1
|
Chen CY, Motabar D, Zakaria FR, Kim E, Wu B, Payne GF, Bentley WE. Electrobiofabrication of antibody sensor interfaces within a 3D printed device yield rapid and robust electrochemical measurements of titer and glycan structure. Biotechnol Bioeng 2024; 121:3754-3767. [PMID: 39279638 DOI: 10.1002/bit.28839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/29/2024] [Accepted: 09/01/2024] [Indexed: 09/18/2024]
Abstract
We report the integration of 3D printing, electrobiofabrication, and protein engineering to create a device that enables near real-time analysis of monoclonal antibody (mAb) titer and quality. 3D printing was used to create the macroscale architecture that can control fluidic contact of a sample with multiple electrodes for replicate measurements. An analysis "chip" was configured as a "snap-in" module for connecting to a 3D printed housing containing fluidic and electronic communication systems. Electrobiofabrication was used to functionalize each electrode by the assembly of a hydrogel interface containing biomolecular recognition and capture proteins. Specifically, an electrochemical thiol oxidation is used to assemble a thiolated polyethylene glycol hydrogel, that in turn is covalently coupled to either a cysteine-tagged protein G that binds the antibody's Fc region or a lectin that binds the glycans of target mAb analytes. We first show the design, assembly, and testing of the hardware device. Then, we show the transition of a step-by-step sensing methodology (e.g., mix, incubate, wash, mix, incubate, wash, measure) into the current method where functionalization, antibody capture, and assessment are performed in situ and in parallel channels. Both titer and glycan analyses were found to be linear with antibody concentration (to 0.2 mg/L). We further found the interfaces could be reused with remarkably similar results. Because the interface assembly and use are simple, rapid, and robust, we suggest this assessment methodology will be widely applicable, including for other biomolecular process development and manufacturing environments.
Collapse
Affiliation(s)
- Chen-Yu Chen
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland, USA
| | - Dana Motabar
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland, USA
| | - Fauziah Rahma Zakaria
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland, USA
| | - Eunkyoung Kim
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland, USA
| | - Benjamin Wu
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland, USA
| | - Gregory F Payne
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland, USA
| | - William E Bentley
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
2
|
Ho KW, Liu YL, Liao TY, Liu ES, Cheng TL. Strategies for Non-Covalent Attachment of Antibodies to PEGylated Nanoparticles for Targeted Drug Delivery. Int J Nanomedicine 2024; 19:10045-10064. [PMID: 39371476 PMCID: PMC11453133 DOI: 10.2147/ijn.s479270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024] Open
Abstract
Polyethylene glycol (PEG)-modified nanoparticles (NPs) often struggle with reduced effectiveness against metastasis and liquid tumors due to limited tumor cell uptake and therapeutic efficacy. To address this, actively targeted liposomes with enhanced tumor selectivity and internalization are being developed to improve uptake and treatment outcomes. Using bi-functional proteins to functionalize PEGylated NPs and enhance targeted drug delivery through non-covalent attachment methods has emerged as a promising approach. Among these, the one-step and two-step targeting strategies stand out for their simplicity, efficiency, and versatility. The one-step strategy integrates streptavidin-tagged antibodies or bispecific antibodies (bsAbs: PEG/DIG × marker) directly into PEGylated NPs. This method uses the natural interactions between antibodies and PEG for stable, specific binding, allowing the modification of biotin/Fc-binding molecules like protein A, G, or anti-Fc peptide. Simply mixing bsAbs with PEGylated NPs improves tumor targeting and internalization. The two-step strategy involves first accumulating bsAbs (PEG/biotin × tumor marker) on the tumor cell surface, triggering an initial attack via antibody-dependent and complement-dependent cytotoxicity. These bsAbs then capture PEGylated NPs, initiating a second wave of internalization and cytotoxicity. Both strategies aim to enhance the targeting capabilities of PEGylated NPs by enabling specific recognition and binding to disease-specific markers or receptors. This review provides potential pathways for accelerating clinical translation in the development of targeted nanomedicine.
