1
|
Yadav N, Kumar R, Sangwan S, Dhanda V, Duhan A, Sindhu J. Environment benign synthesis of 5-acyl-4-hydroxypyridin-2(1 H)-one derivatives as antioxidant and α-amylase inhibitors. Future Med Chem 2024; 16:2637-2646. [PMID: 39606936 PMCID: PMC11734593 DOI: 10.1080/17568919.2024.2432289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
AIM Oxidative stress, caused by postprandial activities, is a major global health issue causing chronic diseases like diabetes mellitus, cancer, and asthma. Therefore, it was envisaged to design and synthesize a series of substituted 4-hydroxypyridine-2(1 h)-ones in order to develop new molecules that can reduce oxidative stress and modulate α-amylase activity also. MATERIALS & METHODS An environmentally benign, solvent and catalyst free, natural product inspired synthesis of 4-hydroxypyridin-2(1 h)-one derivatives has been developed. The synthetic analogues were evaluated in vitro α-amylase activity and antioxidant potential. RESULTS Among all the synthesized compounds, 4a, 4c, and 4d displayed many folds higher antioxidants activity than the standard, BHT. The in vitro α-amylase inhibition was found to be moderate with IC50 values ranging from 5.48 to 9.31 mm as compared to the standard acarbose (IC50 = 0.65 mm). The most active compound against α-amylase 4c was further investigated for its binding affinity within the active site of the enzyme and the kinetics studies revealed probable uncompetitive mode of inhibition. CONCLUSION Compound 4a was found to be promising antioxidant and 4c as a good α-amylase inhibitor. These compounds could pave the way for development of new α-amylase inhibitors with antioxidant capabilities thereby effectively mitigating diabetes mellitus.
Collapse
Affiliation(s)
- Neelam Yadav
- Department of Chemistry, Chaudhary Charan Singh Haryana Agricultural University Hisar, Hisar, Haryana, India
| | - Ravi Kumar
- Department of Chemistry, Chaudhary Charan Singh Haryana Agricultural University Hisar, Hisar, Haryana, India
- MAP Section, Department of Genetics and Plant Breeding, Chaudhary Charan Singh Haryana Agricultural University Hisar, Hisar, Haryana, India
- Center for Bio-Nanotechnology, Chaudhary Charan Singh Haryana Agricultural University Hisar, Hisar, Haryana, India
| | - Sarita Sangwan
- Department of Chemistry, Chaudhary Charan Singh Haryana Agricultural University Hisar, Hisar, Haryana, India
| | - Vidhi Dhanda
- Department of Chemistry, Chaudhary Charan Singh Haryana Agricultural University Hisar, Hisar, Haryana, India
| | - Anil Duhan
- Department of Chemistry, Chaudhary Charan Singh Haryana Agricultural University Hisar, Hisar, Haryana, India
| | - Jayant Sindhu
- Department of Chemistry, Chaudhary Charan Singh Haryana Agricultural University Hisar, Hisar, Haryana, India
| |
Collapse
|
2
|
Chahal S, Rani P, Singh R, Joshi G, Kumar R, Kumar P, Wadhwa D, Singh D, Sindhu J. Naphthoquinone fused diazepines targeting hyperamylasemia: potential therapeutic agents for diabetes and cancer. Future Med Chem 2024; 16:2231-2245. [PMID: 39301934 PMCID: PMC11622778 DOI: 10.1080/17568919.2024.2400968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/19/2024] [Indexed: 09/22/2024] Open
Abstract
Aim: Elevated levels of amylase in the blood, known as hyperamylasemia, have been correlated with diabetes and cancer. To investigate the impact of hyperamylasemia on cellular proliferation, it is imperative to design dual inhibitors targeting both α-amylase activity and cancer progression.Materials & methods: Naphthoquinone fused diazepines have been synthesized using multicomponent reaction with high Eco-score of 87 and evaluated for bio efficacy using antioxidant and α-amylase inhibition assay. A correlation between diabetes and cancer has been established via preliminary screening against A549 based lung cancer cell line at 5 μM.Results & conclusion: Compound 4b exhibited superior anti-oxidant and α-amylase inhibitory potential over butylated hydroxytoluene (BHT) and acarbose, respectively with uncompetitive mode of inhibition. Compounds possessing more than 50 % inhibition were then investigated for their IC50 against A549 (Lung cancer), and Breast cancer (MCF-7 and MDA-MB-231) cells. Among all, compound 4p has been selected for further studies, as it demonstrated significant cytotoxicity, while compound 4b showed no effect on AKT gene expression but upregulated IGF-1R gene expression, suggesting a role in managing diabetes. Compound 4p exhibited the ability to decrease AKT expression and increase IGF-1R expression, indicating its potential for treating both diabetes and cancer.
Collapse
Affiliation(s)
- Sandhya Chahal
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Payal Rani
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Rajvir Singh
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Gaurav Joshi
- Department of Pharmaceutical Science, Hemvati Nandan Bahuguna Garhwal (A Central) University, Srinagar, Dist. Garhwal, Uttarakhand, 246174, India
| | - Roshan Kumar
- Department of Microbiology, Central University of Punjab, VPO, Gudha, 151401, Punjab
- Department of Microbiology, Graphic Era (Deemed to be university) University, Dehradun, 151001, India
| | - Parvin Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Deepak Wadhwa
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, 127021, India
| | - Devender Singh
- Department of Chemistry, Maharshi Dayanand University, Rohtak, 124001, India
| | - Jayant Sindhu
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar, 125004, India
| |
Collapse
|
3
|
Gilson MK, Kurtzman T. Free Energy Density of a Fluid and Its Role in Solvation and Binding. J Chem Theory Comput 2024; 20:2871-2887. [PMID: 38536144 PMCID: PMC11197885 DOI: 10.1021/acs.jctc.3c01173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The concept that a fluid has a position-dependent free energy density appears in the literature but has not been fully developed or accepted. We set this concept on an unambiguous theoretical footing via the following strategy. First, we set forth four desiderata that should be satisfied by any definition of the position-dependent free energy density, f(R), in a system comprising only a fluid and a rigid solute: its volume integral, plus the fixed internal energy of the solute, should be the system free energy; it deviates from its bulk value, fbulk, near a solute but should asymptotically approach fbulk with increasing distance from the solute; it should go to zero where the solvent density goes to zero; and it should be well-defined in the most general case of a fluid made up of flexible molecules with an arbitrary interaction potential. Second, we use statistical thermodynamics to formulate a definition of the free energy density that satisfies these desiderata. Third, we show how any free energy density satisfying the desiderata may be used to analyze molecular processes in solution. In particular, because the spatial integral of f(R) equals the free energy of the system, it can be used to compute free energy changes that result from the rearrangement of solutes as well as the forces exerted on the solutes by the solvent. This enables the use of a thermodynamic analysis of water in protein binding sites to inform ligand design. Finally, we discuss related literature and address published concerns regarding the thermodynamic plausibility of a position-dependent free energy density. The theory presented here has applications in theoretical and computational chemistry and may be further generalizable beyond fluids, such as to solids and macromolecules.
