1
|
Zhou MM, Li DW, Xu L, Kong B, Wang X, Tang YH, Huang H, Liu Y. Propionate alleviated post-infarction cardiac dysfunction by macrophage polarization in a rat model. Int Immunopharmacol 2023; 115:109618. [PMID: 36565559 DOI: 10.1016/j.intimp.2022.109618] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/05/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND The propionate (C3), the important components of short-chain fatty acids (SCFAs), had the effect of inhibiting pro-inflammatory macrophages. Earlier macrophages phenotypic transition from pro-inflammatory M1 to reparative M2 in early stage was a central juncture of cardiac dysfunction mitigation after myocardial infarction (MI). METHODS 160 Sprague-Dawley rats were assigned to 4 groups: sham group (n = 40), sham + C3 group (n = 40), MI group (n = 40) and MI + C3 group (n = 40). The rats in sham + C3 and MI + C3 group were treated with oral sodium propionate (200 mM), and equivalent concentration of sodium chloride was administered in sham and MI group as control. After 7 days of propionate adaptive feeding, rats were anesthetized and induced the MI by coronary occlusion. The classification of macrophages, the level of inflammatory factors and inflammatory signaling were estimated at 3rd days after thoracotomy, and the extent of myocardial fibrosis was evaluated at 7th and 28th days after operation. Echocardiography was estimated on 28th day after surgery. RAW264.7 cells, stimulated by LPS + IFN-γ with or without propionate, were harvested for western blot and supernatants were collected for cytokine analysis by ELISA. RESULTS Propionate administration reduced the MI-induced myocardial fibrosis in infarcted border and attenuated cardiac function deterioration compared with MI group. In comparison with MI group, propionate promoted macrophages reduction, macrophage M2-like polarization, and inflammatory cytokines decrease in infarcted border zone following MI, which partly depends on the inhibition of JNK/P38/NFκB signaling pathways. CONCLUSIONS Oral propionate in early stage, as a nutritional intervention, alleviated post-MI chronic cardiac remodeling and cardiac dysfunction at least in part by modulating macrophages polarization and pro-inflammatory cytokine, which were associated with reduction of JNK/P38/NFκB phosphorylation.
Collapse
Affiliation(s)
- Ming-Min Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Di-Wen Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Liao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Bin Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yan-Hong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yu Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China.
| |
Collapse
|
2
|
Role of puerarin in pathological cardiac remodeling: A review. Pharmacol Res 2022; 178:106152. [DOI: 10.1016/j.phrs.2022.106152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 12/22/2022]
|
3
|
Diaphragm weakness and proteomics (global and redox) modifications in heart failure with reduced ejection fraction in rats. J Mol Cell Cardiol 2020; 139:238-249. [PMID: 32035137 DOI: 10.1016/j.yjmcc.2020.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/02/2020] [Accepted: 02/03/2020] [Indexed: 12/16/2022]
Abstract
Inspiratory dysfunction occurs in patients with heart failure with reduced ejection fraction (HFrEF) in a manner that depends on disease severity and by mechanisms that are not fully understood. In the current study, we tested whether HFrEF effects on diaphragm (inspiratory muscle) depend on disease severity and examined putative mechanisms for diaphragm abnormalities via global and redox proteomics. We allocated male rats into Sham, moderate (mHFrEF), or severe HFrEF (sHFrEF) induced by myocardial infarction and examined the diaphragm muscle. Both mHFrEF and sHFrEF caused atrophy in type IIa and IIb/x fibers. Maximal and twitch specific forces (N/cm2) were decreased by 19 ± 10% and 28 ± 13%, respectively, in sHFrEF (p < .05), but not in mHFrEF. Global proteomics revealed upregulation of sarcomeric proteins and downregulation of ribosomal and glucose metabolism proteins in sHFrEF. Redox proteomics showed that sHFrEF increased reversibly oxidized cysteine in cytoskeletal and thin filament proteins and methionine in skeletal muscle α-actin (range 0.5 to 3.3-fold; p < .05). In conclusion, fiber atrophy plus contractile dysfunction caused diaphragm weakness in HFrEF. Decreased ribosomal proteins and heighted reversible oxidation of protein thiols are candidate mechanisms for atrophy or anabolic resistance as well as loss of specific force in sHFrEF.
Collapse
|
4
|
Marquis AD, Arnold A, Dean-Bernhoft C, Carlson BE, Olufsen MS. Practical identifiability and uncertainty quantification of a pulsatile cardiovascular model. Math Biosci 2018; 304:9-24. [PMID: 30017910 DOI: 10.1016/j.mbs.2018.07.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 05/01/2018] [Accepted: 07/02/2018] [Indexed: 11/17/2022]
Abstract
Mathematical models are essential tools to study how the cardiovascular system maintains homeostasis. The utility of such models is limited by the accuracy of their predictions, which can be determined by uncertainty quantification (UQ). A challenge associated with the use of UQ is that many published methods assume that the underlying model is identifiable (e.g. that a one-to-one mapping exists from the parameter space to the model output). In this study we present a novel workflow to calibrate a lumped-parameter model to left ventricular pressure and volume time series data. Key steps include using (1) literature and available data to determine nominal parameter values; (2) sensitivity analysis and subset selection to determine a set of identifiable parameters; (3) optimization to find a point estimate for identifiable parameters; and (4) frequentist and Bayesian UQ calculations to assess the predictive capability of the model. Our results show that it is possible to determine 5 identifiable model parameters that can be estimated to our experimental data from three rats, and that computed UQ intervals capture the measurement and model error.
Collapse
Affiliation(s)
- Andrew D Marquis
- University of Michigan, Ann Arbor, MI, USA; NC State University, Raleigh, NC, USA
| | - Andrea Arnold
- NC State University, Raleigh, NC, USA; Worcester Polytechnic Institute, Worcester, MA, USA
| | | | | | | |
Collapse
|
5
|
Schobesberger S, Wright P, Tokar S, Bhargava A, Mansfield C, Glukhov AV, Poulet C, Buzuk A, Monszpart A, Sikkel M, Harding SE, Nikolaev VO, Lyon AR, Gorelik J. T-tubule remodelling disturbs localized β2-adrenergic signalling in rat ventricular myocytes during the progression of heart failure. Cardiovasc Res 2018; 113:770-782. [PMID: 28505272 PMCID: PMC5437368 DOI: 10.1093/cvr/cvx074] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/11/2017] [Indexed: 11/12/2022] Open
Abstract
Aims Cardiomyocyte β2-adrenergic receptor (β2AR) cyclic adenosine monophosphate (cAMP) signalling is regulated by the receptors' subcellular location within transverse tubules (T-tubules), via interaction with structural and regulatory proteins, which form a signalosome. In chronic heart failure (HF), β2ARs redistribute from T-tubules to the cell surface, which disrupts functional signalosomes and leads to diffuse cAMP signalling. However, the functional consequences of structural changes upon β2AR-cAMP signalling during progression from hypertrophy to advanced HF are unknown. Methods and results Rat left ventricular myocytes were isolated at 4-, 8-, and 16-week post-myocardial infarction (MI), β2ARs were stimulated either via whole-cell perfusion or locally through the nanopipette of the scanning ion conductance microscope. cAMP release was measured via a Förster Resonance Energy Transfer-based sensor Epac2-camps. Confocal imaging of di-8-ANNEPS-stained cells and immunoblotting were used to determine structural alterations. At 4-week post-MI, T-tubule regularity, density and junctophilin-2 (JPH2) expression were significantly decreased. The amplitude of local β2AR-mediated cAMP in T-tubules was reduced and cAMP diffused throughout the cytosol instead of being locally confined. This was accompanied by partial caveolin-3 (Cav-3) dissociation from the membrane. At 8-week post-MI, the β2AR-mediated cAMP response was observed at the T-tubules and the sarcolemma (crest). Finally, at 16-week post-MI, the whole cell β2AR-mediated cAMP signal was depressed due to adenylate cyclase dysfunction, while overall Cav-3 levels were significantly increased and a substantial portion of Cav-3 dissociated into the cytosol. Overexpression of JPH2 in failing cells in vitro or AAV9.SERCA2a gene therapy in vivo did not improve β2AR-mediated signal compartmentation or reduce cAMP diffusion. Conclusion Although changes in T-tubule structure and β2AR-mediated cAMP signalling are significant even at 4-week post-MI, progression to the HF phenotype is not linear. At 8-week post-MI the loss of β2AR-mediated cAMP is temporarily reversed. Complete disorganization of β2AR-mediated cAMP signalling due to changes in functional receptor localization and cellular structure occurs at 16-week post-MI.
Collapse
Affiliation(s)
- Sophie Schobesberger
- Department of Cardiac Medicine, National Heart and Lung Institute, Imperial College, Du Cane Road, London W12 0NN, UK.,Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Martinistraße, Hamburg D-20246, Germany
| | - Peter Wright
- Department of Cardiac Medicine, National Heart and Lung Institute, Imperial College, Du Cane Road, London W12?0NN, UK
| | - Sergiy Tokar
- Department of Cardiac Medicine, National Heart and Lung Institute, Imperial College, Du Cane Road, London W12?0NN, UK
| | - Anamika Bhargava
- Department of Cardiac Medicine, National Heart and Lung Institute, Imperial College, Du Cane Road, London W12 0NN, UK.,Department of Biotechnology, Indian Institute of Technology Hyderabad, Ordnance Factory Estate, Yeddumailaram, 502205 Telangana, India
| | - Catherine Mansfield
- Department of Cardiac Medicine, National Heart and Lung Institute, Imperial College, Du Cane Road, London W12?0NN, UK
| | - Alexey V Glukhov
- Department of Cardiac Medicine, National Heart and Lung Institute, Imperial College, Du Cane Road, London W12?0NN, UK
| | - Claire Poulet
- Department of Cardiac Medicine, National Heart and Lung Institute, Imperial College, Du Cane Road, London W12?0NN, UK
| | - Andrey Buzuk
- Department of Cardiac Medicine, National Heart and Lung Institute, Imperial College, Du Cane Road, London W12?0NN, UK
| | - Aron Monszpart
- Department of Computer Science, University College London, Gower Street, London WC1E 6BT, UK
| | - Markus Sikkel
- Department of Cardiac Medicine, National Heart and Lung Institute, Imperial College, Du Cane Road, London W12?0NN, UK
| | - Sian E Harding
- Department of Cardiac Medicine, National Heart and Lung Institute, Imperial College, Du Cane Road, London W12?0NN, UK
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Martinistraße, Hamburg D-20246, Germany
| | - Alexander R Lyon
- Department of Cardiac Medicine, National Heart and Lung Institute, Imperial College, Du Cane Road, London W12 0NN, UK.,NIHR Cardiovascular Biomedical Research Unit, Department of Cardiology, Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK
| | - Julia Gorelik
- Department of Cardiac Medicine, National Heart and Lung Institute, Imperial College, Du Cane Road, London W12?0NN, UK
| |
Collapse
|
6
|
Kyhl K, Lønborg J, Hartmann B, Kissow H, Poulsen SS, Ali HE, Kjær A, Dela F, Engstrøm T, Treiman M. Lack of effect of prolonged treatment with liraglutide on cardiac remodeling in rats after acute myocardial infarction. Peptides 2017; 93:1-12. [PMID: 28460895 DOI: 10.1016/j.peptides.2017.04.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 03/28/2017] [Accepted: 04/27/2017] [Indexed: 02/06/2023]
Abstract
Following the acute phase of a myocardial infarction, a set of structural and functional changes evolves in the myocardium, collectively referred to as cardiac remodeling. This complex set of processes, including interstitial fibrosis, inflammation, myocyte hypertrophy and apoptosis may progress to heart failure. Analogs of the incretin hormone glucagon-like peptide 1 (GLP-1) have shown some promise as cardioprotective agents. We hypothesized that a long-acting GLP-1 analog liraglutide would ameliorate cardiac remodeling over the course of 4 weeks in a rat model of non-reperfused myocardial infarction. In 134 male Sprague Dawley rats myocardial infarctions were induced by ligation of the left anterior descending coronary artery. Rats were randomized to either subcutaneous injection of placebo or 0.3mg liraglutide once daily. Cardiac magnetic resonance imaging was performed after 4 weeks. Histology of the infarcted and remote non-infarcted myocardium, selected molecular remodeling markers and mitochondrial respiration in fibers of remote non-infarcted myocardium were analyzed. Left ventricular end diastolic volume increased in the infarcted hearts by 62% (from 0.58±0.03mL to 0.95±0.07mL, P<0.05) compared to sham operated hearts and left ventricle ejection fraction decreased by 37% (63±1%-40±3%, P<0.05). Increased interstitial fibrosis and phosphorylation of p38 Mitogen Activated Protein Kinase were observed in the non-infarct regions. Mitochondrial fatty acid oxidation was impaired. Liraglutide did not affect any of these alterations. Four-week treatment with liraglutide did not affect cardiac remodeling following a non-reperfused myocardial infarction, as assessed by cardiac magnetic resonance imaging, histological and molecular analysis and measurements of mitochondrial respiration.