Collapse
Affiliation(s)
- Kai-Wen Ho
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yen-Ling Liu
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tzu-Yi Liao
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - En-Shuo Liu
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tian-Lu Cheng
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
3
|
Nandy S, Maranholkar VM, Crum M, Wasden K, Patil U, Goyal A, Vu B, Kourentzi K, Mo W, Henrickson A, Demeler B, Sen M, Willson RC. Expression and Characterization of Intein-Cyclized Trimer of Staphylococcus aureus Protein A Domain Z. Int J Mol Sci 2023; 24:1281. [PMID: 36674796 PMCID: PMC9865183 DOI: 10.3390/ijms24021281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023] Open
Abstract
Staphylococcus aureus protein A (SpA) is an IgG Fc-binding virulence factor that is widely used in antibody purification and as a scaffold to develop affinity molecules. A cyclized SpA Z domain could offer exopeptidase resistance, reduced chromatographic ligand leaching after single-site endopeptidase cleavage, and enhanced IgG binding properties by preorganization, potentially reducing conformational entropy loss upon binding. In this work, a Z domain trimer (Z3) was cyclized using protein intein splicing. Interactions of cyclic and linear Z3 with human IgG1 were characterized by differential scanning fluorimetry (DSF), surface plasmon resonance (SPR), and isothermal titration calorimetry (ITC). DSF showed a 5 ℃ increase in IgG1 melting temperature when bound by each Z3 variant. SPR showed the dissociation constants of linear and cyclized Z3 with IgG1 to be 2.9 nM and 3.3 nM, respectively. ITC gave association enthalpies for linear and cyclic Z3 with IgG1 of -33.0 kcal/mol and -32.7 kcal/mol, and -T∆S of association 21.2 kcal/mol and 21.6 kcal/mol, respectively. The compact cyclic Z3 protein contains 2 functional binding sites and exhibits carboxypeptidase Y-resistance. The results suggest cyclization as a potential approach toward more stable SpA-based affinity ligands, and this analysis may advance our understanding of protein engineering for ligand and drug development.
Collapse
Affiliation(s)
- Suman Nandy
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Vijay M. Maranholkar
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77004, USA
| | - Mary Crum
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Katherine Wasden
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Ujwal Patil
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77004, USA
| | - Atul Goyal
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Binh Vu
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Katerina Kourentzi
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - William Mo
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Amy Henrickson
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Borries Demeler
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT 59812, USA
| | - Mehmet Sen
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77004, USA
| | - Richard C. Willson
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77004, USA
- Escuela de Medicina y Ciencias de Salud, Tecnológico de Monterrey, Monterrey 64849, Nuevo León, Mexico
| |
Collapse
|
4
|
Lee HG, Kang S, Lee JS. Binding characteristics of staphylococcal protein A and streptococcal protein G for fragment crystallizable portion of human immunoglobulin G. Comput Struct Biotechnol J 2021; 19:3372-3383. [PMID: 34194664 PMCID: PMC8217638 DOI: 10.1016/j.csbj.2021.05.048] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/29/2021] [Accepted: 05/30/2021] [Indexed: 12/03/2022] Open
Abstract
In the wide array of physiological processes, protein-protein interactions and their binding are the most basal activities for achieving adequate biological metabolism. Among the studies on binding proteins, the examination of interactions between immunoglobulin G (IgG) and natural immunoglobulin-binding ligands, such as staphylococcal protein A (spA) and streptococcal protein G (spG), is essential in the development of pharmaceutical science, biotechnology, and affinity chromatography. The widespread utilization of IgG-spA/spG binding characteristics has allowed researchers to investigate these molecular interactions. However, the detailed binding strength of each ligand and the corresponding binding mechanisms have yet to be fully investigated. In this study, the authors analyzed the binding strengths of IgG-spA and IgG-spG complexes and identified the mechanisms enabling these bindings using molecular dynamics simulation, steered molecular dynamics, and advanced Poisson-Boltzmann Solver simulations. Based on the presented data, the binding strength of the spA ligand was found to significantly exceed that of the spG ligand. To find out which non-covalent interactions or amino acid sites have a dominant role in the tight binding of these ligands, further detailed analyses of electrostatic interactions, hydrophobic bonding, and binding free energies have been performed. In investigating their binding affinity, a relatively independent and different unbinding mechanism was found in each ligand. These distinctly different mechanisms were observed to be highly correlated to the protein secondary and tertiary structures of spA and spG ligands, as explicated from the perspective of hydrogen bonding.