Collapse
Affiliation(s)
- Michael K Gilson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, and Department of Chemistry and Biochemistry, UC San Diego, La Jolla, CA, 92093, USA
| | - Tom Kurtzman
- PhD Programs in Chemistry, Biochemistry, and Biology, The Graduate Center of the City University of New York, New York, 10016, USA; Department of Chemistry, Lehman College, The City University of New York, Bronx, New York, 10468, USA
| |
Collapse
|
4
|
Khuttan S, Gallicchio E. What to Make of Zero: Resolving the Statistical Noise from Conformational Reorganization in Alchemical Binding Free Energy Estimates with Metadynamics Sampling. J Chem Theory Comput 2024; 20:1489-1501. [PMID: 38252868 PMCID: PMC10867849 DOI: 10.1021/acs.jctc.3c01250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024]
Abstract
We introduce the self-relative binding free energy (self-RBFE) approach to evaluate the intrinsic statistical variance of dual-topology alchemical binding free energy estimators. The self-RBFE is the relative binding free energy between a ligand and a copy of the same ligand, and its true value is zero. Nevertheless, because the two copies of the ligand move independently, the self-RBFE value produced by a finite-length simulation fluctuates and can be used to measure the variance of the model. The results of this validation provide evidence that a significant fraction of the errors observed in benchmark studies reflect the statistical fluctuations of unconverged estimates rather than the models' accuracy. Furthermore, we find that ligand reorganization is a significant contributing factor to the statistical variance of binding free energy estimates and that metadynamics-accelerated conformational sampling of the torsional degrees of freedom of the ligand can drastically reduce the time to convergence.
Collapse
Affiliation(s)
- Sheenam Khuttan
- Department
of Chemistry and Biochemistry, Brooklyn
College of the City University of New York, New York, New York 11210, United States
- Ph.D.
Program in Biochemistry, The Graduate Center
of the City University of New York, New York, New York 10016, United States
| | - Emilio Gallicchio
- Department
of Chemistry and Biochemistry, Brooklyn
College of the City University of New York, New York, New York 11210, United States
- Ph.D.
Program in Biochemistry, The Graduate Center
of the City University of New York, New York, New York 10016, United States
- Ph.D.
Program in Chemistry, The Graduate Center
of the City University of New York, New York, New York 10016, United States
| |
Collapse
|
5
|
Sun Q, Biswas A, Lyumkis D, Levy R, Deng N. Elucidating the Molecular Determinants of the Binding Modes of a Third-Generation HIV-1 Integrase Strand Transfer Inhibitor: The Importance of Side Chain and Solvent Reorganization. Viruses 2024; 16:76. [PMID: 38257776 PMCID: PMC11154245 DOI: 10.3390/v16010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
The first- and second-generation clinically used HIV-1 integrase (IN) strand transfer inhibitors (INSTIs) are key components of antiretroviral therapy (ART), which work by blocking the integration step in the HIV-1 replication cycle that is catalyzed by a nucleoprotein assembly called an intasome. However, resistance to even the latest clinically used INSTIs is beginning to emerge. Developmental third-generation INSTIs, based on naphthyridine scaffolds, are promising candidates to combat drug-resistant viral variants. Among these novel INSTIs, compound 4f exhibits two distinct conformations when binding with intasomes from HIV-1 and the closely related prototype foamy virus (PFV) despite the high structural similarity of their INSTI binding pockets. The molecular mechanism and the key active site residues responsible for these differing binding modes in closely related intasomes remain elusive. To unravel the molecular determinants governing the two distinct binding modes, we applied a novel molecular dynamics-based free energy method that utilizes alchemical pathways to overcome the sampling challenges associated with transitioning between the two bound conformations of ligand 4f within the crowded environments of the INSTI binding pockets in these intasomes. The calculated conformational free energies successfully recapitulate the experimentally observed binding mode preferences in the two viral intasomes. Analysis of the simulated structures suggests that the observed binding mode preferences are caused by amino acid residue differences in both the front and the central catalytic sub-pocket of the INSTI binding site in HIV-1 and PFV. Additional free energy calculations on mutants of HIV-1 and PFV revealed that while both sub-pockets contribute to binding mode selection, the central sub-pocket plays a more important role. These results highlight the importance of both side chain and solvent reorganization, as well as the conformational entropy in determining the ligand binding mode, and will help inform the development of more effective INSTIs for combatting drug-resistant viral variants.
Collapse
Affiliation(s)
- Qinfang Sun
- Center for Biophysics and Computational Biology and Department of Chemistry, Temple University, Philadelphia, PA 19122, USA; (Q.S.); (R.L.)
| | - Avik Biswas
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA; (A.B.); (D.L.)
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA
| | - Dmitry Lyumkis
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA; (A.B.); (D.L.)
- Graduate Schools for Biological Sciences, Section of Molecular Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Ronald Levy
- Center for Biophysics and Computational Biology and Department of Chemistry, Temple University, Philadelphia, PA 19122, USA; (Q.S.); (R.L.)
| | - Nanjie Deng
- Department of Chemistry and Physical Sciences, Pace University, New York, NY 10038, USA
| |
Collapse
|
6
|
Sun Q, Biswas A, Lyumkis D, Levy R, Deng N. Elucidating the molecular determinants for binding modes of a third-generation HIV-1 integrase strand transfer inhibitor: Importance of side chain and solvent reorganization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.29.569269. [PMID: 38077045 PMCID: PMC10705364 DOI: 10.1101/2023.11.29.569269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The first and second-generation clinically used HIV-1 integrase (IN) strand transfer inhibitors (INSTIs) are key components of antiretroviral therapy (ART), which work by blocking the integration step in the HIV-1 replication cycle that is catalyzed by a nucleoprotein assembly called an intasome. However, resistance to even the latest clinically used INSTIs is beginning to emerge. Developmental third-generation INSTIs, based on naphthyridine scaffold, are promising candidates to combat drug-resistant viral variants. Among these novel INSTIs, compound 4f exhibits two distinct conformations when binding to intasomes from HIV-1 and the closely related prototype foamy virus (PFV), despite the high structural similarity of their INSTI binding pockets. The molecular mechanism and the key active site residues responsible for these differing binding modes in closely related intasomes remain elusive. To unravel the molecular determinants governing the two distinct binding modes, we employ a novel molecular dynamics-based free energy approach that utilizes alchemical pathways to overcome the sampling challenges associated with transitioning between two ligand conformations within crowded environments along physical pathways. The calculated conformational free energies successfully recapitulate the experimentally observed binding mode preferences in the two viral intasomes. Analysis of the simulated structures suggests that the observed binding mode preferences are caused by amino acid residue differences in both the front and the central catalytic sub-pocket of the INSTI binding site in HIV-1 and PFV. Additional free energy calculations on mutants of HIV-1 and PFV revealed that while both sub-pockets contribute to the binding mode selection, the central sub-pocket plays a more important role. These results highlight the importance of both side chain and solvent reorganization, as well as the conformational entropy in determining the ligand binding mode and will help inform the development of more effective INSTIs for combatting drug-resistant viral variants.