Collapse
Affiliation(s)
- Kasper Kyhl
- Department of Cardiology, Rigshospitalet; University Hospital of Copenhagen, Denmark; Department of Biomedical Sciences and The Danish National Research Foundation Centre for Heart Arrhythmia, University of Copenhagen, Denmark.
| | - Jacob Lønborg
- Department of Cardiology, Rigshospitalet; University Hospital of Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences and The Danish National Research Foundation Centre for Heart Arrhythmia, University of Copenhagen, Denmark; Department of Biomedical Sciences and Novo Nordisk Foundation Center of Basic Metabolic Research, University of Copenhagen, Denmark
| | - Hannelouise Kissow
- Department of Biomedical Sciences and The Danish National Research Foundation Centre for Heart Arrhythmia, University of Copenhagen, Denmark; Department of Biomedical Sciences and Novo Nordisk Foundation Center of Basic Metabolic Research, University of Copenhagen, Denmark
| | - Steen Seier Poulsen
- Department of Biomedical Sciences and The Danish National Research Foundation Centre for Heart Arrhythmia, University of Copenhagen, Denmark
| | - Henrik El Ali
- Department of Biomedical Sciences and The Danish National Research Foundation Centre for Heart Arrhythmia, University of Copenhagen, Denmark
| | - Andreas Kjær
- Department of Biomedical Sciences and The Danish National Research Foundation Centre for Heart Arrhythmia, University of Copenhagen, Denmark; Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Denmark
| | - Flemming Dela
- Department of Biomedical Sciences and The Danish National Research Foundation Centre for Heart Arrhythmia, University of Copenhagen, Denmark; Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Denmark
| | - Thomas Engstrøm
- Department of Cardiology, Rigshospitalet; University Hospital of Copenhagen, Denmark
| | - Marek Treiman
- Department of Biomedical Sciences and The Danish National Research Foundation Centre for Heart Arrhythmia, University of Copenhagen, Denmark
| |
Collapse
|
7
|
Jung M, Ma Y, Iyer RP, DeLeon-Pennell KY, Yabluchanskiy A, Garrett MR, Lindsey ML. IL-10 improves cardiac remodeling after myocardial infarction by stimulating M2 macrophage polarization and fibroblast activation. Basic Res Cardiol 2017; 112:33. [PMID: 28439731 DOI: 10.1007/s00395-017-0622-5] [Citation(s) in RCA: 320] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/13/2017] [Indexed: 01/26/2023]
Abstract
Inflammation resolution is important for scar formation following myocardial infarction (MI) and requires the coordinated actions of macrophages and fibroblasts. In this study, we hypothesized that exogenous interleukin-10 (IL-10), an anti-inflammatory cytokine, promotes post-MI repair through actions on these cardiac cell types. To test this hypothesis, C57BL/6J mice (male, 3- to 6-month old, n = 24/group) were treated with saline or IL-10 (50 μg/kg/day) by osmotic mini-pump infusion starting at day (d) 1 post-MI and sacrificed at d7 post-MI. IL-10 infusion doubled plasma IL-10 concentrations by d7 post-MI. Despite similar infarct areas and mortality rates, IL-10 treatment significantly decreased LV dilation (1.6-fold for end-systolic volume and 1.4-fold for end-diastolic volume) and improved ejection fraction 1.8-fold (both p < 0.05). IL-10 treatment attenuated inflammation at d7 post-MI, evidenced by decreased numbers of Mac-3-positive macrophages in the infarct (p < 0.05). LV macrophages isolated from d7 post-MI mice treated with IL-10 showed significantly elevated gene expression of M2 markers (Arg1, Ym1, and Tgfb1; all p < 0.05). We further performed RNA-seq analysis on post-MI cardiac macrophages and identified 410 significantly different genes (155 increased, 225 decreased by IL-10 treatment). By functional network analysis grouping, the majority of genes (133 out of 410) were part of the cellular assembly and repair functional group. Of these, hyaluronidase 3 (Hyal3) was the most important feature identified by p value. IL-10 treatment decreased Hyal3 by 28%, which reduced hyaluronan degradation and limited collagen deposition (all p < 0.05). In addition, in vivo IL-10 treatment increased fibroblast activation (proliferation, migration, and collagen production), an effect that was both directly and indirectly influenced by macrophage M2 polarization. Combined, our results indicate that in vivo infusion of IL-10 post-MI improves the LV microenvironment to dampen inflammation and facilitate cardiac wound healing.
Collapse
Affiliation(s)
- Mira Jung
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, 2500 North State St., Jackson, MS, 39216-4505, USA
| | - Yonggang Ma
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, 2500 North State St., Jackson, MS, 39216-4505, USA
| | - Rugmani Padmanabhan Iyer
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, 2500 North State St., Jackson, MS, 39216-4505, USA
| | - Kristine Y DeLeon-Pennell
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, 2500 North State St., Jackson, MS, 39216-4505, USA.,Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, MS, USA
| | - Andriy Yabluchanskiy
- Donald W. Reynolds Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Merry L Lindsey
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, 2500 North State St., Jackson, MS, 39216-4505, USA. .,Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, MS, USA.
| |
Collapse
|
8
|
Richardson WJ, Holmes JW. Why Is Infarct Expansion Such an Elusive Therapeutic Target? J Cardiovasc Transl Res 2015; 8:421-30. [PMID: 26390882 PMCID: PMC4846979 DOI: 10.1007/s12265-015-9652-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/28/2015] [Indexed: 11/25/2022]
Abstract
Myocardial infarct expansion has been associated with an increased risk of infarct rupture and progression to heart failure, motivating therapies such as infarct restraint and polymer injection that aim to limit infarct expansion. However, an exhaustive review of quantitative studies of infarct remodeling reveals that only half found chronic in-plane expansion, and many reported in-plane compaction. Using a finite element model, we demonstrate that the balance between scar stiffening due to collagen accumulation and increased wall stresses due to infarct thinning can produce either expansion or compaction in the pressurized heart-potentially explaining variability in the literature-and that loaded dimensions are much more sensitive to changes in thickness than in stiffness. Our analysis challenges the concept that in-plane expansion is a central feature of post-infarction remodeling; rather, available data suggest that radial thinning is the dominant process during infarct healing and may be an attractive therapeutic target.
Collapse
Affiliation(s)
- William J Richardson
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, VA, 22908, USA.
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA.
| | - Jeffrey W Holmes
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, VA, 22908, USA
- Department of Medicine, University of Virginia, Charlottesville, VA, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
9
|
Richardson WJ, Clarke SA, Quinn TA, Holmes JW. Physiological Implications of Myocardial Scar Structure. Compr Physiol 2015; 5:1877-909. [PMID: 26426470 DOI: 10.1002/cphy.c140067] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Once myocardium dies during a heart attack, it is replaced by scar tissue over the course of several weeks. The size, location, composition, structure, and mechanical properties of the healing scar are all critical determinants of the fate of patients who survive the initial infarction. While the central importance of scar structure in determining pump function and remodeling has long been recognized, it has proven remarkably difficult to design therapies that improve heart function or limit remodeling by modifying scar structure. Many exciting new therapies are under development, but predicting their long-term effects requires a detailed understanding of how infarct scar forms, how its properties impact left ventricular function and remodeling, and how changes in scar structure and properties feed back to affect not only heart mechanics but also electrical conduction, reflex hemodynamic compensations, and the ongoing process of scar formation itself. In this article, we outline the scar formation process following a myocardial infarction, discuss interpretation of standard measures of heart function in the setting of a healing infarct, then present implications of infarct scar geometry and structure for both mechanical and electrical function of the heart and summarize experiences to date with therapeutic interventions that aim to modify scar geometry and structure. One important conclusion that emerges from the studies reviewed here is that computational modeling is an essential tool for integrating the wealth of information required to understand this complex system and predict the impact of novel therapies on scar healing, heart function, and remodeling following myocardial infarction.
Collapse
Affiliation(s)
- William J Richardson
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA.,Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
| | - Samantha A Clarke
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - T Alexander Quinn
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jeffrey W Holmes
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA.,Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.,Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
10
|
Bakermans AJ, Abdurrachim D, Moonen RPM, Motaal AG, Prompers JJ, Strijkers GJ, Vandoorne K, Nicolay K. Small animal cardiovascular MR imaging and spectroscopy. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2015; 88-89:1-47. [PMID: 26282195 DOI: 10.1016/j.pnmrs.2015.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/09/2015] [Accepted: 03/09/2015] [Indexed: 06/04/2023]
Abstract
The use of MR imaging and spectroscopy for studying cardiovascular disease processes in small animals has increased tremendously over the past decade. This is the result of the remarkable advances in MR technologies and the increased availability of genetically modified mice. MR techniques provide a window on the entire timeline of cardiovascular disease development, ranging from subtle early changes in myocardial metabolism that often mark disease onset to severe myocardial dysfunction associated with end-stage heart failure. MR imaging and spectroscopy techniques play an important role in basic cardiovascular research and in cardiovascular disease diagnosis and therapy follow-up. This is due to the broad range of functional, structural and metabolic parameters that can be quantified by MR under in vivo conditions non-invasively. This review describes the spectrum of MR techniques that are employed in small animal cardiovascular disease research and how the technological challenges resulting from the small dimensions of heart and blood vessels as well as high heart and respiratory rates, particularly in mice, are tackled.