Collapse
Key Words
- AFM, Atomic Force Microscopy
- APBS, Advanced Poisson–Boltzmann Solver
- Affinity chromatography
- BIR, Between Protein–Protein Interface Residues
- ELISA, Enzyme-linked Immunosorbent Assays
- Fc, Fragment Crystallizable
- IgG, Immunoglobulin G
- Immunoglobulin G
- MD, Molecular Dynamics
- MM/PBSA, Molecular Mechanics Poisson–Boltzmann Surface Area
- Molecular dynamics
- Protein A
- Protein G
- Protein docking
- RMSD, Root Mean Square Deviation
- SASA, Solvent Accessible Surface Area
- SMD, Steered Molecular Dynamics
- spA, Staphylococcal Protein A
- spG, Streptococcal Protein G
Collapse
Affiliation(s)
- Hae Gon Lee
- Department of Mechanical Engineering, Yonsei University, Seoul 03722, South Korea
| | - Shinill Kang
- Department of Mechanical Engineering, Yonsei University, Seoul 03722, South Korea
| | - Joon Sang Lee
- Department of Mechanical Engineering, Yonsei University, Seoul 03722, South Korea
| |
Collapse
|
5
|
Motabar D, Li J, Wang S, Tsao CY, Tong X, Wang LX, Payne GF, Bentley WE. Simple, rapidly electroassembled thiolated PEG-based sensor interfaces enable rapid interrogation of antibody titer and glycosylation. Biotechnol Bioeng 2021; 118:2744-2758. [PMID: 33851726 DOI: 10.1002/bit.27793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/26/2021] [Accepted: 04/04/2021] [Indexed: 12/20/2022]
Abstract
Process conditions established during the development and manufacture of recombinant protein therapeutics dramatically impacts their quality and clinical efficacy. Technologies that enable rapid assessment of product quality are critically important. Here, we describe the development of sensor interfaces that directly connect to electronics and enable near real-time assessment of antibody titer and N-linked galactosylation. We make use of a spatially resolved electroassembled thiolated polyethylene glycol hydrogel that enables electroactivated disulfide linkages. For titer assessment, we constructed a cysteinylated protein G that can be linked to the thiolated hydrogel allowing for robust capture and assessment of antibody concentration. For detecting galactosylation, the hydrogel is linked with thiolated sugars and their corresponding lectins, which enables antibody capture based on glycan pattern. Importantly, we demonstrate linear assessment of total antibody concentration over an industrially relevant range and the selective capture and quantification of antibodies with terminal β-galactose glycans. We also show that the interfaces can be reused after surface regeneration using a low pH buffer. Our functionalized interfaces offer advantages in their simplicity, rapid assembly, connectivity to electronics, and reusability. As they assemble directly onto electrodes that also serve as I/O registers, we envision incorporation into diagnostic platforms including those in manufacturing settings.
Collapse
Affiliation(s)
- Dana Motabar
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA.,Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, USA.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland, USA
| | - Jinyang Li
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA.,Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, USA.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland, USA
| | - Sally Wang
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA.,Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, USA.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland, USA
| | - Chen-Yu Tsao
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA.,Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, USA.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland, USA
| | - Xin Tong
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA
| | - Gregory F Payne
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, USA.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland, USA
| | - William E Bentley
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA.,Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, USA.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
6
|
Snyder K, Quddus R, Hollingsworth AD, Kirshenbaum K, Grier DG. Holographic immunoassays: direct detection of antibodies binding to colloidal spheres. SOFT MATTER 2020; 16:10180-10186. [PMID: 33057563 DOI: 10.1039/d0sm01351j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The size of a probe bead reported by holographic particle characterization depends on the proportion of the surface area covered by bound target molecules and so can be used as an assay for molecular binding. We validate this technique by measuring the kinetics of irreversible binding for the antibodies immunoglobulin G (IgG) and immunoglobulin M (IgM) as they attach to micrometer-diameter colloidal beads coated with protein A. These measurements yield the antibodies' binding rates and can be inverted to obtain the concentration of antibodies in solution. Holographic molecular binding assays therefore can be used to perform fast quantitative immunoassays that are complementary to conventional serological tests.
Collapse
Affiliation(s)
- Kaitlynn Snyder
- Department of Physics and Center for Soft Matter Research, New York University, New York, NY 10003, USA.