Collapse
Affiliation(s)
- Qinfang Sun
- Center for Biophysics and Computational Biology and Department of Chemistry, Temple University, Philadelphia, PA 19122
| | - Avik Biswas
- The Salk Institute for Biological Studies, Laboratory of Genetics, La Jolla, CA 92037
- Department of Physics, University of California San Diego, La Jolla, CA, 92093
| | - Dmitry Lyumkis
- The Salk Institute for Biological Studies, Laboratory of Genetics, La Jolla, CA 92037
- Graduate schools for Biological Sciences, Section of Molecular Biology, University of California, San Diego, La Jolla, CA, 92093
| | - Ronald Levy
- Center for Biophysics and Computational Biology and Department of Chemistry, Temple University, Philadelphia, PA 19122
| | - Nanjie Deng
- Department of Chemistry and Physical Sciences, Pace University, New York, NY10038
| |
Collapse
|
7
|
Khuttan S, Azimi S, Wu JZ, Dick S, Wu C, Xu H, Gallicchio E. Taming multiple binding poses in alchemical binding free energy prediction: the β-cyclodextrin host-guest SAMPL9 blinded challenge. Phys Chem Chem Phys 2023; 25:24364-24376. [PMID: 37676233 DOI: 10.1039/d3cp02125d] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
We apply the Alchemical Transfer Method (ATM) and a bespoke fixed partial charge force field to the SAMPL9 bCD host-guest binding free energy prediction challenge that comprises a combination of complexes formed between five phenothiazine guests and two cyclodextrin hosts. Multiple chemical forms, competing binding poses, and computational modeling challenges pose significant obstacles to obtaining reliable computational predictions for these systems. The phenothiazine guests exist in solution as racemic mixtures of enantiomers related by nitrogen inversions that bind the hosts in various binding poses, each requiring an individual free energy analysis. Due to the large size of the guests and the conformational reorganization of the hosts, which prevent a direct absolute binding free energy route, binding free energies are obtained by a series of absolute and relative binding alchemical steps for each chemical species in each binding pose. Metadynamics-accelerated conformational sampling was found to be necessary to address the poor convergence of some numerical estimates affected by conformational trapping. Despite these challenges, our blinded predictions quantitatively reproduced the experimental affinities for the β-cyclodextrin host and, to a lesser extent, those with a methylated derivative. The work illustrates the challenges of obtaining reliable free energy data in in silico drug design for even seemingly simple systems and introduces some of the technologies available to tackle them.
Collapse
Affiliation(s)
- Sheenam Khuttan
- Department of Chemistry, Brooklyn College of the City University of New York, New York, USA.
- PhD Program in Biochemistry, Graduate Center of the City University of New York, USA
| | - Solmaz Azimi
- Department of Chemistry, Brooklyn College of the City University of New York, New York, USA.
- PhD Program in Biochemistry, Graduate Center of the City University of New York, USA
| | - Joe Z Wu
- Department of Chemistry, Brooklyn College of the City University of New York, New York, USA.
- PhD Program in Chemistry, Graduate Center of the City University of New York, USA
| | | | | | | | - Emilio Gallicchio
- Department of Chemistry, Brooklyn College of the City University of New York, New York, USA.
- PhD Program in Biochemistry, Graduate Center of the City University of New York, USA
- PhD Program in Chemistry, Graduate Center of the City University of New York, USA
| |
Collapse
|
8
|
Sun Q, Biswas A, Vijayan RSK, Craveur P, Forli S, Olson AJ, Castaner AE, Kirby KA, Sarafianos SG, Deng N, Levy R. Structure-based virtual screening workflow to identify antivirals targeting HIV-1 capsid. J Comput Aided Mol Des 2022; 36:193-203. [PMID: 35262811 PMCID: PMC8904208 DOI: 10.1007/s10822-022-00446-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/24/2022] [Indexed: 02/07/2023]
Abstract
We have identified novel HIV-1 capsid inhibitors targeting the PF74 binding site. Acting as the building block of the HIV-1 capsid core, the HIV-1 capsid protein plays an important role in the viral life cycle and is an attractive target for antiviral development. A structure-based virtual screening workflow for hit identification was employed, which includes docking 1.6 million commercially-available drug-like compounds from the ZINC database to the capsid dimer, followed by applying two absolute binding free energy (ABFE) filters on the 500 top-ranked molecules from docking. The first employs the Binding Energy Distribution Analysis Method (BEDAM) in implicit solvent. The top-ranked compounds are then refined using the Double Decoupling method in explicit solvent. Both docking and BEDAM refinement were carried out on the IBM World Community Grid as part of the FightAIDS@Home project. Using this virtual screening workflow, we identified 24 molecules with calculated binding free energies between − 6 and − 12 kcal/mol. We performed thermal shift assays on these molecules to examine their potential effects on the stability of HIV-1 capsid hexamer and found that two compounds, ZINC520357473 and ZINC4119064 increased the melting point of the latter by 14.8 °C and 33 °C, respectively. These results support the conclusion that the two ZINC compounds are primary hits targeting the capsid dimer interface. Our simulations also suggest that the two hit molecules may bind at the capsid dimer interface by occupying a new sub-pocket that has not been exploited by existing CA inhibitors. The possible causes for why other top-scored compounds suggested by ABFE filters failed to show measurable activity are discussed.
Collapse
Affiliation(s)
- Qinfang Sun
- Center for Biophysics and Computational Biology and Department of Chemistry, Temple University, Philadelphia, PA, 19122, USA
| | - Avik Biswas
- Center for Biophysics and Computational Biology and Department of Chemistry, Temple University, Philadelphia, PA, 19122, USA
| | - R S K Vijayan
- Institute for Applied Cancer Science, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Pierrick Craveur
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Stefano Forli
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Arthur J Olson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Andres Emanuelli Castaner
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Karen A Kirby
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Stefan G Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Nanjie Deng
- Department of Chemistry and Physical Sciences, Pace University, New York, NY, 10038, USA.
| | - Ronald Levy
- Center for Biophysics and Computational Biology and Department of Chemistry, Temple University, Philadelphia, PA, 19122, USA
| |
Collapse
|
9
|
Wickstrom L, Gallicchio E, Chen L, Kurtzman T, Deng N. Developing end-point methods for absolute binding free energy calculation using the Boltzmann-quasiharmonic model. Phys Chem Chem Phys 2022; 24:6037-6052. [PMID: 35212338 PMCID: PMC9044818 DOI: 10.1039/d1cp05075c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding the physical forces underlying receptor-ligand binding requires robust methods for analyzing the binding thermodynamics. In end-point binding free energy methods the binding free energy is naturally decomposable into physically intuitive contributions such as the solvation free energy and configurational entropy that can provide insights. Here we present a new end-point method called EE-BQH (Effective Energy-Boltzmann-Quasiharmonic) which combines the Boltzmann-Quasiharmonic model for configurational entropy with different solvation free energy methods, such as the continuum solvent PBSA model and the integral equation-based 3D-RISM, to estimate the absolute binding free energy. We compare EE-BQH with other treatments of configurational entropy such as Quasiharmonic models in internal coordinates (QHIC) and in Cartesian coordinates (QHCC), and Normal Mode analysis (NMA), by testing them on the octa acids host-guest complexes from the SAMPL8 blind challenge. The accuracies in the calculated absolute binding free energies strongly depend on the configurational entropy and solvation free energy methods used. QHIC and BQH yield the best agreements with the established potential of mean force (PMF) estimates, with R2 of ∼0.7 and mean unsigned error of ∼1.7 kcal mol-1. These results from the end-point calculations are also in similar agreement with experiments. While 3D-RISM in combination with QHIC or BQH lead to reasonable correlations with the PMF results and experiments, the calculated absolute binding free energies are underestimated by ∼5 kcal mol-1. While the binding is accompanied by a significant reduction in the ligand translational/rotational entropy, the change in the torsional entropy in these host-guest systems is slightly positive. Compared with BQH, QHIC underestimates the reduction of configurational entropy because of the non-Gaussian probability distributions in the ligand rotation and a small number of torsions. The study highlights the crucial role of configurational entropy in determining binding and demonstrates the potential of using the new end-point method to provide insights in more complex protein-ligand systems.
