance of angiogenic sprouts. Multiple classes of compounds target microtubules and microfilaments, revealing much about the role of actin and tubulin and their associated molecules in angiogenic sprout formation and maintenance. In contrast, intermediate filaments are much less studied, yet intriguing evidence suggests a vital, but unresolved, role in angiogenic sprouting. This review discusses evidence for regulatory molecules and pharmacological compounds that affect actin, microtubule and intermediate filament dynamics to alter various steps of angiogenesis, including endothelial sprout formation and maintenance.
Collapse
Affiliation(s)
- Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, USA.
| | | |
Collapse
|