| | | | | | | | | |
Collapse
|
7
|
Maso K, Montagner IM, Grigoletto A, Schiavon O, Rosato A, Pasut G. A non-covalent antibody complex for the delivery of anti-cancer drugs. Eur J Pharm Biopharm 2019; 142:49-60. [PMID: 31201855 DOI: 10.1016/j.ejpb.2019.06.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 10/26/2022]
Abstract
Antibody drug conjugates (ADCs), which are obtained by coupling a potent cytotoxic agent to a monoclonal antibody (mAb), are traditionally bound in a random way to lysine or cysteine residues, with the final product's heterogeneity having an important impact on their activity, characterization, and manufacturing. A new antibody drug delivery system (ADS) based on a non-covalent linkage between a Fc-binding protein, in this case Protein A or Protein G, and a mAb was investigated in the effort to achieve greater homogeneity and to create a versatile and adaptable drug delivery system. Recombinant staphylococcal Protein A and streptococcal Protein G were chemically PEGylated at the N-terminus with a 5 kDa and a 20 kDa PEG, respectively, yielding two monoconjugates with a mass of ≈50 and ≈45 kDa. Circular dichroism studies showed that both conjugates preserved secondary structures of the protein, and isothermal titration calorimetry experiments demonstrated that their affinity for mAb was approximately 107 M-1. Upon complexation with a mAb (Trastuzumab or Rituximab), in vitro flow-cytometry analysis of the new ADSs showed high selectivity for the specific antigen expressing cells. In addition, the ADS complex based on Trastuzumab and Protein G, conjugated with a heterobifunctional 20 kDa PEG carrying the toxin Tubulysin A, had a marked cytotoxic effect on the cancer cell line overexpressing the HER2/neu receptor, thus supporting its application in cancer therapy.
Collapse
Affiliation(s)
- Katia Maso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy
| | | | - Antonella Grigoletto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy
| | - Oddone Schiavon
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy
| | - Antonio Rosato
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Gattamelata 64, 35128 Padova, Italy.
| | - Gianfranco Pasut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy; Veneto Institute of Oncology IOV-IRCCS, Padua, Italy.
| |
Collapse
|
8
|
Wang Z, Shen Y, Shi QH, Sun Y. Insights into the molecular structure of immobilized protein A ligands on dextran-coated nanoparticles: Comprehensive spectroscopic investigation. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Singh N, Herzer S. Downstream Processing Technologies/Capturing and Final Purification : Opportunities for Innovation, Change, and Improvement. A Review of Downstream Processing Developments in Protein Purification. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 165:115-178. [PMID: 28795201 DOI: 10.1007/10_2017_12] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Increased pressure on upstream processes to maximize productivity has been crowned with great success, although at the cost of shifting the bottleneck to purification. As drivers were economical, focus is on now on debottlenecking downstream processes as the main drivers of high manufacturing cost. Devising a holistically efficient and economical process remains a key challenge. Traditional and emerging protein purification strategies with particular emphasis on methodologies implemented for the production of recombinant proteins of biopharmaceutical importance are reviewed. The breadth of innovation is addressed, as well as the challenges the industry faces today, with an eye to remaining impartial, fair, and balanced. In addition, the scope encompasses both chromatographic and non-chromatographic separations directed at the purification of proteins, with a strong emphasis on antibodies. Complete solutions such as integrated USP/DSP strategies (i.e., continuous processing) are discussed as well as gains in data quantity and quality arising from automation and high-throughput screening (HTS). Best practices and advantages through design of experiments (DOE) to access a complex design space such as multi-modal chromatography are reviewed with an outlook on potential future trends. A discussion of single-use technology, its impact and opportunities for further growth, and the exciting developments in modeling and simulation of DSP rounds out the overview. Lastly, emerging trends such as 3D printing and nanotechnology are covered. Graphical Abstract Workflow of high-throughput screening, design of experiments, and high-throughput analytics to understand design space and design space boundaries quickly. (Reproduced with permission from Gregory Barker, Process Development, Bristol-Myers Squibb).
Collapse
Affiliation(s)
- Nripen Singh
- Bristol-Myers Squibb, Global Manufacturing and Supply, Devens, MA, 01434, USA.