Collapse
Affiliation(s)
- Lauren Wickstrom
- Borough of Manhattan Community College, The City University of New York, Department of Science, New York, New York, USA
| | - Emilio Gallicchio
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, New York, USA.,PhD Program in Chemistry, Graduate Center of the City University of New York, New York, USA.,PhD Program in Biochemistry, Graduate Center of the City University of New York, New York, USA
| | - Lieyang Chen
- PhD Program in Chemistry, Graduate Center of the City University of New York, New York, USA.,PhD Program in Biochemistry, Graduate Center of the City University of New York, New York, USA.,Department of Chemistry, Lehman College, The City University of New York, Bronx, New York, USA
| | - Tom Kurtzman
- PhD Program in Chemistry, Graduate Center of the City University of New York, New York, USA.,PhD Program in Biochemistry, Graduate Center of the City University of New York, New York, USA.,Department of Chemistry, Lehman College, The City University of New York, Bronx, New York, USA
| | - Nanjie Deng
- Department of Chemistry and Physical Sciences, Pace University, New York, New York, USA.
| |
Collapse
|
10
|
Çınaroğlu SS, Biggin PC. Evaluating the Performance of Water Models with Host-Guest Force Fields in Binding Enthalpy Calculations for Cucurbit[7]uril-Guest Systems. J Phys Chem B 2021; 125:1558-1567. [PMID: 33538161 DOI: 10.1021/acs.jpcb.0c11383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Computational prediction of thermodynamic components with computational methods has become increasingly routine in computer-aided drug design. Although there has been significant recent effort and improvements in the calculation of free energy, the prediction of enthalpy (and entropy) remains underexplored. Furthermore, there has been relatively little work reported so far that attempts to comparatively assess how well different force fields and water models perform in conjunction with each other. Here, we report a comprehensive assessment of force fields and water models using host-guest systems that mimic many features of protein-ligand systems. These systems are computationally inexpensive, possibly because of their small size compared to protein-ligand systems. We present absolute enthalpy calculations using the multibox approach on a set of 25 cucurbit[7]uril-guest pairs. Eight water models were considered (TIP3P, TIP4P, TIP4P-Ew, SPC, SPC/E, OPC, TIP5P, Bind3P), along with five force fields commonly used in the literature (GAFFv1, GAFFv2, CGenFF, Parsley, and SwissParam). We observe that host-guest binding enthalpies are strongly sensitive to the selection of force field and water model. In terms of water models, we find that TIP3P and its derivative Bind3P are the best performing models for this particular host-guest system. The performance is generally better for aliphatic compounds than for aromatic ones, suggesting that aromaticity remains a difficult property to include accurately in these simple force fields.
Collapse
Affiliation(s)
| | - Philip C Biggin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
| |
Collapse
|
11
|
Sakae Y, Zhang BW, Levy RM, Deng N. Absolute Protein Binding Free Energy Simulations for Ligands with Multiple Poses, a Thermodynamic Path That Avoids Exhaustive Enumeration of the Poses. J Comput Chem 2020; 41:56-68. [PMID: 31621932 PMCID: PMC7140983 DOI: 10.1002/jcc.26078] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 08/07/2019] [Accepted: 08/31/2019] [Indexed: 12/28/2022]
Abstract
We propose a free energy calculation method for receptor-ligand binding, which have multiple binding poses that avoids exhaustive enumeration of the poses. For systems with multiple binding poses, the standard procedure is to enumerate orientations of the binding poses, restrain the ligand to each orientation, and then, calculate the binding free energies for each binding pose. In this study, we modify a part of the thermodynamic cycle in order to sample a broader conformational space of the ligand in the binding site. This modification leads to more accurate free energy calculation without performing separate free energy simulations for each binding pose. We applied our modification to simple model host-guest systems as a test, which have only two binding poses, by using a single decoupling method (SDM) in implicit solvent. The results showed that the binding free energies obtained from our method without knowing the two binding poses were in good agreement with the benchmark results obtained by explicit enumeration of the binding poses. Our method is applicable to other alchemical binding free energy calculation methods such as the double decoupling method (DDM) in explicit solvent. We performed a calculation for a protein-ligand system with explicit solvent using our modified thermodynamic path. The results of the free energy simulation along our modified path were in good agreement with the results of conventional DDM, which requires a separate binding free energy calculation for each of the binding poses of the example of phenol binding to T4 lysozyme in explicit solvent. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yoshitake Sakae
- Center for Biophysics and Computational Biology, Temple University, Philadelphia, Pennsylvania, 19122
| | - Bin W Zhang
- Center for Biophysics and Computational Biology, Temple University, Philadelphia, Pennsylvania, 19122
| | - Ronald M Levy
- Center for Biophysics and Computational Biology, Temple University, Philadelphia, Pennsylvania, 19122
- Department of Chemistry, Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania, 19122
| | - Nanjie Deng
- Department of Chemistry and Physical Sciences, Pace University, New York, New York, 10038
| |
Collapse
|
12
|
He P, Sarkar S, Gallicchio E, Kurtzman T, Wickstrom L. Role of Displacing Confined Solvent in the Conformational Equilibrium of β-Cyclodextrin. J Phys Chem B 2019; 123:8378-8386. [PMID: 31509409 DOI: 10.1021/acs.jpcb.9b07028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study investigates the role of hydration and its relationship to the conformational equilibrium of the host molecule β-cyclodextrin. Molecular dynamics simulations indicate that the unbound β-cyclodextrin exhibits two state behavior in explicit solvent due to the opening and closing of its cavity. In implicit solvent, these transitions are not observed, and there is one dominant conformation of β-cyclodextrin with an open cavity. Based on these observations, we investigate the hypothesis that the expulsion of thermodynamically unfavorable water molecules into the bulk plays an important role in controlling the accessibility of the closed macrostate at room temperature. We compare the results of the molecular mechanics analytical generalized Born plus nonpolar solvation approach to those obtained through grid inhomogeneous solvation theory analysis with explicit solvation to elucidate the thermodynamic forces at play. The work illustrates the use of continuum solvent models to tease out solvation effects related to the inhomogeneity and the molecular nature of water and demonstrates the key role of the thermodynamics of enclosed hydration in driving the conformational equilibrium of molecules in solution.