Collapse
Affiliation(s)
- Adrianus J Bakermans
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Desiree Abdurrachim
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Rik P M Moonen
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Abdallah G Motaal
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jeanine J Prompers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Gustav J Strijkers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Katrien Vandoorne
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Klaas Nicolay
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
11
|
Strydhorst JH, Ruddy TD, Wells RG. Effects of CT-based attenuation correction of rat microSPECT images on relative myocardial perfusion and quantitative tracer uptake. Med Phys 2015; 42:1818-24. [PMID: 25832072 DOI: 10.1118/1.4915083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Our goal in this work was to investigate the impact of CT-based attenuation correction on measurements of rat myocardial perfusion with (99m)Tc and (201)Tl single photon emission computed tomography (SPECT). METHODS Eight male Sprague-Dawley rats were injected with (99m)Tc-tetrofosmin and scanned in a small animal pinhole SPECT/CT scanner. Scans were repeated weekly over a period of 5 weeks. Eight additional rats were injected with (201)Tl and also scanned following a similar protocol. The images were reconstructed with and without attenuation correction, and the relative perfusion was analyzed with the commercial cardiac analysis software. The absolute uptake of (99m)Tc in the heart was also quantified with and without attenuation correction. RESULTS For (99m)Tc imaging, relative segmental perfusion changed by up to +2.1%/-1.8% as a result of attenuation correction. Relative changes of +3.6%/-1.0% were observed for the (201)Tl images. Interscan and inter-rat reproducibilities of relative segmental perfusion were 2.7% and 3.9%, respectively, for the uncorrected (99m)Tc scans, and 3.6% and 4.3%, respectively, for the (201)Tl scans, and were not significantly affected by attenuation correction for either tracer. Attenuation correction also significantly increased the measured absolute uptake of tetrofosmin and significantly altered the relationship between the rat weight and tracer uptake. CONCLUSIONS Our results show that attenuation correction has a small but statistically significant impact on the relative perfusion measurements in some segments of the heart and does not adversely affect reproducibility. Attenuation correction had a small but statistically significant impact on measured absolute tracer uptake.
Collapse
Affiliation(s)
- Jared H Strydhorst
- Cardiac Imaging, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada
| | - Terrence D Ruddy
- Cardiac Imaging, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada
| | - R Glenn Wells
- Cardiac Imaging, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada
| |
Collapse
|
12
|
Wang J, Xiang B, Lin HY, Liu H, Freed D, Arora RC, Tian G. Differential MR delayed enhancement patterns of chronic myocardial infarction between extracellular and intravascular contrast media. PLoS One 2015; 10:e0121326. [PMID: 25816056 PMCID: PMC4376775 DOI: 10.1371/journal.pone.0121326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 01/30/2015] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Because the distribution volume and mechanism of extracellular and intravascular MR contrast media differ considerably, the enhancement pattern of chronic myocardial infarction with extracellular or intravascular media might also be different. This study aims to investigate the differences in MR enhancement patterns of chronic myocardial infarction between extracellular and intravascular contrast media. MATERIALS AND METHODS Twenty pigs with myocardial infarction underwent cine MRI, first pass perfusion MRI and delayed enhancement MRI with extracellular or intravascular media at four weeks after coronary occlusion. Myocardial blood flow (MBF) was determined with microsphere measurement. The infarction histopathological changes were evaluated by hematoxylin and eosin staining and Masson's trichrome method. RESULTS Cine MRI revealed the reduced wall thickening in chronic infarction compared with normal myocardium. Moreover, significant wall thinning in chronic infarction was observed in cine MRI. Peak first-pass signal intensity didn't significantly differ between chronic infarction and normal myocardium no matter what kinds of contrast media. At the following delayed enhancement phase, extracellular media-enhanced signal intensity was significantly higher in chronic infarction than in normal myocardium. Conversely, intravascular media-enhanced signal intensity was almost equivalent among chronic infarction and normal myocardium. At four weeks after infarction, MBF in chronic infarction approached to that in normal myocardium. Large thick-walled vessels were detected at peri-infarction zones. The cardiomyocytes were replaced by scar tissue consisting of dilated blood vessels and discrete fibers of collagen. CONCLUSIONS Chronic infarction was characterized by the significantly reduced wall thickening and the definite wall thinning. First-pass myocardial perfusion defect was not detected in chronic infarction with two media due to the significantly recovered MBF and well-developed collateral vessels. Infarction remodeling enlarged the extracellular compartment, which was available for extracellular media but not accessible to intravascular media. Extracellular media identified chronic infarction as the hyper-enhancement; nonetheless, intravascular media didn't provide delayed enhancement.
Collapse
Affiliation(s)
- Jian Wang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Street, Wuhan, Hubei, China 430022
- National Research Council of Canada, 435 Ellice Avenue, Winnipeg, Manitoba, Canada R3B 1Y6
- Department of Physiology, Faculty of Medicine, University of Manitoba, 727 McDermot Avenue, Winnipeg, Manitoba, Canada R3E 3P5
- * E-mail:
| | - Bo Xiang
- National Research Council of Canada, 435 Ellice Avenue, Winnipeg, Manitoba, Canada R3B 1Y6
- Department of Physiology, Faculty of Medicine, University of Manitoba, 727 McDermot Avenue, Winnipeg, Manitoba, Canada R3E 3P5
| | - Hung Yu Lin
- National Research Council of Canada, 435 Ellice Avenue, Winnipeg, Manitoba, Canada R3B 1Y6
| | - Hongyu Liu
- Department of Cardiac Surgery, The First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Harbin, Heilongjiang, China 150081
| | - Darren Freed
- National Research Council of Canada, 435 Ellice Avenue, Winnipeg, Manitoba, Canada R3B 1Y6
- Department of Physiology, Faculty of Medicine, University of Manitoba, 727 McDermot Avenue, Winnipeg, Manitoba, Canada R3E 3P5
- Cardiac Science Program, Institute of Cardiovascular Science, St. Boniface General Hospital, 409 Tache Avenue, Winnipeg, Manitoba, Canada R2H 2A6
| | - Rakesh C. Arora
- National Research Council of Canada, 435 Ellice Avenue, Winnipeg, Manitoba, Canada R3B 1Y6
- Department of Physiology, Faculty of Medicine, University of Manitoba, 727 McDermot Avenue, Winnipeg, Manitoba, Canada R3E 3P5
- Cardiac Science Program, Institute of Cardiovascular Science, St. Boniface General Hospital, 409 Tache Avenue, Winnipeg, Manitoba, Canada R2H 2A6
| | - Ganghong Tian
- National Research Council of Canada, 435 Ellice Avenue, Winnipeg, Manitoba, Canada R3B 1Y6
- Department of Physiology, Faculty of Medicine, University of Manitoba, 727 McDermot Avenue, Winnipeg, Manitoba, Canada R3E 3P5
| |
Collapse
|
13
|
Espe EK, Aronsen JM, Eriksen GS, Zhang L, Smiseth OA, Edvardsen T, Sjaastad I, Eriksen M. Assessment of Regional Myocardial Work in Rats. Circ Cardiovasc Imaging 2015; 8:e002695. [DOI: 10.1161/circimaging.114.002695] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
Left ventricular (LV) motion and deformation is dependent on mechanical load and do therefore not reflect myocardial energy consumption directly. Regional myocardial work, however, constitutes a more complete assessment of myocardial function.
Methods and Results—
Strain was measured using high-resolution phase-contrast MRI in 9 adult male rats with myocardial infarction (MI) and in 5 sham-operated control animals. Timing of LV valvular events and LV dimensions were evaluated by cine MRI. A separate cohort of 14 animals (MI/sham=9/5) underwent measurement of LV pressure concurrent with identification of valvular events by Doppler-echocardiography for the purpose of generating a standard LV pressure curve, normalized to valvular events. The infarctions were localized to the anterolateral LV wall. Combining strain with timing of valvular events and a measurement of peak arterial pressure, regional myocardial work could be calculated by applying the standard LV pressure curves. Cardiac output and stroke work was preserved in the MI hearts, suggesting a compensatory redistribution of myocardial work from the infarcted region to the viable tissue. In the septum, regional work was indeed increased in MI rats compared with sham (median work per unit long-axis length in a mid-ventricular slice: 241.2 [224.1–271.2] versus 137.2 [127.0–143.8] mJ/m;
P
<0.001). Myocardial work in infarcted regions was zero. Additionally, eccentric work was increased in the MI hearts.
Conclusions—
Phase-contrast MRI, in combination with measurement of peak arterial pressure and MRI-derived timing of valvular events, represent a noninvasive approach for estimation of regional myocardial work in rodents.