| | - Sibylle Herzer
- Bristol-Myers Squibb, Global Manufacturing and Supply, Hopewell, NJ, 01434, USA
| |
Collapse
|
10
|
Trypanosoma cruzi immunoproteome: Calpain-like CAP5.5 differentially detected throughout distinct stages of human Chagas disease cardiomyopathy. J Proteomics 2019; 194:179-190. [DOI: 10.1016/j.jprot.2018.11.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/22/2018] [Accepted: 11/28/2018] [Indexed: 12/26/2022]
|
11
|
Yang XH, Huan LM, Chu XS, Sun Y, Shi QH. A comparative investigation of random and oriented immobilization of protein A ligands on the binding of immunoglobulin G. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
12
|
Li Y, Lock LL, Wang Y, Ou SH, Stern D, Schön A, Freire E, Xu X, Ghose S, Li ZJ, Cui H. Bioinspired supramolecular engineering of self-assembling immunofibers for high affinity binding of immunoglobulin G. Biomaterials 2018; 178:448-457. [PMID: 29706234 DOI: 10.1016/j.biomaterials.2018.04.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/11/2018] [Accepted: 04/14/2018] [Indexed: 01/14/2023]
Abstract
Many one-dimensional (1D) nanostructures are constructed by self-assembly of peptides or peptide conjugates containing a short β-sheet sequence as the core building motif essential for the intermolecular hydrogen bonding that promotes directional, anisotropic growth of the resultant assemblies. While this molecular engineering strategy has led to the successful production of a plethora of bioactive filamentous β-sheet assemblies for interfacing with biomolecules and cells, concerns associated with effective presentation of α-helical epitopes and their function preservation have yet to be resolved. In this context, we report on the direct conjugation of the protein A mimicking peptide Z33, a motif containing two α-helices, to linear hydrocarbons to create self-assembling immuno-amphiphiles (IAs). Our results suggest that the resulting amphiphilic peptides can, despite lacking the essential β-sheet segment, effectively associate under physiological conditions into supramolecular immunofibers (IFs) while preserving their native α-helical conformation. Isothermal titration calorimetry (ITC) measurements confirmed that these self-assembling immunofibers can bind to the human immunoglobulin G class 1 (IgG1) with high specificity at pH 7.4, but with significantly weakened binding at pH 2.8. We further demonstrated the accessibility of Z33 ligand in the immunofibers using transmission electron microscopy (TEM) and confocal imaging. We believe these results shed important light into the supramolecular engineering of α-helical peptides into filamentous assemblies that may possess an important potential for antibody isolation.
Collapse
Affiliation(s)
- Yi Li
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Lye Lin Lock
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, MA 01434, United States
| | - Yuzhu Wang
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Shih-Hao Ou
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - David Stern
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Arne Schön
- Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Ernesto Freire
- Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Xuankuo Xu
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, MA 01434, United States.
| | - Sanchayita Ghose
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, MA 01434, United States
| | - Zheng Jian Li
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, MA 01434, United States
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States; Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States.
| |
Collapse
|
13
|
Tanwar N, Munde M. Thermodynamic and conformational analysis of the interaction between antibody binding proteins and IgG. Int J Biol Macromol 2018; 112:1084-1092. [PMID: 29410106 DOI: 10.1016/j.ijbiomac.2018.01.208] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/25/2018] [Accepted: 01/31/2018] [Indexed: 01/29/2023]
Abstract
Studying interaction of IgG with bacterial proteins such as proA (Protein A) and proG is essential for development in the areas of drug discovery and biotechnology. Some solution studies in the past have hinted at the possibility of variable binding ratios for IgG with proA and proG. Since earlier crystallographic studies focussed mostly on monomeric complexes, the knowledge about the binding interfaces and protein conformational changes involved in multimeric complexes is scarce. In this paper, we observed that single proA molecule was able to bind to three IgG molecules (1:3, proA:IgG) in ITC accentuating the presence of conformational flexibility in proA, corroborated also by CD results. By contrast, proG binds with 1:1 stoichiometry to IgG, which also involves key structural rearrangement within the binding interface of IgG-proG complex, confirmed by fluorescence KI quenching study. It is implicit from CD and fluorescence results that IgG does not undergo any significant conformational changes, which further suggests that proA and proG dictate the phenomenon of recognition in antibody complexes. ANS as a hydrophobic probe helped in revealing the distinctive antibody binding mechanism of proA and proG. Additionally, the binding competition experiments using ITC established that proA and proG cannot bind IgG concurrently.