Collapse
Affiliation(s)
- Peng He
- Center for Biophysics & Computational Biology/ICMS, Department of Chemistry , Temple University , Philadelphia , Pennsylvania 19122 , United States
| | - Sheila Sarkar
- Department of Science , Borough of Manhattan Community College, The City University of New York , New York , New York 10007 , United States
| | - Emilio Gallicchio
- Department of Chemistry , Brooklyn College, The City University of New York , Brooklyn , New York 11210 , United States.,Ph.D. Programs in Chemistry & Biochemistry , The Graduate Center of the City University of New York , 365 Fifth Avenue , New York , New York 10016 , United States
| | - Tom Kurtzman
- Department of Chemistry , Lehman College, The City University of New York , Bronx , New York 10468 , United States.,Ph.D. Programs in Chemistry & Biochemistry , The Graduate Center of the City University of New York , 365 Fifth Avenue , New York , New York 10016 , United States
| | - Lauren Wickstrom
- Department of Science , Borough of Manhattan Community College, The City University of New York , New York , New York 10007 , United States
| |
Collapse
|
13
|
Abstract
Quantification of noncovalent interactions is the key for the understanding of binding mechanisms, of biological systems, for the design of drugs, their delivery and for the design of receptors for separations, sensors, actuators, or smart materials.
Collapse
|
14
|
Nittinger E, Flachsenberg F, Bietz S, Lange G, Klein R, Rarey M. Placement of Water Molecules in Protein Structures: From Large-Scale Evaluations to Single-Case Examples. J Chem Inf Model 2018; 58:1625-1637. [DOI: 10.1021/acs.jcim.8b00271] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Eva Nittinger
- Universität Hamburg, ZBH − Center for Bioinformatics, Bundesstraße 43, 20146 Hamburg, Germany
| | - Florian Flachsenberg
- Universität Hamburg, ZBH − Center for Bioinformatics, Bundesstraße 43, 20146 Hamburg, Germany
| | - Stefan Bietz
- Universität Hamburg, ZBH − Center for Bioinformatics, Bundesstraße 43, 20146 Hamburg, Germany
| | - Gudrun Lange
- Bayer CropScience AG, Industriepark Hoechst G836, 65926 Frankfurt am Main, Germany
| | - Robert Klein
- Bayer CropScience AG, Industriepark Hoechst G836, 65926 Frankfurt am Main, Germany
| | - Matthias Rarey
- Universität Hamburg, ZBH − Center for Bioinformatics, Bundesstraße 43, 20146 Hamburg, Germany
| |
Collapse
|
15
|
Kilburg D, Gallicchio E. Assessment of a Single Decoupling Alchemical Approach for the Calculation of the Absolute Binding Free Energies of Protein-Peptide Complexes. Front Mol Biosci 2018; 5:22. [PMID: 29568737 PMCID: PMC5852065 DOI: 10.3389/fmolb.2018.00022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 02/21/2018] [Indexed: 01/24/2023] Open
Abstract
The computational modeling of peptide inhibitors to target protein-protein binding interfaces is growing in interest as these are often too large, too shallow, and too feature-less for conventional small molecule compounds. Here, we present a rare successful application of an alchemical binding free energy method for the calculation of converged absolute binding free energies of a series of protein-peptide complexes. Specifically, we report the binding free energies of a series of cyclic peptides derived from the LEDGF/p75 protein to the integrase receptor of the HIV1 virus. The simulations recapitulate the effect of mutations relative to the wild-type binding motif of LEDGF/p75, providing structural, energetic and dynamical interpretations of the observed trends. The equilibration and convergence of the calculations are carefully analyzed. Convergence is aided by the adoption of a single-decoupling alchemical approach with implicit solvation, which circumvents the convergence difficulties of conventional double-decoupling protocols. We hereby present the single-decoupling methodology and critically evaluate its advantages and limitations. We also discuss some of the challenges and potential pitfalls of binding free energy calculations for complex molecular systems which have generally limited their applicability to the quantitative study of protein-peptide binding equilibria.
Collapse
Affiliation(s)
- Denise Kilburg
- Department of Chemistry, Brooklyn College, Brooklyn, NY, United States.,Ph.D. Program in Chemistry, The Graduate Center, City University of New York, New York, NY, United States
| | - Emilio Gallicchio
- Department of Chemistry, Brooklyn College, Brooklyn, NY, United States.,Ph.D. Program in Chemistry, The Graduate Center, City University of New York, New York, NY, United States.,Ph.D. Program in Biochemistry, The Graduate Center, City University of New York, New York, NY, United States
| |
Collapse
|
16
|
Gebhardt J, Kleist C, Jakobtorweihen S, Hansen N. Validation and Comparison of Force Fields for Native Cyclodextrins in Aqueous Solution. J Phys Chem B 2018; 122:1608-1626. [PMID: 29287148 DOI: 10.1021/acs.jpcb.7b11808] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Molecular dynamics simulations of native α-, β-, and γ-cyclodextrin in aqueous solution have been conducted with the goal to investigate the performance of the CHARMM36 force field, the AMBER-compatible q4md-CD force field, and five variants of the GROMOS force field. The properties analyzed are structural parameters derived from X-ray diffraction and NMR experiments as well as hydrogen bonds and hydration patterns, including hydration free enthalpies. Recent revisions of the torsional-angle parameters for carbohydrate systems within the GROMOS family of force fields lead to a significant improvement of the agreement between simulated and experimental NMR data. Therefore, we recommend using the variant 53A6GLYC instead of 53A6 and 56A6CARBO_R or 2016H66 instead of 56A6CARBO to simulate cyclodextrins in solution. The CHARMM36 and q4md-CD force fields show a similar performance as the three recommended GROMOS parameter sets. A significant difference is the more flexible nature of the cyclodextrins modeled with the CHARMM36 and q4md-CD force fields compared to the three recommended GROMOS parameter sets.