Collapse
Affiliation(s)
- Emil K.S. Espe
- From the Institute for Experimental Medical Research (E.K.S.E., J.M.A., G.S.E., L.Z., I.S.) and Center for Cardiological Innovation (O.A.S., T.E., M.E.), Oslo University Hospital and University of Oslo, Oslo, Norway; KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, Oslo, Norway (E.K.S.E., G.S.E., L.Z., I.S.); Bjørknes College, Oslo, Norway (J.M.A.); Norwegian Institute of Public Health, Oslo, Norway (G.S.E.); and Department of Cardiology (O.A.S., T.E.) and
| | - Jan Magnus Aronsen
- From the Institute for Experimental Medical Research (E.K.S.E., J.M.A., G.S.E., L.Z., I.S.) and Center for Cardiological Innovation (O.A.S., T.E., M.E.), Oslo University Hospital and University of Oslo, Oslo, Norway; KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, Oslo, Norway (E.K.S.E., G.S.E., L.Z., I.S.); Bjørknes College, Oslo, Norway (J.M.A.); Norwegian Institute of Public Health, Oslo, Norway (G.S.E.); and Department of Cardiology (O.A.S., T.E.) and
| | - Guro S. Eriksen
- From the Institute for Experimental Medical Research (E.K.S.E., J.M.A., G.S.E., L.Z., I.S.) and Center for Cardiological Innovation (O.A.S., T.E., M.E.), Oslo University Hospital and University of Oslo, Oslo, Norway; KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, Oslo, Norway (E.K.S.E., G.S.E., L.Z., I.S.); Bjørknes College, Oslo, Norway (J.M.A.); Norwegian Institute of Public Health, Oslo, Norway (G.S.E.); and Department of Cardiology (O.A.S., T.E.) and
| | - Lili Zhang
- From the Institute for Experimental Medical Research (E.K.S.E., J.M.A., G.S.E., L.Z., I.S.) and Center for Cardiological Innovation (O.A.S., T.E., M.E.), Oslo University Hospital and University of Oslo, Oslo, Norway; KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, Oslo, Norway (E.K.S.E., G.S.E., L.Z., I.S.); Bjørknes College, Oslo, Norway (J.M.A.); Norwegian Institute of Public Health, Oslo, Norway (G.S.E.); and Department of Cardiology (O.A.S., T.E.) and
| | - Otto A. Smiseth
- From the Institute for Experimental Medical Research (E.K.S.E., J.M.A., G.S.E., L.Z., I.S.) and Center for Cardiological Innovation (O.A.S., T.E., M.E.), Oslo University Hospital and University of Oslo, Oslo, Norway; KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, Oslo, Norway (E.K.S.E., G.S.E., L.Z., I.S.); Bjørknes College, Oslo, Norway (J.M.A.); Norwegian Institute of Public Health, Oslo, Norway (G.S.E.); and Department of Cardiology (O.A.S., T.E.) and
| | - Thor Edvardsen
- From the Institute for Experimental Medical Research (E.K.S.E., J.M.A., G.S.E., L.Z., I.S.) and Center for Cardiological Innovation (O.A.S., T.E., M.E.), Oslo University Hospital and University of Oslo, Oslo, Norway; KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, Oslo, Norway (E.K.S.E., G.S.E., L.Z., I.S.); Bjørknes College, Oslo, Norway (J.M.A.); Norwegian Institute of Public Health, Oslo, Norway (G.S.E.); and Department of Cardiology (O.A.S., T.E.) and
| | - Ivar Sjaastad
- From the Institute for Experimental Medical Research (E.K.S.E., J.M.A., G.S.E., L.Z., I.S.) and Center for Cardiological Innovation (O.A.S., T.E., M.E.), Oslo University Hospital and University of Oslo, Oslo, Norway; KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, Oslo, Norway (E.K.S.E., G.S.E., L.Z., I.S.); Bjørknes College, Oslo, Norway (J.M.A.); Norwegian Institute of Public Health, Oslo, Norway (G.S.E.); and Department of Cardiology (O.A.S., T.E.) and
| | - Morten Eriksen
- From the Institute for Experimental Medical Research (E.K.S.E., J.M.A., G.S.E., L.Z., I.S.) and Center for Cardiological Innovation (O.A.S., T.E., M.E.), Oslo University Hospital and University of Oslo, Oslo, Norway; KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, Oslo, Norway (E.K.S.E., G.S.E., L.Z., I.S.); Bjørknes College, Oslo, Norway (J.M.A.); Norwegian Institute of Public Health, Oslo, Norway (G.S.E.); and Department of Cardiology (O.A.S., T.E.) and
| |
Collapse
|
14
|
Hübner NS, Merkle A, Jung B, von Elverfeldt D, Harsan LA. Analysis of left ventricular function of the mouse heart during experimentally induced hyperthyroidism and recovery. NMR IN BIOMEDICINE 2015; 28:116-123. [PMID: 25394338 DOI: 10.1002/nbm.3233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 10/06/2014] [Accepted: 10/07/2014] [Indexed: 06/04/2023]
Abstract
Many of the clinical manifestations of hyperthyroidism are due to the ability of thyroid hormones to alter myocardial contractility and cardiovascular hemodynamics, leading to cardiovascular impairment. In contrast, recent studies highlight also the potential beneficial effects of thyroid hormone administration for clinical or preclinical treatment of different diseases such as atherosclerosis, obesity and diabetes or as a new therapeutic approach in demyelinating disorders. In these contexts and in the view of developing thyroid hormone-based therapeutic strategies, it is, however, important to analyze undesirable secondary effects on the heart. Animal models of experimentally induced hyperthyroidism therefore represent important tools for investigating and monitoring changes of cardiac function. In our present study we use high-field cardiac MRI to monitor and follow-up longitudinally the effects of prolonged thyroid hormone (triiodothyronine) administration focusing on murine left ventricular function. Using a 9.4 T small horizontal bore animal scanner, cinematographic MRI was used to analyze changes in ejection fraction, wall thickening, systolic index and fractional shortening. Cardiac MRI investigations were performed after sustained cycles of triiodothyronine administration and treatment arrest in adolescent (8 week old) and adult (24 week old) female C57Bl/6 N mice. Triiodothyronine supplementation of 3 weeks led to an impairment of cardiac performance with a decline in ejection fraction, wall thickening, systolic index and fractional shortening in both age groups but with a higher extent in the group of adolescent mice. However, after a hormonal treatment cessation of 3 weeks, only young mice are able to partly restore cardiac performance in contrast to adult mice lacking this recovery potential and therefore indicating a presence of chronically developed heart pathology.
Collapse
Affiliation(s)
- Neele Saskia Hübner
- Department of Radiology, Medical Physics, University Medical Center Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | | | | | | |
Collapse
|
15
|
Impact of thoracic surgery on cardiac morphology and function in small animal models of heart disease: a cardiac MRI study in rats. PLoS One 2013; 8:e68275. [PMID: 23990872 PMCID: PMC3749142 DOI: 10.1371/journal.pone.0068275] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 05/31/2013] [Indexed: 11/30/2022] Open
Abstract
Background Surgical procedures in small animal models of heart disease might evoke alterations in cardiac morphology and function. The aim of this study was to reveal and quantify such potential artificial early or long term effects in vivo, which might account for a significant bias in basic cardiovascular research, and, therefore, could potentially question the meaning of respective studies. Methods Female Wistar rats (n = 6 per group) were matched for weight and assorted for sham left coronary artery ligation or control. Cardiac morphology and function was then investigated in vivo by cine magnetic resonance imaging at 7 Tesla 1 and 8 weeks after the surgical procedure. The time course of metabolic and inflammatory blood parameters was determined in addition. Results Compared to healthy controls, rats after sham surgery showed a lower body weight both 1 week (267.5±10.6 vs. 317.0±11.3 g, n<0.05) and 8 weeks (317.0±21.1 vs. 358.7±22.4 g, n<0.05) after the intervention. Left and right ventricular morphology and function were not different in absolute measures in both groups 1 week after surgery. However, there was a confined difference in several cardiac parameters normalized to the body weight (bw), such as myocardial mass (2.19±0.30/0.83±0.13 vs. 1.85±0.22/0.70±0.07 mg left/right per g bw, p<0.05), or enddiastolic ventricular volume (1.31±0.36/1.21±0.31 vs. 1.14±0.20/1.07±0.17 µl left/right per g bw, p<0.05). Vice versa, after 8 weeks, cardiac masses, volumes, and output showed a trend for lower values in sham operated rats compared to controls in absolute measures (782.2±57.2/260.2±33.2 vs. 805.9±84.8/310.4±48.5 mg, p<0.05 for left/right ventricular mass), but not normalized to body weight. Matching these findings, blood testing revealed only minor inflammatory but prolonged metabolic changes after surgery not related to cardiac disease. Conclusion Cardio-thoracic surgical procedures in experimental myocardial infarction cause distinct alterations upon the global integrity of the organism, which in the long term also induce circumscribed repercussions on cardiac morphology and function. This impact has to be considered when analyzing data from respective animal studies and transferring these findings to conditions in patients.
Collapse
|
16
|
Todica A, Böning G, Lehner S, Weidl E, Cumming P, Wängler C, Nekolla SG, Schwaiger M, Bartenstein P, Schirrmacher R, Hacker M. Positron emission tomography in the assessment of left ventricular function in healthy rats: a comparison of four imaging methods. J Nucl Cardiol 2013; 20:262-74. [PMID: 23255241 DOI: 10.1007/s12350-012-9663-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 11/30/2012] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To measure left ventricular (LV) function parameters in heart of healthy rats by three different positron emission tomography (PET) imaging techniques and by magnetic resonance imaging (MRI). METHODS ECG-gated microPET examinations were obtained in seven healthy rats with 2-deoxy-2-[(18)F]fluoro-D-glucose (FDG) for calculation of LV-function from the blood-pool phase of the dynamic recording (FDGBP), and also from the later myocardial uptake (FDGMyo). On subsequent days, we re-measured LV-function using the novel blood-pool tracer (68)Ga-albumin (AlbBP) and again by FDG (FDGMyo2) in one setting. Cine-MRI examination provided the reference standard measurement. RESULTS The mean LV ejection fractions (LVEF) were 56 ± 3 (FDGBP), 55 ± 3 (FDGMyo), 56 ± 3 (FDGMyo2), 57 ± 3 (AlbBP), and 57 ± 2 (MRI). There were good to excellent correlations found between the LVEF-values as compared to MRI reference standard for FDGBP (r = 0.71), FDGMyo (r = 0.86) and AlbBP (r = 0.88). Both of the blood-pool methods significantly overestimated the magnitudes of end-diastolic-volume and end-systolic-volume, whereas FDGMyo matched closely to the MRI reference standard. There was no significant bias for both blood-pool methods and a minor negative bias for FDGMyo regarding the LV ejection fraction (LVEF) when compared to cine-MRI results. There was no significant difference between the means of FDGMyo and FDGMyo2 (P = .50). CONCLUSIONS Relative to reference standard MRI measurements of LVEF, there was excellent agreement between PET-based measurements, notably for the novel blood-pool tracer (68)Ga-albumin.
Collapse
Affiliation(s)
- Andrei Todica
- Department of Nuclear Medicine, University of Munich, Marchioninistr. 15, 81377, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Long-term left ventricular remodelling in rat model of nonreperfused myocardial infarction: sequential MR imaging using a 3T clinical scanner. J Biomed Biotechnol 2012; 2012:504037. [PMID: 23118511 PMCID: PMC3479400 DOI: 10.1155/2012/504037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 06/11/2012] [Indexed: 11/18/2022] Open
Abstract
Purpose. To evaluate whether 3T clinical MRI with a small-animal coil and gradient-echo (GE) sequence could be used to characterize long-term left ventricular remodelling (LVR) following nonreperfused myocardial infarction (MI) using semi-automatic segmentation software (SASS) in a rat model. Materials and Methods. 5 healthy rats were used to validate left ventricular mass (LVM) measured by MRI with postmortem values. 5 sham and 7 infarcted rats were scanned at 2 and 4 weeks after surgery to allow for functional and structural analysis of the heart. Measurements included ejection fraction (EF), end-diastolic volume (EDV), end-systolic volume (ESV), and LVM. Changes in different regions of the heart were quantified using wall thickness analyses. Results. LVM validation in healthy rats demonstrated high correlation between MR and postmortem values. Functional assessment at 4 weeks after MI revealed considerable reduction in EF, increases in ESV, EDV, and LVM, and contractile dysfunction in infarcted and noninfarcted regions. Conclusion. Clinical 3T MRI with a small animal coil and GE sequence generated images in a rat heart with adequate signal-to-noise ratio (SNR) for successful semiautomatic segmentation to accurately and rapidly evaluate long-term LVR after MI.
Collapse
|
18
|
Wildgruber M, Settles M, Kosanke K, Bielicki I, Ntziachristos V, Rummeny EJ, Botnar RM, Huber AM. Evaluation of phase-sensitive versus magnitude reconstructed inversion recovery imaging for the assessment of myocardial infarction in mice with a clinical magnetic resonance scanner. J Magn Reson Imaging 2012; 36:1372-82. [PMID: 22972713 DOI: 10.1002/jmri.23789] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 07/27/2012] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To evaluate phase-sensitive inversion-recovery (PSIR) imaging at 1.5 T in a mouse model of permanent coronary artery ligation as a potentially rapid and robust alternative for the accurate assessment of myocardial infarction (MI) by cardiac magnetic resonance imaging (MRI). MATERIALS AND METHODS PSIR late gadolinium enhancement (LGE) imaging was compared to conventional 2D segmented inversion-recovery imaging for the assessment of murine MI. RESULTS PSIR images provided comparable contrast and kinetics of intravenously injected gadopentetate dimeglumine (Gd-DTPA). At the mid-ventricular level there was good agreement between conventional IR and PSIR for infarct size assessment. After intravenous injection a limited time window of ∼6 minutes is available for delayed enhancement imaging in mice. Whole-heart infarct imaging with 1 mm thick slices was only possible in this restricted time frame when the PSIR method is applied, avoiding the need for repetitively adapting the correct inversion time. Infarct size determined by PSIR MRI demonstrated good agreement with postmortem histology. Infarct size determined by PSIR LGE MRI inversely correlates with left-ventricular function on day 7 after MI. CONCLUSION The PSIR technique provides stable and consistent contrast between hyperenhanced and remote myocardium independent of the selected inversion time (TI) and proved to be a robust, fast, and accurate tool for the assessment of MI in mice.