Collapse
Affiliation(s)
- Neetu Tanwar
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Manoj Munde
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
14
|
Tayi VS, Butler M. Solid-Phase Enzymatic Remodeling Produces High Yields of Single Glycoform Antibodies. Biotechnol J 2017; 13:e1700381. [PMID: 29247593 DOI: 10.1002/biot.201700381] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 12/08/2017] [Indexed: 01/08/2023]
Abstract
Antibodies are synthesized in mammalian cell culture as heterogeneous mixtures of glycoforms. Production of single glycoforms remains a challenge despite their value as therapeutics. The authors report a method of sequential enzymatic-based changes to antibodies while immobilized on an affinity column. Various antibodies (monoclonal and polyclonal) are isolated on Protein A or G columns and their glycans modified by sequential addition of enzymes for a desired transformation. Galactosylated antibodies (>90% yield) are produced by a one stage reaction process with sialidase to remove any sialic acid residues and addition of galactose with galactosyltransferase and UDP-Gal. Sialylated antibodies (>90%) are produced by a 2 stage conversion involving α(2,3) sialidase and galactosyltransferase followed by treatment with α(2,6) sialyltransferase in the presence of CMP-NANA. By this method, >90% of a disialylated human-llama antibody (EG2-hFc) and equimolar quantities of monosialylated and disialylated forms of human antibodies (αIL8-hFc and human polyclonal) are produced. Such high levels of sialylation are very difficult to obtain by typical cell culture methods. This method of transformation while the antibody is held on a solid-phase column is superior to previous methods because it allows a series of enzymatic steps without the need for intermediate purification. This is an efficient and rapid method to generate therapeutic antibodies with predefined glycosylation profiles. This should also assist in investigating the structure-function relationship of antibody glycans to find the desired glycosylation profile for high functional activity. With further optimization the method can be used to modify antibodies in large-scale manufacturing.
Collapse
Affiliation(s)
- Venkata S Tayi
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2
| | - Michael Butler
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2.,National Institute for Bioprocessing Research & Training (NIBRT), Fosters Avenue, Blackrock, A94 X099, Co. Dublin, Ireland
| |
Collapse
|
15
|
Affiliation(s)
- Nika Kruljec
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| | - Tomaž Bratkovič
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
16
|
Nath N, Godat B, Urh M. Antibody Labeling with Fluorescent Dyes Using Magnetic Protein A and Protein G Beads. J Vis Exp 2016. [PMID: 27685323 DOI: 10.3791/54545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Antibodies labeled with small molecules like fluorescent dyes, cytotoxic drugs, and radioactive tracers are essential tools in biomedical research, immunodiagnostics and more recently as therapeutic agents. Traditional methods for labeling antibodies with small molecules require purified antibodies at relatively high concentration, involve multiple dialysis steps and have limited throughput. However, several applications, including the field of Antibody Drug Conjugates (ADCs), will benefit from new methods that will allow labeling of antibodies directly from cell media. Such methods may allow antibodies to be screened in biologically relevant assays, for example, the receptor-mediated antibody internalization assay in the case of ADCs. Here, we describe a method (on-bead method) that enables labeling of small amounts of antibodies directly from cell media. This approach utilizes high capacity magnetic Protein A and Protein G affinity beads to capture antibodies from the cell media followed by labeling with small molecules using either amine or thiol chemistry and subsequent elution of the labeled antibodies. Taking fluorescent dyes as surrogates for small molecules, we demonstrate the on-bead labeling of three different mouse antibodies directly from cell media using both amine and thiol labeling chemistry. The high binding affinity of antibodies to Protein A and Protein G ensures high recoveries as well as high purity of the labeled antibodies. In addition, use of magnetic beads allows multiple samples to be handled manually, thereby significantly improving labeling throughput.
Collapse
|
17
|
On-bead antibody-small molecule conjugation using high-capacity magnetic beads. J Immunol Methods 2015; 426:95-103. [DOI: 10.1016/j.jim.2015.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 08/19/2015] [Accepted: 08/20/2015] [Indexed: 01/26/2023]
|
18
|
Mazzer AR, Perraud X, Halley J, O'Hara J, Bracewell DG. Protein A chromatography increases monoclonal antibody aggregation rate during subsequent low pH virus inactivation hold. J Chromatogr A 2015; 1415:83-90. [PMID: 26346187 PMCID: PMC4582070 DOI: 10.1016/j.chroma.2015.08.068] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/07/2015] [Accepted: 08/14/2015] [Indexed: 01/01/2023]
Abstract
Protein A chromatography is a near-ubiquitous method of mAb capture in bioprocesses. The use of low pH buffer for elution from protein A is known to contribute to product aggregation. Yet, a more limited set of evidence suggests that low pH may not be the sole cause of aggregation in protein A chromatography, rather, other facets of the process may contribute significantly. This paper presents a well-defined method for investigating this problem. An IgG4 was incubated in elution buffer after protein A chromatography (typical of the viral inactivation hold) and the quantity of monomer in neutralised samples was determined by size exclusion chromatography; elution buffers of different pH values predetermined to induce aggregation of the IgG4 were used. Rate constants for monomer decay over time were determined by fitting exponential decay functions to the data. Similar experiments were implemented in the absence of a chromatography step, i.e. IgG4 aggregation at low pH. Rate constants for aggregation after protein A chromatography were considerably higher than those from low pH exposure alone; a distinct shift in aggregation rates was apparent across the pH range tested.