Collapse
Affiliation(s)
- Julia Gebhardt
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart , D-70569 Stuttgart, Germany
| | - Catharina Kleist
- Institute of Thermal Separation Processes, Hamburg University of Technology , D-21073 Hamburg, Germany
| | - Sven Jakobtorweihen
- Institute of Thermal Separation Processes, Hamburg University of Technology , D-21073 Hamburg, Germany
| | - Niels Hansen
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart , D-70569 Stuttgart, Germany
| |
Collapse
|
17
|
Tang Z, Chang CEA. Binding Thermodynamics and Kinetics Calculations Using Chemical Host and Guest: A Comprehensive Picture of Molecular Recognition. J Chem Theory Comput 2018; 14:303-318. [PMID: 29149564 PMCID: PMC5920803 DOI: 10.1021/acs.jctc.7b00899] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding the fine balance between changes of entropy and enthalpy and the competition between a guest and water molecules in molecular binding is crucial in fundamental studies and practical applications. Experiments provide measurements. However, illustrating the binding/unbinding processes gives a complete picture of molecular recognition not directly available from experiments, and computational methods bridge the gaps. Here, we investigated guest association/dissociation with β-cyclodextrin (β-CD) by using microsecond-time-scale molecular dynamics (MD) simulations, postanalysis and numerical calculations. We computed association and dissociation rate constants, enthalpy, and solvent and solute entropy of binding. All the computed values of kon, koff, ΔH, ΔS, and ΔG using GAFF-CD and q4MD-CD force fields for β-CD could be compared with experimental data directly and agreed reasonably with experiment findings. In addition, our study further interprets experiments. Both force fields resulted in similar computed ΔG from independently computed kinetics rates, ΔG = -RT ln(kon·C0/koff), and thermodynamics properties, ΔG = ΔH - TΔS. The water entropy calculations show that the entropy gain of desolvating water molecules are a major driving force, and both force fields have the same strength of nonpolar attractions between solutes and β-CD as well. Water molecules play a crucial role in guest binding to β-CD. However, collective water/β-CD motions could contribute to different computed kon and ΔH values by different force fields, mainly because the parameters of β-CD provide different motions of β-CD, hydrogen-bond networks of water molecules in the cavity of free β-CD, and strength of desolvation penalty. As a result, q4MD-CD suggests that guest binding is mostly driven by enthalpy, while GAFF-CD shows that gaining entropy is the major driving force of binding. The study deepens our understanding of ligand-receptor recognition and suggests strategies for force field parametrization for accurately modeling molecular systems.
Collapse
Affiliation(s)
- Zhiye Tang
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Chia-en A. Chang
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
18
|
Abstract
Binding free energy calculations based on molecular simulations provide predicted affinities for biomolecular complexes. These calculations begin with a detailed description of a system, including its chemical composition and the interactions among its components. Simulations of the system are then used to compute thermodynamic information, such as binding affinities. Because of their promise for guiding molecular design, these calculations have recently begun to see widespread applications in early-stage drug discovery. However, many hurdles remain in making them a robust and reliable tool. In this review, we highlight key challenges of these calculations, discuss some examples of these challenges, and call for the designation of standard community benchmark test systems that will help the research community generate and evaluate progress. In our view, progress will require careful assessment and evaluation of new methods, force fields, and modeling innovations on well-characterized benchmark systems, and we lay out our vision for how this can be achieved.
Collapse
Affiliation(s)
- David L Mobley
- Department of Pharmaceutical Sciences and Department of Chemistry, University of California, Irvine, California 92697;
| | - Michael K Gilson
- Skaggs School of Pharmacy and Pharmaceutical Sciences and Center for Drug Discovery Innovation, University of California, San Diego, La Jolla, California 92093;
| |
Collapse
|
19
|
Dang P, Ye R, Meng F, Han Y, Zhou Y, Gong X, Zhou B. Microencapsulation thermodynamics of methylated β-cyclodextrins with bile salt: enthalpy, entropy, and solvent effect. J INCL PHENOM MACRO 2017. [DOI: 10.1007/s10847-017-0716-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Levy RM, Cui D, Zhang BW, Matubayasi N. Relationship between Solvation Thermodynamics from IST and DFT Perspectives. J Phys Chem B 2017; 121:3825-3841. [PMID: 28186751 DOI: 10.1021/acs.jpcb.6b12889] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Inhomogeneous solvation theory (IST) and classical density functional theory (DFT) each provide a framework for relating distribution functions of solutions to their thermodynamic properties. As reviewed in this work, both IST and DFT can be formulated in a way that use two "end point" simulations, one of the pure solvent and the other of the solution, to determine the solute chemical potential and other thermodynamic properties of the solution and of subvolumes in regions local to the solute containing hydrating waters. In contrast to IST, where expressions for the excess energy and entropy of solution are the object of analysis, in the DFT end point formulation of the problem, the solute-solvent potential of mean force (PMF) plays a central role. The indirect part of the PMF corresponds to the lowest order (1-body) truncation of the IST expression. Because the PMF is a free energy function, powerful numerical methods can be used to estimate it. We show that the DFT expressions for the solute excess chemical potential can be written in a form which is local, involving integrals only over regions proximate to the solute. The DFT end point route to estimating solvation free energies provides an alternative path to that of IST for analyzing solvation effects on molecular recognition and conformational changes in solution, which can lead to new insights. In order to illustrate the kind of information that is contained in the solute-solvent PMF, we have carried out simulations of β-cyclodextrin in water. This solute is a well studied "host" molecule to which "guest" molecules bind; host-guest systems serve as models for molecular recognition. We illustrate the range of values the direct and indirect parts of the solute-solvent PMF can have as a water molecule is brought to the interface of β-cyclodextrin from the bulk; we discuss the "competition" between these two terms, and the role it plays in molecular recognition.
Collapse
Affiliation(s)
- Ronald M Levy
- Center for Biophysics and Computational Biology, Department of Chemistry, and Institute for Computational Molecular Science, Temple University , Philadelphia, Pennsylvania 19122, United States
| | - Di Cui
- Center for Biophysics and Computational Biology, Department of Chemistry, and Institute for Computational Molecular Science, Temple University , Philadelphia, Pennsylvania 19122, United States
| | - Bin W Zhang
- Center for Biophysics and Computational Biology, Department of Chemistry, and Institute for Computational Molecular Science, Temple University , Philadelphia, Pennsylvania 19122, United States
| | - Nobuyuki Matubayasi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan and Elements Strategy Initiative for Catalysts and Batteries, Kyoto University , Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
21
|
Aldeghi M, Heifetz A, Bodkin MJ, Knapp S, Biggin PC. Predictions of Ligand Selectivity from Absolute Binding Free Energy Calculations. J Am Chem Soc 2017; 139:946-957. [PMID: 28009512 PMCID: PMC5253712 DOI: 10.1021/jacs.6b11467] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Binding selectivity is a requirement for the development of a safe drug, and it is a critical property for chemical probes used in preclinical target validation. Engineering selectivity adds considerable complexity to the rational design of new drugs, as it involves the optimization of multiple binding affinities. Computationally, the prediction of binding selectivity is a challenge, and generally applicable methodologies are still not available to the computational and medicinal chemistry communities. Absolute binding free energy calculations based on alchemical pathways provide a rigorous framework for affinity predictions and could thus offer a general approach to the problem. We evaluated the performance of free energy calculations based on molecular dynamics for the prediction of selectivity by estimating the affinity profile of three bromodomain inhibitors across multiple bromodomain families, and by comparing the results to isothermal titration calorimetry data. Two case studies were considered. In the first one, the affinities of two similar ligands for seven bromodomains were calculated and returned excellent agreement with experiment (mean unsigned error of 0.81 kcal/mol and Pearson correlation of 0.75). In this test case, we also show how the preferred binding orientation of a ligand for different proteins can be estimated via free energy calculations. In the second case, the affinities of a broad-spectrum inhibitor for 22 bromodomains were calculated and returned a more modest accuracy (mean unsigned error of 1.76 kcal/mol and Pearson correlation of 0.48); however, the reparametrization of a sulfonamide moiety improved the agreement with experiment.