Collapse
Affiliation(s)
- Moritz Wildgruber
- Department of Radiology, Klinikum Rechts der Isar, Technische Universität München, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Carpenter L, Carr C, Yang CT, Stuckey DJ, Clarke K, Watt SM. Efficient differentiation of human induced pluripotent stem cells generates cardiac cells that provide protection following myocardial infarction in the rat. Stem Cells Dev 2012; 21:977-86. [PMID: 22182484 DOI: 10.1089/scd.2011.0075] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Induced pluripotent stem (iPS) cells are being used increasingly to complement their embryonic counterparts to understand and develop the therapeutic potential of pluripotent cells. Our objectives were to identify an efficient cardiac differentiation protocol for human iPS cells as monolayers, and demonstrate that the resulting cardiac progenitors could provide a therapeutic benefit in a rodent model of myocardial infarction. Herein, we describe a 14-day protocol for efficient cardiac differentiation of human iPS cells as a monolayer, which routinely yielded a mixed population in which over 50% were cardiomyocytes, endothelium, or smooth muscle cells. When differentiating, cardiac progenitors from day 6 of this protocol were injected into the peri-infarct region of the rat heart; after coronary artery ligation and reperfusion, we were able to show that human iPS cell-derived cardiac progenitor cells engrafted, differentiated into cardiomyocytes and smooth muscle, and persisted for at least 10 weeks postinfarct. Hearts injected with iPS-derived cells showed a nonsignificant trend toward protection from decline in function after myocardial infarction, as assessed by magnetic resonance imaging at 10 weeks, such that the ejection fraction at 10 weeks in iPS treated hearts was 62%±4%, compared to that of control infarcted hearts at 45%±9% (P<0.2). In conclusion, we demonstrated efficient cardiac differentiation of human iPS cells that gave rise to progenitors that were retained within the infarcted rat heart, and reduced remodeling of the heart after ischemic damage.
Collapse
Affiliation(s)
- Lee Carpenter
- Stem Cell Research Laboratory, NHS Blood and Transplant, John Radcliffe Hospital, Headington, Oxford, United Kingdom.
| | | | | | | | | | | |
Collapse
|
20
|
Sherif HM, Saraste A, Nekolla SG, Weidl E, Reder S, Tapfer A, Rudelius M, Higuchi T, Botnar RM, Wester HJ, Schwaiger M. Molecular Imaging of Early αvβ3 Integrin Expression Predicts Long-Term Left-Ventricle Remodeling After Myocardial Infarction in Rats. J Nucl Med 2012; 53:318-23. [DOI: 10.2967/jnumed.111.091652] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
21
|
Stuckey DJ, Carr CA, Meader SJ, Tyler DJ, Cole MA, Clarke K. First-pass perfusion CMR two days after infarction predicts severity of functional impairment six weeks later in the rat heart. J Cardiovasc Magn Reson 2011; 13:38. [PMID: 21812990 PMCID: PMC3162911 DOI: 10.1186/1532-429x-13-38] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 08/03/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In humans, dynamic contrast CMR of the first pass of a bolus infusion of Gadolinium-based contrast agent has become a standard technique to identify under-perfused regions of the heart and can accurately demonstrate the severity of myocardial infarction. Despite the clinical importance of this method, it has rarely been applied in small animal models of cardiac disease. In order to identify perfusion delays in the infarcted rat heart, here we present a method in which a T1 weighted MR image has been acquired during each cardiac cycle. METHODS AND RESULTS In isolated perfused rat hearts, contrast agent infusion gave uniform signal enhancement throughout the myocardium. Occlusion of the left anterior descending coronary artery significantly reduced the rate of signal enhancement in anterior regions of the heart, demonstrating that the first-pass method was sensitive to perfusion deficits. In vivo measurements of myocardial morphology, function, perfusion and viability were made at 2 and 8 days after infarction. Morphology and function were further assessed using cine-MRI at 42 days. The perfusion delay was larger in rat hearts that went on to develop greater functional impairment, demonstrating that first-pass CMR can be used as an early indicator of infarct severity. First-pass CMR at 2 and 8 days following infarction better predicted outcome than cardiac ejection fraction, end diastolic volume or end systolic volume. CONCLUSION First-pass CMR provides a predictive measure of the severity of myocardial impairment caused by infarction in a rodent model of heart failure.
Collapse
Affiliation(s)
- Daniel J Stuckey
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, UK
- Biological Imaging Centre, Imperial College, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Carolyn A Carr
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, UK
| | - Stephanie J Meader
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, UK
| | - Damian J Tyler
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, UK
| | - Mark A Cole
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, UK
| | - Kieran Clarke
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, UK
| |
Collapse
|
22
|
Strydhorst JH, Leenen FH, Ruddy TD, Wells RG. Reproducibility of serial left ventricle perfusion, volume, and ejection fraction measurements using multiplexed multipinhole SPECT in healthy rats and rats after myocardial infarction. J Nucl Med 2011; 52:1285-92. [PMID: 21764787 DOI: 10.2967/jnumed.111.088658] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Assessment of small-animal cardiac data acquired using SPECT requires an accurate understanding of the reproducibility and the uncertainties associated with the technique. Furthermore, it is also useful to have a baseline of reference data against which to compare the outcome of a particular study. METHODS We scanned both healthy and post-myocardial infarction rats injected with (99m)Tc-tetrofosmin in a multidetector, multipinhole small-animal SPECT scanner. In this paper, we report on the creation of a reference database of the relative myocardial blood perfusion of rats. We also evaluated the reproducibility of perfusion measurements and measurements of left ventricle volume and ejection fraction, defined as the SD of a particular measurement repeated on the same animal or over multiple animals. RESULTS For the healthy rats, interscan reproducibility of volume measurements was 4%-7% of the total volume, and intersubject reproducibility was 9%-12% of the volume being measured. Interscan reproducibility remained unaffected after infarction (6%-8%), but intersubject reproducibility was much poorer (15%-26%). Ejection fraction in healthy animals was highly reproducible between scans and between rats: 3.1% and 3.3%, respectively. Interscan reproducibility of the postinfarction ejection fraction was 3.6%; intersubject reproducibility after infarction was 8.1%. CONCLUSION We have created a reference database for small-animal SPECT perfusion measurements in healthy male Sprague-Dawley rats and quantified the reproducibility of perfusion and functional measurement made with small-animal SPECT in healthy and postinfarction rats.
Collapse
Affiliation(s)
- Jared H Strydhorst
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
23
|
Badea CT, Hedlund LW, Cook J, Berridge BR, Johnson GA. Micro-CT imaging assessment of dobutamine-induced cardiac stress in rats. J Pharmacol Toxicol Methods 2011; 63:24-9. [PMID: 20399875 PMCID: PMC2916074 DOI: 10.1016/j.vascn.2010.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 04/06/2010] [Accepted: 04/08/2010] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Dobutamine (DOB) stress in animal models of heart disease has been imaged so far using echocardiography and magnetic resonance imaging. The purpose of this study was to assess normal response to DOB stress in rats using anatomical and functional data using micro-computed tomography (CT). METHODS Ten normal adult male rats were first injected with a liposomal-based blood pool contrast agent and next infused with DOB via a tail vein catheter. Using prospective gating, 5 pairs of systole/diastole micro-CT images were acquired (a) pre-infusion baseline; (b) at heart rate plateau during infusion of 10 μg/kg/min DOB; (c) at post-DOB infusion baseline; (d) at heart rate plateau during infusion of 30 μg/kg/min DOB; and (e) after post-infusion return to baseline. Heart rate, peripheral and breathing distensions were monitored by oximetry. Micro-CT images with 88-μm isotropic voxels were segmented to obtain cardiac function based on volumetric measurements of the left ventricle. RESULTS DOB stress increased heart rate and cardiac output with both doses. Ejection fraction increased above baseline by an average of 35.9% with the first DOB dose and 18.4% with the second dose. No change was observed in the relative peripheral arterial pressures associated with the significant increases in cardiac output. DISCUSSION Micro-CT proved to be a robust imaging method able to provide isotropic data on cardiac morphology and function. Micro-CT has the advantage of being faster and more cost-effective than MR and is able to provide higher accuracy than echocardiography. The impact of such an enabling technology can be enormous in evaluating cardiotoxic effects of various test drugs.
Collapse
Affiliation(s)
- Cristian T. Badea
- Center for In Vivo Microscopy, Department of Radiology, Box 3302 Duke University Medical Center, Durham, NC U.S.A. 27710
| | - Laurence W. Hedlund
- Center for In Vivo Microscopy, Department of Radiology, Box 3302 Duke University Medical Center, Durham, NC U.S.A. 27710
| | - James Cook
- Center for In Vivo Microscopy, Department of Radiology, Box 3302 Duke University Medical Center, Durham, NC U.S.A. 27710
| | - Brian R. Berridge
- GlaxoSmithKline Safety Assessment, 5 Moore Drive, Research Triangle Park, NC U.S.A. 27709
| | - G. Allan Johnson
- Center for In Vivo Microscopy, Department of Radiology, Box 3302 Duke University Medical Center, Durham, NC U.S.A. 27710
| |
Collapse
|
24
|
Price AN, Cheung KK, Cleary JO, Campbell AE, Riegler J, Lythgoe MF. Cardiovascular magnetic resonance imaging in experimental models. Open Cardiovasc Med J 2010; 4:278-92. [PMID: 21331311 PMCID: PMC3040459 DOI: 10.2174/1874192401004010278] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 09/27/2010] [Accepted: 10/04/2010] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular magnetic resonance (CMR) imaging is the modality of choice for clinical studies of the heart and vasculature, offering detailed images of both structure and function with high temporal resolution. Small animals are increasingly used for genetic and translational research, in conjunction with models of common pathologies such as myocardial infarction. In all cases, effective methods for characterising a wide range of functional and anatomical parameters are crucial for robust studies. CMR is the gold-standard for the non-invasive examination of these models, although physiological differences, such as rapid heart rate, make this a greater challenge than conventional clinical imaging. However, with the help of specialised magnetic resonance (MR) systems, novel gating strategies and optimised pulse sequences, high-quality images can be obtained in these animals despite their small size. In this review, we provide an overview of the principal CMR techniques for small animals for example cine, angiography and perfusion imaging, which can provide measures such as ejection fraction, vessel anatomy and local blood flow, respectively. In combination with MR contrast agents, regional dysfunction in the heart can also be identified and assessed. We also discuss optimal methods for analysing CMR data, particularly the use of semi-automated tools for parameter measurement to reduce analysis time. Finally, we describe current and emerging methods for imaging the developing heart, aiding characterisation of congenital cardiovascular defects. Advanced small animal CMR now offers an unparalleled range of cardiovascular assessments. Employing these methods should allow new insights into the structural, functional and molecular basis of the cardiovascular system.