Collapse
Affiliation(s)
- Alice R Mazzer
- Department of Biochemical Engineering, University College London, Bernard Katz Building, Gordon Street, London WC1H 0AH, United Kingdom
| | - Xavier Perraud
- UCB Celltech, 216 Bath Road, Slough SL13WE, United Kingdom
| | | | - John O'Hara
- UCB Celltech, 216 Bath Road, Slough SL13WE, United Kingdom
| | - Daniel G Bracewell
- Department of Biochemical Engineering, University College London, Bernard Katz Building, Gordon Street, London WC1H 0AH, United Kingdom.
| |
Collapse
|
19
|
Suppression of conformational heterogeneity at a protein-protein interface. Proc Natl Acad Sci U S A 2015; 112:9028-33. [PMID: 26157136 DOI: 10.1073/pnas.1424724112] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Staphylococcal protein A (SpA) is an important virulence factor from Staphylococcus aureus responsible for the bacterium's evasion of the host immune system. SpA includes five small three-helix-bundle domains that can each bind with high affinity to many host proteins such as antibodies. The interaction between a SpA domain and the Fc fragment of IgG was partially elucidated previously in the crystal structure 1FC2. Although informative, the previous structure was not properly folded and left many substantial questions unanswered, such as a detailed description of the tertiary structure of SpA domains in complex with Fc and the structural changes that take place upon binding. Here we report the 2.3-Å structure of a fully folded SpA domain in complex with Fc. Our structure indicates that there are extensive structural rearrangements necessary for binding Fc, including a general reduction in SpA conformational heterogeneity, freezing out of polyrotameric interfacial residues, and displacement of a SpA side chain by an Fc side chain in a molecular-recognition pocket. Such a loss of conformational heterogeneity upon formation of the protein-protein interface may occur when SpA binds its multiple binding partners. Suppression of conformational heterogeneity may be an important structural paradigm in functionally plastic proteins.
Collapse
|
20
|
Le Brun AP, Soliakov A, Shah DSH, Holt SA, McGill A, Lakey JH. Engineered self-assembling monolayers for label free detection of influenza nucleoprotein. Biomed Microdevices 2015; 17:9951. [PMID: 25860669 PMCID: PMC4392172 DOI: 10.1007/s10544-015-9951-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Integrating nanotechnology into useable devices requires a combination of bottom up and top down methodology. Often the techniques to measure and control these different components are entirely different, so methods that can analyse the nanoscale component in situ are of increasing importance. Here we describe a strategy that employs a self-assembling monolayer of engineered protein chimeras to display an array of oriented antibodies (IgG) on a microelectronic device for the label free detection of influenza nucleoprotein. The structural and functional properties of the bio-interface were characterised by a range of physical techniques including surface plasmon resonance, quartz-crystal microbalance and neutron reflectometry. This combination of methods reveals a 13.5 nm thick engineered-monolayer that (i) self-assembles on gold surfaces, (ii) captures IgG with high affinity in a defined orientation and (iii) specifically recognises the influenza A nucleoprotein. Furthermore we also show that this non-covalent self-assembled structure can render the dissociation of bound IgG irreversible by chemical crosslinking in situ without affecting the IgG function. The methods can thus describe in detail the transition from soluble engineered molecules with nanometre dimensions to an array that demonstrates the principles of a working influenza sensor.