Collapse
Affiliation(s)
- Matteo Aldeghi
- Structural Bioinformatics and Computational Biochemistry, Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, U.K
| | - Alexander Heifetz
- Evotec (U.K.) Ltd. , 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - Michael J Bodkin
- Evotec (U.K.) Ltd. , 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, U.K
| | - Stefan Knapp
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford , Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, U.K.,Target Discovery Institute, Nuffield Department of Clinical Medicine, University of Oxford , Roosevelt Drive, Oxford OX3 7BN, U.K.,Institute for Pharmaceutical Chemistry, Goethe University Frankfurt , 60438 Frankfurt, Germany
| | - Philip C Biggin
- Structural Bioinformatics and Computational Biochemistry, Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, U.K
| |
Collapse
|
22
|
Pal RK, Haider K, Kaur D, Flynn W, Xia J, Levy RM, Taran T, Wickstrom L, Kurtzman T, Gallicchio E. A combined treatment of hydration and dynamical effects for the modeling of host-guest binding thermodynamics: the SAMPL5 blinded challenge. J Comput Aided Mol Des 2017; 31:29-44. [PMID: 27696239 PMCID: PMC5477994 DOI: 10.1007/s10822-016-9956-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/25/2016] [Indexed: 01/02/2023]
Abstract
As part of the SAMPL5 blinded experiment, we computed the absolute binding free energies of 22 host-guest complexes employing a novel approach based on the BEDAM single-decoupling alchemical free energy protocol with parallel replica exchange conformational sampling and the AGBNP2 implicit solvation model specifically customized to treat the effect of water displacement as modeled by the Hydration Site Analysis method with explicit solvation. Initial predictions were affected by the lack of treatment of ionic charge screening, which is very significant for these highly charged hosts, and resulted in poor relative ranking of negatively versus positively charged guests. Binding free energies obtained with Debye-Hückel treatment of salt effects were in good agreement with experimental measurements. Water displacement effects contributed favorably and very significantly to the observed binding affinities; without it, the modeling predictions would have grossly underestimated binding. The work validates the implicit/explicit solvation approach employed here and it shows that comprehensive physical models can be effective at predicting binding affinities of molecular complexes requiring accurate treatment of conformational dynamics and hydration.
Collapse
Affiliation(s)
- Rajat Kumar Pal
- Department of Chemistry, Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York, 11210, USA
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA
| | - Kamran Haider
- Department of Chemistry, Lehman College, The City University of New York, 250 Bedford Park Blvd. West, Bronx, New York, NY, 10468, USA
| | - Divya Kaur
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA
| | - William Flynn
- Center for Biophysics and Computational Biology, Institute of Computational Molecular Science and Department of Chemistry, Temple University, Philadelphia, PA, USA
- Department of Physics and Astronomy, Rutgers University, Piscataway, NJ, 08854, USA
| | - Junchao Xia
- Center for Biophysics and Computational Biology, Institute of Computational Molecular Science and Department of Chemistry, Temple University, Philadelphia, PA, USA
| | - Ronald M Levy
- Center for Biophysics and Computational Biology, Institute of Computational Molecular Science and Department of Chemistry, Temple University, Philadelphia, PA, USA
| | - Tetiana Taran
- Borough of Manhattan Community College, Department of Science, The City University of New York, 199 Chambers Street, New York, NY, 10007, USA
| | - Lauren Wickstrom
- Borough of Manhattan Community College, Department of Science, The City University of New York, 199 Chambers Street, New York, NY, 10007, USA
| | - Tom Kurtzman
- Department of Chemistry, Lehman College, The City University of New York, 250 Bedford Park Blvd. West, Bronx, New York, NY, 10468, USA
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA
| | - Emilio Gallicchio
- Department of Chemistry, Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York, 11210, USA.
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
| |
Collapse
|
23
|
Harris RC, Deng N, Levy RM, Ishizuka R, Matubayasi N. Computing conformational free energy differences in explicit solvent: An efficient thermodynamic cycle using an auxiliary potential and a free energy functional constructed from the end points. J Comput Chem 2016; 38:1198-1208. [PMID: 28008630 DOI: 10.1002/jcc.24668] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/02/2016] [Accepted: 10/26/2016] [Indexed: 01/17/2023]
Abstract
Many biomolecules undergo conformational changes associated with allostery or ligand binding. Observing these changes in computer simulations is difficult if their timescales are long. These calculations can be accelerated by observing the transition on an auxiliary free energy surface with a simpler Hamiltonian and connecting this free energy surface to the target free energy surface with free energy calculations. Here, we show that the free energy legs of the cycle can be replaced with energy representation (ER) density functional approximations. We compute: (1) The conformational free energy changes for alanine dipeptide transitioning from the right-handed free energy basin to the left-handed basin and (2) the free energy difference between the open and closed conformations of β-cyclodextrin, a "host" molecule that serves as a model for molecular recognition in host-guest binding. β-cyclodextrin contains 147 atoms compared to 22 atoms for alanine dipeptide, making β-cyclodextrin a large molecule for which to compute solvation free energies by free energy perturbation or integration methods and the largest system for which the ER method has been compared to exact free energy methods. The ER method replaced the 28 simulations to compute each coupling free energy with two endpoint simulations, reducing the computational time for the alanine dipeptide calculation by about 70% and for the β-cyclodextrin by > 95%. The method works even when the distribution of conformations on the auxiliary free energy surface differs substantially from that on the target free energy surface, although some degree of overlap between the two surfaces is required. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Robert C Harris
- Department of Chemistry and Center for Biophysics and Computational Biology and Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania, 19122
| | - Nanjie Deng
- Department of Chemistry and Center for Biophysics and Computational Biology and Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania, 19122.,Department of Chemistry and Physical Sciences, Dyson College of Arts and Sciences, Pace University, New York, New York, 10038
| | - Ronald M Levy
- Department of Chemistry and Center for Biophysics and Computational Biology and Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania, 19122
| | - Ryosuke Ishizuka
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan
| | - Nobuyuki Matubayasi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan.,Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto, 615-8520, Japan
| |
Collapse
|
24
|
Yin J, Henriksen NM, Slochower DR, Shirts MR, Chiu MW, Mobley DL, Gilson MK. Overview of the SAMPL5 host-guest challenge: Are we doing better? J Comput Aided Mol Des 2016; 31:1-19. [PMID: 27658802 DOI: 10.1007/s10822-016-9974-4] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/14/2016] [Indexed: 01/18/2023]
Abstract
The ability to computationally predict protein-small molecule binding affinities with high accuracy would accelerate drug discovery and reduce its cost by eliminating rounds of trial-and-error synthesis and experimental evaluation of candidate ligands. As academic and industrial groups work toward this capability, there is an ongoing need for datasets that can be used to rigorously test new computational methods. Although protein-ligand data are clearly important for this purpose, their size and complexity make it difficult to obtain well-converged results and to troubleshoot computational methods. Host-guest systems offer a valuable alternative class of test cases, as they exemplify noncovalent molecular recognition but are far smaller and simpler. As a consequence, host-guest systems have been part of the prior two rounds of SAMPL prediction exercises, and they also figure in the present SAMPL5 round. In addition to being blinded, and thus avoiding biases that may arise in retrospective studies, the SAMPL challenges have the merit of focusing multiple researchers on a common set of molecular systems, so that methods may be compared and ideas exchanged. The present paper provides an overview of the host-guest component of SAMPL5, which centers on three different hosts, two octa-acids and a glycoluril-based molecular clip, and two different sets of guest molecules, in aqueous solution. A range of methods were applied, including electronic structure calculations with implicit solvent models; methods that combine empirical force fields with implicit solvent models; and explicit solvent free energy simulations. The most reliable methods tend to fall in the latter class, consistent with results in prior SAMPL rounds, but the level of accuracy is still below that sought for reliable computer-aided drug design. Advances in force field accuracy, modeling of protonation equilibria, electronic structure methods, and solvent models, hold promise for future improvements.