Collapse
Affiliation(s)
- Anthony N Price
- UCL Centre for Advanced Biomedical Imaging, Department of Medicine and UCL Institute of Child Health, University College London, UK
| | | | | | | | | | | |
Collapse
|
25
|
Human embryonic stem cell-derived microvascular grafts for cardiac tissue preservation after myocardial infarction. Biomaterials 2010; 32:1102-9. [PMID: 21035182 DOI: 10.1016/j.biomaterials.2010.10.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2010] [Accepted: 10/03/2010] [Indexed: 01/27/2023]
Abstract
We present use of a synthetic, injectable matrix metalloproteinase (MMP)-responsive, bioactive hydrogel as an in situ forming scaffold to deliver thymosin β4 (Tβ4), a pro-angiogenic and pro-survival factor, along with vascular cells derived from human embryonic stem cells (hESC) in ischemic injuries to the heart in a rat model. The gel was found to substitute the degrading extracellular matrix in the infarcted myocardium of rats and to promote structural organization of native endothelial cells, while some of the delivered hESC-derived vascular cells formed de novo capillaries in the infarct zone. Magnetic resonance imaging (MRI) revealed that the microvascular grafts effectively preserved contractile performance 3 d and 6 wk after myocardial infarction, attenuated left ventricular dilation, and decreased infarct size as compared to infarcted rats treated with PBS injection as a control (3 d ejection fraction, + ∼7%, P < 0.001; 6 wk ejection faction, + ∼12%, P < 0.001). Elevation in vessel density was observed in response to treatment, which may be due in part to elevations in human (donor)-derived cytokines EGF, VEGF and HGF (1 d). Thus, a clinically relevant matrix for dual delivery of vascular cells and drugs may be useful in engineering sustained tissue preservation and potentially regenerating ischemic cardiac tissue.
Collapse
|
26
|
Stuckey DJ, Ishii H, Chen QZ, Boccaccini AR, Hansen U, Carr CA, Roether JA, Jawad H, Tyler DJ, Ali NN, Clarke K, Harding SE. Magnetic resonance imaging evaluation of remodeling by cardiac elastomeric tissue scaffold biomaterials in a rat model of myocardial infarction. Tissue Eng Part A 2010; 16:3395-402. [PMID: 20528670 DOI: 10.1089/ten.tea.2010.0213] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Grafting of elastomeric biomaterial scaffolds may offer a radical strategy for the prevention of heart failure after myocardial infarction by increasing efficacy of stem cell delivery as well as acting as mechanical restraint devices to constrain scar expansion. Biomaterials can be partially optimized in vitro, but their in vivo performance is most critical and should ideally be monitored serially and noninvasively. We used magnetic resonance imaging (MRI) to assess three scaffold materials with a range of structural moduli equal to or greater than myocardial tissue: poly(glycerol sebacate) (PGS), poly(ethyleneterephathalate)/dimer fatty acid (PED), and TiO(2)-reinforced PED (PED-TiO(2)). Patches, 1 cm in diameter, were grafted onto the hearts of infarcted rats, with biomaterial-free infarcted rat hearts used as controls. MRI was able to determine scaffold size and location on the heart and identified unexpectedly rapid in vivo degradation of the PGS compared with previous in vitro testing. PED patches did not withstand in vivo attachment, but the more rigid PED-TiO(2) material was detrimental to heart function, increasing chamber and scar sizes and reducing ejection fractions compared with controls. In contrast, the mechanically compatible PGS scaffold successfully reduced hypertrophy, giving it potential for limiting excessive postinfarct remodeling. PGS was unable to support systolic function, but it would be suitable for strategies to deliver cardiac stem/progenitor cells, to limit remodeling during the period of functional cellular integration, and to degrade after cell assimilation by the heart. This work has also shown for the first time the value of using MRI as a noninvasive tool for evaluating and optimizing therapeutic biomaterials in vivo.
Collapse
Affiliation(s)
- Daniel J Stuckey
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Oostendorp M, Douma K, Wagenaar A, Slenter JMGM, Hackeng TM, van Zandvoort MAMJ, Post MJ, Backes WH. Molecular magnetic resonance imaging of myocardial angiogenesis after acute myocardial infarction. Circulation 2010; 121:775-83. [PMID: 20124125 DOI: 10.1161/circulationaha.109.889451] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Angiogenesis is a natural mechanism to restore perfusion to the ischemic myocardium after acute myocardial infarction (MI). Therapeutic angiogenesis is being explored as a novel treatment for MI patients; however, sensitive, noninvasive in vivo measures of therapeutic efficacy are lacking and need to be developed. Here, a molecular magnetic resonance imaging method is presented to noninvasively image angiogenic activity in vivo in a murine model of MI with cyclic Asn-Gly-Arg (cNGR)-labeled paramagnetic quantum dots (pQDs). The tripeptide cNGR homes specifically to CD13, an aminopeptidase that is strongly upregulated during myocardial angiogenesis. METHODS AND RESULTS Acute MI was induced in male Swiss mice via permanent ligation of the left anterior descending coronary artery. Molecular magnetic resonance imaging was performed 7 days after surgery and up to 2 hours after intravenous contrast agent administration. Injection of cNGR-pQDs resulted in a strong negative contrast that was located mainly in the infarcted myocardium. This negative contrast was significantly less in MI mice injected with unlabeled pQDs and in sham-operated mice injected with cNGR-pQDs. Validation with ex vivo 2-photon laser scanning microscopy revealed a strong colocalization of cNGR-pQDs with vascular endothelial cells, whereas unlabeled pQDs were mostly extravasated and diffused through the tissue. Additionally, 2-photon laser scanning microscopy demonstrated significant microvascular remodeling in the infarct/border zones compared with remote myocardium. CONCLUSIONS cNGR-pQDs allow selective, noninvasive detection of angiogenic activity in the infarcted heart with the use of in vivo molecular magnetic resonance imaging and ex vivo 2-photon laser scanning microscopy.
Collapse
Affiliation(s)
- Marlies Oostendorp
- Department of Radiology, Maastricht University Medical Centre, P. Debyelaan 25, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Ghanem A, Ziomka A, Krausgrill B, Schenk K, Troatz C, Miszalski-Jamka T, Nickenig G, Tiemann K, Müller-Ehmsen J. Functional impact of targeted closed-chest transplantation of bone marrow cells in rats with acute myocardial ischemia/reperfusion injury. Cell Transplant 2009; 18:1289-97. [PMID: 19660175 DOI: 10.3727/096368909x12483162197286] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Intramyocardial transplantation of bone marrow-derived stem cells is a potential therapeutic option after myocardial infarction (MI). Intramyocardial administration is invasive but allows efficient and targeted stem cell delivery. Aims of this study were validation of minimal-invasive, echo-guided closed-chest cell transplantation (CTx) of mononuclear (MNC) or mesenchymal stem cells (MSC) and quantification of systolic left ventricular function and assessment of contractile reserve with high-resolution reconstructive 3D-echocardiography (r3D-echo) 3 weeks after CTx. Female Fischer344 rats received syngeneic male MNC, MSC, or medium after myocardial ischemia and reperfusion via echo-guided percutaneous injection (open-chest for control). Left ventricular systolic function was measured and dysfunctional myocardium was quantified with r3D-echo. For investigation of contractile reserve and myocardial viability r3D-echo was additionally conducted during low-dose dobutamine 3 weeks after CTx. Cell persistence after echo-guided CTx was quantified via real-time PCR; scar size was measured histologically. Echo-guided percutaneous CTx was feasible in all animals (n = 30) without periprocedural complications. After 3 weeks, 1.4 +/- 1.1% of transplanted MNC and 1.9 +/- 1.2% of MSC were detected. These numbers were comparable to those after open-chest intramyocardial injection of MNC (0.8 +/- 1.1%; n = 8, p = 0.3). In r3D-echo no functional benefit was associated with CTx after MI and reperfusion. All groups (MNC, MSC, and controls) revealed a significant decrease of dysfunctional myocardium and similar contractile reserve during inotropic stimulation.In conclusion, percutaneous echo-guided closed-chest CTx promises to be an effective and safe approach for CTx in small-animal research. However, intramyocardial CTx of MNC or MSC had no influence on systolic function and contractile reserve after reperfused MI.
Collapse
Affiliation(s)
- Alexander Ghanem
- Department of Medicine/Cardiology, University of Bonn, Bonn, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Breton E, Goetz C, Choquet P, Constantinesco A. Low field magnetic resonance imaging in rat in vivo. Ing Rech Biomed 2008. [DOI: 10.1016/j.rbmret.2008.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Daire JL, Jacob JP, Hyacinthe JN, Croisille P, Montet-Abou K, Richter S, Botsikas D, Lepetit-Coiffé M, Morel D, Vallée JP. Cine and tagged cardiovascular magnetic resonance imaging in normal rat at 1.5 T: a rest and stress study. J Cardiovasc Magn Reson 2008; 10:48. [PMID: 18980685 PMCID: PMC2590601 DOI: 10.1186/1532-429x-10-48] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Accepted: 11/03/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The purpose of this study was to measure regional contractile function in the normal rat using cardiac cine and tagged cardiovascular magnetic resonance (CMR) during incremental low doses of dobutamine and at rest. METHODS Five rats were investigated for invasive left ventricle pressure measurements and five additional rats were imaged on a clinical 1.5 T MR system using a cine sequence (11-20 phases per cycle, 0.28/0.28/2 mm) and a C-SPAMM tag sequence (18-25 phases per cycle, 0.63/1.79/3 mm, tag spacing 1.25 mm). For each slice, wall thickening (WT) and circumferential strains (CS) were calculated at rest and at stress (2.5, 5 and 10 microg/min/kg of dobutamine). RESULTS Good cine and tagged images were obtained in all the rats even at higher heart rate (300-440 bpm). Ejection fraction and left ventricular (LV) end-systolic volume showed significant changes after each dobutamine perfusion dose (p < 0.001). Tagged CMR had the capacity to resolve the CS transmural gradient and showed a significant increase of both WT and CS at stress compared to rest. Intra and interobserver study showed less variability for the tagged technique. In rats in which a LV catheter was placed, dobutamine produced a significant increase of heart rate, LV dP/dtmax and LV pressure significantly already at the lowest infusion dose. CONCLUSION Robust cardiac cine and tagging CMR measurements can be obtained in the rat under incremental dobutamine stress using a clinical 1.5 T MR scanner.