Collapse
Affiliation(s)
- Anton P. Le Brun
- />Bragg Institute, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232 Australia
| | - Andrei Soliakov
- />Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH UK
- />Fujifilm Diosynth, Belasis Avenue, Billingham, Cleveland TS23 1LH UK
| | - Deepan S. H. Shah
- />Orla Protein Technologies Ltd, Biosciences Centre, International Centre for Life, Times Square, Newcastle upon Tyne, NE1 4EP UK
| | - Stephen A. Holt
- />Bragg Institute, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232 Australia
| | - Alison McGill
- />Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH UK
- />Fujifilm Diosynth, Belasis Avenue, Billingham, Cleveland TS23 1LH UK
| | - Jeremy H. Lakey
- />Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH UK
| |
Collapse
|
21
|
Thermodynamic investigation of Z33-antibody interaction leads to selective purification of human antibodies. J Biotechnol 2014; 179:32-41. [DOI: 10.1016/j.jbiotec.2014.03.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 02/25/2014] [Accepted: 03/11/2014] [Indexed: 12/19/2022]
|
22
|
Yin D, Ulbricht M. Antibody-Imprinted Membrane Adsorber via Two-Step Surface Grafting. Biomacromolecules 2013; 14:4489-96. [DOI: 10.1021/bm401444y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Dongxu Yin
- Lehrstuhl für Technische
Chemie II, Universität Duisburg-Essen, 45117 Essen, Germany
| | - Mathias Ulbricht
- Lehrstuhl für Technische
Chemie II, Universität Duisburg-Essen, 45117 Essen, Germany
| |
Collapse
|
23
|
Chang CC, Chuang TL, Wang DS, Wang CH, Lin CW. Comparative Assessment of Oriented Antibody Immobilization on Surface Plasmon Resonance Biosensing. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.201300116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
A new and robust method of tethering IgG surrogate antigens on lipid bilayer membranes to facilitate the TIRFM based live cell and single molecule imaging experiments. PLoS One 2013; 8:e63735. [PMID: 23717469 PMCID: PMC3661735 DOI: 10.1371/journal.pone.0063735] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 04/05/2013] [Indexed: 11/27/2022] Open
Abstract
Our understanding of cell-cell interactions has been significantly improved in the past years with the help of Total Internal Reflection Fluorescence Microscope (TIRFM) in combination with an antigen presenting system supported by planar lipid bilayer (PLB) membranes, which are used to mimic the extensive receptor and ligand interactions within cell-cell contact interface. In TIRFM experiments, it is a challenge to uniformly present ligand molecules in monomeric format on the surface of PLB membranes. Here, we introduce a new and robust method of tethering IgG surrogate antigen ligands on the surface of Ni2+-containing PLB membranes. In this method, we use a modified D domain from staphylococcal protein A molecule that is fused with an N-terminus polyhistidine tag (H12-D-domain) to tether IgG surrogate antigens on Ni2+-containing PLB membranes. We systematically assessed the specificity and capability of H12-D-domain construct to capture IgG molecules from different species through live cell and single molecule TIRFM imaging. We find that these IgG surrogate antigens tethered by H12-D-domain show better lateral mobility and are more uniformly distributed on PLB membranes than the ones tethered by streptavidin. Neither IgM molecules, nor Fab or F(ab’)2 fragments of IgG molecules can be tethered on PLB membranes by H12-D-domain construct. These tethered IgG surrogate antigens strongly induce the formation and accumulation of signaling active antigen receptor microclusters within the immunological synapse in B or T lymphocyte cells. Thus our method provides a new and robust method to tether IgG surrogate antigens or other molecules fused with IgG Fc portion on PLB membranes for TIRFM based molecule imaging experiments.
Collapse
|
25
|
Chen Y, Wei D, Wang Y, Zhang X. The role of interactions between bacterial chaperone, aspartate aminotransferase, and viral protein during virus infection in high temperature environment: the interactions between bacterium and virus proteins. BMC Microbiol 2013; 13:48. [PMID: 23442450 PMCID: PMC3622585 DOI: 10.1186/1471-2180-13-48] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 02/08/2013] [Indexed: 01/16/2023] Open
Abstract
Background The life cycle of a bacteriophage has tightly programmed steps to help virus infect its host through the interactions between the bacteriophage and its host proteins. However, bacteriophage–host protein interactions in high temperature environment remain poorly understood. To address this issue, the protein interaction between the thermophilic bacteriophage GVE2 and its host thermophilic Geobacillus sp. E263 from a deep-sea hydrothermal vent was characterized. Results This investigation showed that the host’s aspartate aminotransferase (AST), chaperone GroEL, and viral capsid protein VP371 formed a linearly interacted complex. The results indicated that the VP371-GroEL-AST complex were up-regulated and co-localized in the GVE2 infection of Geobacillus sp. E263. Conclusions As reported, the VP371 is a capsid protein of GVE2 and the host AST is essential for the GVE2 infection. Therefore, our study revealed that the phage could use the anti-stress system of its host to protect the virus reproduction in a high-temperature environment for the first time.
Collapse
Affiliation(s)
- Yanjiang Chen
- Zhejiang University, Hangzhou, The People's Republic of China
| | | | | | | |
Collapse
|
26
|
Novel peptide ligand with high binding capacity for antibody purification. J Chromatogr A 2012; 1225:158-67. [DOI: 10.1016/j.chroma.2011.12.074] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 12/15/2011] [Accepted: 12/23/2011] [Indexed: 11/19/2022]
|