Collapse
Affiliation(s)
- Jian Yin
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Niel M Henriksen
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - David R Slochower
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Michael R Shirts
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Michael W Chiu
- Qualcomm Institute, University of California, San Diego, La Jolla, CA, 92093, USA
| | - David L Mobley
- Departments of Pharmaceutical Sciences and Chemistry, University of California Irvine, Irvine, CA, 92697, USA
| | - Michael K Gilson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
25
|
Ramsey S, Nguyen C, Salomon-Ferrer R, Walker RC, Gilson MK, Kurtzman T. Solvation thermodynamic mapping of molecular surfaces in AmberTools: GIST. J Comput Chem 2016; 37:2029-37. [PMID: 27317094 DOI: 10.1002/jcc.24417] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/19/2016] [Accepted: 05/17/2016] [Indexed: 02/06/2023]
Abstract
The expulsion of water from surfaces upon molecular recognition and nonspecific association makes a major contribution to the free energy changes of these processes. In order to facilitate the characterization of water structure and thermodynamics on surfaces, we have incorporated Grid Inhomogeneous Solvation Theory (GIST) into the CPPTRAJ toolset of AmberTools. GIST is a grid-based implementation of Inhomogeneous Fluid Solvation Theory, which analyzes the output from molecular dynamics simulations to map out solvation thermodynamic and structural properties on a high-resolution, three-dimensional grid. The CPPTRAJ implementation, called GIST-cpptraj, has a simple, easy-to-use command line interface, and is open source and freely distributed. We have also developed a set of open-source tools, called GISTPP, which facilitate the analysis of GIST output grids. Tutorials for both GIST-cpptraj and GISTPP can be found at ambermd.org. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Steven Ramsey
- Department of Chemistry, Lehman College, 205 W Bedford Pk Blvd, Bronx, New York, 10468.,Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, 365 5th Avenue, New York, New York, 10016
| | - Crystal Nguyen
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, California, 92093-0736
| | - Romelia Salomon-Ferrer
- San Diego Supercomputer Center, University of California San Diego, 9500 Gilman Drive MC0505, La Jolla, California, 92093-0505
| | - Ross C Walker
- San Diego Supercomputer Center, University of California San Diego, 9500 Gilman Drive MC0505, La Jolla, California, 92093-0505.,Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California, 92093-0505
| | - Michael K Gilson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, California, 92093-0736
| | - Tom Kurtzman
- Department of Chemistry, Lehman College, 205 W Bedford Pk Blvd, Bronx, New York, 10468.,Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, 365 5th Avenue, New York, New York, 10016.,Ph. D. Program in Chemistry, The Graduate Center of the City University of New York, 365 5th Avenue, New York, New York, 10016
| |
Collapse
|
26
|
Hydration of proteins and nucleic acids: Advances in experiment and theory. A review. Biochim Biophys Acta Gen Subj 2016; 1860:1821-35. [PMID: 27241846 DOI: 10.1016/j.bbagen.2016.05.036] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 05/20/2016] [Accepted: 05/26/2016] [Indexed: 11/21/2022]
Abstract
BACKGROUND Most biological processes involve water, and the interactions of biomolecules with water affect their structure, function and dynamics. SCOPE OF REVIEW This review summarizes the current knowledge of protein and nucleic acid interactions with water, with a special focus on the biomolecular hydration layer. Recent developments in both experimental and computational methods that can be applied to the study of hydration structure and dynamics are reviewed, including software tools for the prediction and characterization of hydration layer properties. MAJOR CONCLUSIONS In the last decade, important advances have been made in our understanding of the factors that determine how biomolecules and their aqueous environment influence each other. Both experimental and computational methods contributed to the gradually emerging consensus picture of biomolecular hydration. GENERAL SIGNIFICANCE An improved knowledge of the structural and thermodynamic properties of the hydration layer will enable a detailed understanding of the various biological processes in which it is involved, with implications for a wide range of applications, including protein-structure prediction and structure-based drug design.
Collapse
|
27
|
Mentes A, Deng NJ, Vijayan RSK, Xia J, Gallicchio E, Levy RM. Binding Energy Distribution Analysis Method: Hamiltonian Replica Exchange with Torsional Flattening for Binding Mode Prediction and Binding Free Energy Estimation. J Chem Theory Comput 2016; 12:2459-70. [PMID: 27070865 PMCID: PMC4862910 DOI: 10.1021/acs.jctc.6b00134] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular dynamics modeling of complex biological systems is limited by finite simulation time. The simulations are often trapped close to local energy minima separated by high energy barriers. Here, we introduce Hamiltonian replica exchange (H-REMD) with torsional flattening in the Binding Energy Distribution Analysis Method (BEDAM), to reduce energy barriers along torsional degrees of freedom and accelerate sampling of intramolecular degrees of freedom relevant to protein-ligand binding. The method is tested on a standard benchmark (T4 Lysozyme/L99A/p-xylene complex) and on a library of HIV-1 integrase complexes derived from the SAMPL4 blind challenge. We applied the torsional flattening strategy to 26 of the 53 known binders to the HIV Integrase LEDGF site found to have a binding energy landscape funneled toward the crystal structure. We show that our approach samples the conformational space more efficiently than the original method without flattening when starting from a poorly docked pose with incorrect ligand dihedral angle conformations. In these unfavorable cases convergence to a binding pose within 2-3 Å from the crystallographic pose is obtained within a few nanoseconds of the Hamiltonian replica exchange simulation. We found that torsional flattening is insufficient in cases where trapping is due to factors other than torsional energy, such as the formation of incorrect intramolecular hydrogen bonds and stacking. Work is in progress to generalize the approach to handle these cases and thereby make it more widely applicable.
Collapse
Affiliation(s)
- Ahmet Mentes
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
- Center for Biophysics and Computational Biology and Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Nan-Jie Deng
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
- Center for Biophysics and Computational Biology and Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - R. S. K. Vijayan
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
- Center for Biophysics and Computational Biology and Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Junchao Xia
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
- Center for Biophysics and Computational Biology and Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Emilio Gallicchio
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, New York 11210, United States
| | - Ronald M. Levy
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
- Center for Biophysics and Computational Biology and Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|