Collapse
Affiliation(s)
- Jean-Luc Daire
- Radiology Department, Faculty of Medicine, University of Geneva and Geneva University Hospital, CH-1211 Geneva 14, Switzerland
| | - Jean-Pascal Jacob
- Radiology Department, Faculty of Medicine, University of Geneva and Geneva University Hospital, CH-1211 Geneva 14, Switzerland
| | - Jean-Noel Hyacinthe
- Radiology Department, Faculty of Medicine, University of Geneva and Geneva University Hospital, CH-1211 Geneva 14, Switzerland
| | - Pierre Croisille
- Radiology Department, Hopital L. Pradel, CREATIS UMR CNRS 5515 & INSERM U630 UCB, Lyon I, France
| | - Karin Montet-Abou
- Radiology Department, Faculty of Medicine, University of Geneva and Geneva University Hospital, CH-1211 Geneva 14, Switzerland
| | - Sophie Richter
- Radiology Department, Faculty of Medicine, University of Geneva and Geneva University Hospital, CH-1211 Geneva 14, Switzerland
| | - Diomidis Botsikas
- Radiology Department, Faculty of Medicine, University of Geneva and Geneva University Hospital, CH-1211 Geneva 14, Switzerland
| | - Matthieu Lepetit-Coiffé
- Radiology Department, Faculty of Medicine, University of Geneva and Geneva University Hospital, CH-1211 Geneva 14, Switzerland
| | - Denis Morel
- Anesthesiology, Pharmacology and Intensive Care Department, Faculty of Medicine, University of Geneva and Geneva University Hospitals, CH-1211, Geneva 14, Switzerland
| | - Jean-Paul Vallée
- Radiology Department, Faculty of Medicine, University of Geneva and Geneva University Hospital, CH-1211 Geneva 14, Switzerland
| |
Collapse
|
31
|
Winter EM, Grauss RW, Atsma DE, Hogers B, Poelmann RE, van der Geest RJ, Tschöpe C, Schalij MJ, Gittenberger-de Groot AC, Steendijk P. Left ventricular function in the post-infarct failing mouse heart by magnetic resonance imaging and conductance catheter: a comparative analysis. Acta Physiol (Oxf) 2008; 194:111-22. [PMID: 18419776 DOI: 10.1111/j.1748-1716.2008.01863.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM Murine myocardial infarction (MI) models are increasingly used in heart failure studies. Magnetic resonance imaging (MRI) and pressure-volume loops by conductance catheter (CC) enable physiological phenotyping. We performed a comparative analysis of MRI vs. CC to assess left ventricular (LV) function in the failing mouse heart. METHODS MI was created by LAD ligation. MRI (day 14) and CC (day 15) were used to determine LV end-diastolic volume (EDV), end-systolic volume (ESV) and ejection fraction (EF). RESULTS Pooled data yielded moderate-to-strong linear correlations: EDV: R = 0.61; ESV: R = 0.72; EF: R = 0.81. We analysed three groups, no MI (sham, n = 10), small MI (<30% of LV, n = 14) and large MI (>30%, n = 20). Volumes and EF were consistently lower by CC than by MRI, but group differences were evident for both techniques. Receiver-operating characteristic analysis indicated good sensitivity and specificity for both techniques, with superior results for MRI. CONCLUSIONS CC and MRI are highly valuable for evaluation of LV volume and function. MRI is recommended for longitudinal studies, accurate absolute volumes and anatomical information. Unique features of CC are its online signal with high temporal resolution, and advanced analysis of LV function and energetics.
Collapse
Affiliation(s)
- E M Winter
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Stuckey DJ, Carr CA, Tyler DJ, Aasum E, Clarke K. Novel MRI method to detect altered left ventricular ejection and filling patterns in rodent models of disease. Magn Reson Med 2008; 60:582-7. [PMID: 18727095 DOI: 10.1002/mrm.21677] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 04/09/2008] [Indexed: 11/11/2022]
Abstract
The aim of this study was to determine whether high-temporal-resolution (HTR) cardiac cine-MRI could be used to identify subtle alterations in contractility and diastolic function in rodent models of disease. Following standard 45-min in vivo MRI measurements of left ventricular (LV) volumes, a single mid-ventricular slice was selected for 3-min HTR imaging. Cavity volume was measured every 2.4 ms, yielding approximately 60 images through the cardiac cycle. From these images, peak ejection and filling rates were calculated and two separate filling phases (comparable with the early (E) and late (A) phases of a Doppler echocardiogram) were identified during diastole. Repeated HTR imaging of the same animals on sequential days indicated reproducibility of E'/A' ratios of 11%. In chronically infarcted rat hearts, HTR imaging revealed lower peak ejection rates (PERs), peak early filling rates (E') and E'/A' ratios, and higher peak late filling rates (A') than in sham-operated rats. Diabetic db/db mouse hearts had the same function as controls when using standard cine-MRI, yet HTR imaging identified significantly lower PERs, early filling rates and E'/A' ratios in diabetic mouse hearts. In conclusion, the HTR MRI technique revealed changes in function that were below the limits of detection of standard cine-MRI.
Collapse
Affiliation(s)
- Daniel J Stuckey
- Department of Physiology, Cardiac Metabolism Research Group, Anatomy and Genetics, University of Oxford, Oxford, UK.
| | | | | | | | | |
Collapse
|
33
|
Carr CA, Stuckey DJ, Tatton L, Tyler DJ, Hale SJM, Sweeney D, Schneider JE, Martin-Rendon E, Radda GK, Harding SE, Watt SM, Clarke K. Bone marrow-derived stromal cells home to and remain in the infarcted rat heart but fail to improve function: an in vivo cine-MRI study. Am J Physiol Heart Circ Physiol 2008; 295:H533-42. [PMID: 18539761 PMCID: PMC2519197 DOI: 10.1152/ajpheart.00094.2008] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 06/03/2008] [Indexed: 01/10/2023]
Abstract
Basic and clinical studies have shown that bone marrow cell therapy can improve cardiac function following infarction. In experimental animals, reported stem cell-mediated changes range from no measurable improvement to the complete restoration of function. In the clinic, however, the average improvement in left ventricular ejection fraction is around 2% to 3%. A possible explanation for the discrepancy between basic and clinical results is that few basic studies have used the magnetic resonance (MR) imaging (MRI) methods that were used in clinical trials for measuring cardiac function. Consequently, we employed cine-MR to determine the effect of bone marrow stromal cells (BMSCs) on cardiac function in rats. Cultured rat BMSCs were characterized using flow cytometry and labeled with iron oxide particles and a fluorescent marker to allow in vivo cell tracking and ex vivo cell identification, respectively. Neither label affected in vitro cell proliferation or differentiation. Rat hearts were infarcted, and BMSCs or control media were injected into the infarct periphery (n = 34) or infused systemically (n = 30). MRI was used to measure cardiac morphology and function and to determine cell distribution for 10 wk after infarction and cell therapy. In vivo MRI, histology, and cell reisolation confirmed successful BMSC delivery and retention within the myocardium throughout the experiment. However, no significant improvement in any measure of cardiac function was observed at any time. We conclude that cultured BMSCs are not the optimal cell population to treat the infarcted heart.
Collapse
Affiliation(s)
- Carolyn A Carr
- Cardiac Metabolism Research Group, Dept. of Physiology, Anatomy and Genetics, Sherrington Bldg., Univ. of Oxford, Parks Road Oxford, United Kingdom OX1 3PT.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Badea CT, Wetzel AW, Mistry N, Pomerantz S, Nave D, Johnson GA. Left ventricle volume measurements in cardiac micro-CT: the impact of radiation dose and contrast agent. Comput Med Imaging Graph 2008; 32:239-50. [PMID: 18243656 DOI: 10.1016/j.compmedimag.2007.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 10/03/2007] [Accepted: 12/17/2007] [Indexed: 10/24/2022]
Abstract
Micro-CT-based cardiac function estimation in small animals requires measurement of left ventricle (LV) volume at multiple time points during the cardiac cycle. Measurement accuracy depends on the image resolution, its signal and noise properties, and the analysis procedure. This work compares the accuracy of the Otsu thresholding and a region sampled binary mixture approach, for live mouse LV volume measurement using 100 microm resolution datasets. We evaluate both analysis methods after varying the volume of injected contrast agent and the number of projections used for CT reconstruction with a goal of permitting reduced levels of both X-ray and contrast agent doses.
Collapse
Affiliation(s)
- Cristian T Badea
- Center for In Vivo Microscopy, Duke University Medical Center, Box 3302, Durham, NC 27710, United States.
| | | | | | | | | | | |
Collapse
|
35
|
Alrefae T, Smirnova IV, Cook LT, Bilgen M. A model-based time-reversal of left ventricular motion improves cardiac motion analysis using tagged MRI data. Biomed Eng Online 2008; 7:15. [PMID: 18489766 PMCID: PMC2435113 DOI: 10.1186/1475-925x-7-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Accepted: 05/19/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Myocardial motion is an important observable for the assessment of heart condition. Accurate estimates of ventricular (LV) wall motion are required for quantifying myocardial deformation and assessing local tissue function and viability. Harmonic Phase (HARP) analysis was developed for measuring regional LV motion using tagged magnetic resonance imaging (tMRI) data. With current computer-aided postprocessing tools including HARP analysis, large motions experienced by myocardial tissue are, however, often intractable to measure. This paper addresses this issue and provides a solution to make such measurements possible. METHODS To improve the estimation performance of large cardiac motions while analyzing tMRI data sets, we propose a two-step solution. The first step involves constructing a model to describe average systolic motion of the LV wall within a subject group. The second step involves time-reversal of the model applied as a spatial coordinate transformation to digitally relax the contracted LV wall in the experimental data of a single subject to the beginning of systole. Cardiac tMRI scans were performed on four healthy rats and used for developing the forward LV model. Algorithms were implemented for preprocessing the tMRI data, optimizing the model parameters and performing the HARP analysis. Slices from the midventricular level were then analyzed for all systolic phases. RESULTS The time-reversal operation derived from the LV model accounted for the bulk portion of the myocardial motion, which was the average motion experienced within the overall subject population. In analyzing the individual tMRI data sets, removing this average with the time-reversal operation left small magnitude residual motion unique to the case. This remaining residual portion of the motion was estimated robustly using the HARP analysis. CONCLUSION Utilizing a combination of the forward LV model and its time reversal improves the performance of motion estimation in evaluating the cardiac function.
Collapse
|
36
|
Thomas D, Bal H, Arkles J, Horowitz J, Araujo L, Acton PD, Ferrari VA. Noninvasive assessment of myocardial viability in a small animal model: comparison of MRI, SPECT, and PET. Magn Reson Med 2008; 59:252-9. [PMID: 18228591 DOI: 10.1002/mrm.21445] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Acute myocardial infarction (AMI) research relies increasingly on small animal models and noninvasive imaging methods such as MRI, single-photon emission computed tomography (SPECT), and positron emission tomography (PET). However, a direct comparison among these techniques for characterization of perfusion, viability, and infarct size is lacking. Rats were studied within 18-24 hr post AMI by MRI (4.7 T) and subsequently (40-48 hr post AMI) by SPECT ((99)Tc-MIBI) and micro-PET ((18)FDG). A necrosis-specific MRI contrast agent was used to detect AMI, and a fast low angle shot (FLASH) sequence was used to acquire late enhancement and functional images contemporaneously. Infarcted regions showed late enhancement, whereas corresponding radionuclide images had reduced tracer uptake. MRI most accurately depicted AMI, showing the closest correlation and agreement with triphenyl tetrazolium chloride (TTC), followed by SPECT and PET. In some animals a mismatch of reduced uptake in normal myocardium and relatively increased (18)FDG uptake in the infarct border zone precluded conventional quantitative analysis. We performed the first quantitative comparison of MRI, PET, and SPECT for reperfused AMI imaging in a small animal model. MRI was superior to the other modalities, due to its greater spatial resolution and ability to detect necrotic myocardium directly. The observed (18)FDG mismatch likely represents variable metabolic conditions between stunned myocardium in the infarct border zone and normal myocardium and supports the use of a standardized glucose load or glucose clamp technique for PET imaging of reperfused AMI in small animals.
Collapse
Affiliation(s)
- Daniel Thomas
- Department of Radiology, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Schneider JE, Lanz T, Barnes H, Medway D, Stork LA, Lygate CA, Smart S, Griswold MA, Neubauer S. Ultra-fast and accurate assessment of cardiac function in rats using accelerated MRI at 9.4 Tesla. Magn Reson Med 2008; 59:636-41. [DOI: 10.1002/mrm.21491] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
38
|
Nahrendorf M, Aikawa E, Figueiredo JL, Stangenberg L, van den Borne SW, Blankesteijn WM, Sosnovik DE, Jaffer FA, Tung CH, Weissleder R. Transglutaminase activity in acute infarcts predicts healing outcome and left ventricular remodelling: implications for FXIII therapy and antithrombin use in myocardial infarction. Eur Heart J 2008; 29:445-54. [DOI: 10.1093/eurheartj/ehm558] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
39
|
Nahrendorf M, Swirski FK, Aikawa E, Stangenberg L, Wurdinger T, Figueiredo JL, Libby P, Weissleder R, Pittet MJ. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. ACTA ACUST UNITED AC 2007; 204:3037-47. [PMID: 18025128 PMCID: PMC2118517 DOI: 10.1084/jem.20070885] [Citation(s) in RCA: 1775] [Impact Index Per Article: 98.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Healing of myocardial infarction (MI) requires monocytes/macrophages. These mononuclear phagocytes likely degrade released macromolecules and aid in scavenging of dead cardiomyocytes, while mediating aspects of granulation tissue formation and remodeling. The mechanisms that orchestrate such divergent functions remain unknown. In view of the heightened appreciation of the heterogeneity of circulating monocytes, we investigated whether distinct monocyte subsets contribute in specific ways to myocardial ischemic injury in mouse MI. We identify two distinct phases of monocyte participation after MI and propose a model that reconciles the divergent properties of these cells in healing. Infarcted hearts modulate their chemokine expression profile over time, and they sequentially and actively recruit Ly-6Chi and -6Clo monocytes via CCR2 and CX3CR1, respectively. Ly-6Chi monocytes dominate early (phase I) and exhibit phagocytic, proteolytic, and inflammatory functions. Ly-6Clo monocytes dominate later (phase II), have attenuated inflammatory properties, and express vascular–endothelial growth factor. Consequently, Ly-6Chi monocytes digest damaged tissue, whereas Ly-6Clo monocytes promote healing via myofibroblast accumulation, angiogenesis, and deposition of collagen. MI in atherosclerotic mice with chronic Ly-6Chi monocytosis results in impaired healing, underscoring the need for a balanced and coordinated response. These observations provide novel mechanistic insights into the cellular and molecular events that regulate the response to ischemic injury and identify new therapeutic targets that can influence healing and ventricular remodeling after MI.
Collapse
Affiliation(s)
- Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Parzy E, Fromes Y, Thiaudiere E, Carlier PG. Refinement of cardiac NMR imaging in awake hamsters: proof of feasibility and characterization of cardiomyopathy. NMR IN BIOMEDICINE 2007; 20:615-23. [PMID: 17405188 DOI: 10.1002/nbm.1154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The goal of this study was to demonstrate the feasibility of cardiac NMR imaging in conscious hamsters and its usefulness in evaluating cardiac abnormalities in a small-animal model of cardiomyopathy. Awake hamsters, controls and cardiomyopathic ones (CHF 147), were immobilized in a dedicated holder. Half-Fourier single-shot FSE imaging, with outer-volume suppression and 'black-blood' contrast provided images free from motion artifact with good visualization of cardiac anatomy at any point in the cardiac cycle. Series of double-oblique views were acquired with or without electrocardiograph gating. Image acquisition time was 55 ms, with an in-plane resolution of 470 x 625 microm2. Left ventricular volumes, ejection fraction, and myocardium NMR signal heterogeneity were compared in CHF 147 and control hearts. Left ventricles of CHF 147 hamsters were dilated, as indicated by the increase in end-diastolic cavity volume (299 +/- 79 mm3 compared with the controls (141 +/- 39 mm3; P = 0.0002). Left ventricular ejection fraction was largely reduced (45 +/- 9% vs 86 +/- 4%; P < 0.0001). The NMR signal distribution at an effective echo time of 41 ms was more heterogeneous in the myocardial wall of CHF 147 hamsters than in controls (1.87 +/- 0.37 a.u. vs 0.98 +/- 0.12 a.u., respectively; P = 0.0002). This study is a refinement of animal experimentation, as it demonstrates for the first time that characteristic features of cardiac pathology can be evaluated with ultra-fast NMR imaging in conscious small rodents.
Collapse
Affiliation(s)
- Elodie Parzy
- NMR Laboratory, AFM CEA, Institute of Myology, IFR14, Paris, France.
| | | | | | | |
Collapse
|
41
|
Cho SW, Kim IK, Bhang SH, Joung B, Kim YJ, Yoo KJ, Yang YS, Choi CY, Kim BS. Combined therapy with human cord blood cell transplantation and basic fibroblast growth factor delivery for treatment of myocardial infarction. Eur J Heart Fail 2007; 9:974-85. [PMID: 17707691 DOI: 10.1016/j.ejheart.2007.06.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2006] [Revised: 04/07/2007] [Accepted: 06/25/2007] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Transplanting cord blood-derived cells has been shown to augment neovascularization in ischaemic tissue. AIM To test whether sustained delivery of basic fibroblast growth factor (bFGF) enhances the efficacy of angiogenic cord blood mononuclear cell (CBMNC) transplantation therapy in treating myocardial infarction. METHODS Three weeks after myocardial infarction, Sprague-Dawley rats were randomised to either injection of medium only (control), CBMNC transplantation, sustained bFGF delivery, or combined CBMNC transplantation and sustained bFGF delivery. Six weeks after treatment, tissue formation, neovascularization, and apoptotic activity in the infarct regions were evaluated by histology and immunohistochemistry. Left ventricular (LV) dimensions and function were evaluated by magnetic resonance imaging. RESULTS Combined bFGF delivery and CBMNC transplantation significantly enhanced neovascularization in the ischaemic myocardium, as compared with either therapy alone. The enhanced neovascularization was likely due to increased VEGF and bFGF expression. The combined therapy also exhibited a reduced infarct area and apoptosis in the ischaemic myocardium, as compared with either individual therapy. The combined therapy did not attenuate LV dilation or increase ejection fraction significantly over either individual therapy. CONCLUSION This study demonstrates that sustained bFGF delivery enhances the angiogenic efficacy of CBMNC transplantation in rat myocardial infarction models.
Collapse
Affiliation(s)
- Seung-Woo Cho
- Department of Bioengineering, Hanyang University, Seoul 133-791, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Small animals such as mice and rats are extensively used to investigate the mechanisms and treatment of human cardiac diseases in vivo. The monitoring of left ventricular function is a key factor in this research. The measurement should be rapid, reproducible, and repeatable and allow the detection of subtle differences in function. Currently, echocardiography is most widely used in cardiac research laboratories for measuring left ventricular dimensions and function in small animals. Although the technique is rapid, the reproducibility of the calculations of left ventricular volumes is limited in some circumstances as a result of assumptions that do not necessarily hold true, such as in the setting of dilated, failing ventricles.
Collapse
|
43
|
Beckmann N, Kneuer R, Gremlich HU, Karmouty-Quintana H, Blé FX, Müller M. In vivo mouse imaging and spectroscopy in drug discovery. NMR IN BIOMEDICINE 2007; 20:154-85. [PMID: 17451175 DOI: 10.1002/nbm.1153] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Imaging modalities such as micro-computed tomography (micro-CT), micro-positron emission tomography (micro-PET), high-resolution MRI, optical imaging, and high-resolution ultrasound have become invaluable tools in preclinical pharmaceutical research. They can be used to non-invasively investigate, in vivo, rodent biology and metabolism, disease models, and pharmacokinetics and pharmacodynamics of drugs. The advantages and limitations of each approach usually determine its application, and therefore a small-rodent imaging laboratory in a pharmaceutical environment should ideally provide access to several techniques. In this paper we aim to illustrate how these techniques may be used to obtain meaningful information for the phenotyping of transgenic mice and for the analysis of compounds in murine models of disease.
Collapse
Affiliation(s)
- Nicolau Beckmann
- Discovery Technologies, Novartis Institutes for BioMedical Research, Lichtstrasse 35, CH-4002 Basel, Switzerland.
| | | | | | | | | | | |
Collapse
|
44
|
Nahrendorf M, Badea C, Hedlund LW, Figueiredo JL, Sosnovik DE, Johnson GA, Weissleder R. High-resolution imaging of murine myocardial infarction with delayed-enhancement cine micro-CT. Am J Physiol Heart Circ Physiol 2007; 292:H3172-8. [PMID: 17322414 PMCID: PMC2680216 DOI: 10.1152/ajpheart.01307.2006] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The objective of this study was to determine the feasibility of delayed-enhancement micro-computed tomography (microCT) imaging to quantify myocardial infarct size in experimental mouse models. A total of 20 mice were imaged 5 or 35 days after surgical ligation of the left coronary artery or sham surgery (n=6 or 7 per group). We utilized a prototype microCT that covers a three-dimensional (3D) volume with an isotropic spatial resolution of 100 microm. A series of image acquisitions were started after a 200 microl bolus of a high-molecular-weight blood pool CT agent to outline the ventricles. CT imaging was continuously performed over 60 min, while an intravenous constant infusion with iopamidol 370 was started at a dosage of 1 ml/h. Thirty minutes after the initiation of this infusion, signal intensity in Hounsfield units was significantly higher in the infarct than in the remote, uninjured myocardium. Cardiac morphology and motion were visualized with excellent contrast and in fine detail. In vivo CT determination of infarct size at the midventricular level was in good agreement with ex vivo staining with triphenyltetrazolium chloride [5 days post-myocardial infarction (MI): r(2)=0.86, P<0.01; 35 days post-MI: r(2)=0.92, P<0.01]. In addition, we detected significant left ventricular remodeling consisting of left ventricular dilation and decreased ejection fraction. 3D cine microCT reliably and rapidly quantifies infarct size and assesses murine anatomy and physiology after coronary ligation, despite the small size and fast movement of the mouse heart. This efficient imaging tool is a valuable addition to the current phenotyping armamentarium and will allow rapid testing of novel drugs and cell-based interventions in murine models.
Collapse
Affiliation(s)
- Matthias Nahrendorf
- Center for Molecular Imaging Research, Massachusetts General Hospital, Boston, MA, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Nahrendorf M, Weissleder R. Von vulnerablem Plaque bis Infarktheilung – neue Perspektiven in der Kardiologie mit molekularer Bildgebung. Radiologe 2007; 47:18-24. [PMID: 17187263 DOI: 10.1007/s00117-006-1450-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
We will witness a change of paradigm in cardiovascular imaging, which is empowered by advances in imaging technology, biochemistry, molecular biology and nanotechnology. Instead of simply following the physical distribution of established contrast agents, we now have the opportunity to noninvasively image biological processes such as enzyme activity, interaction with cell surface markers, gene expression and cell migration. These advancements open up new avenues in basic cardiovascular research and will greatly speed up the pace of discovery. Patient management will profit as well: cardiovascular molecular imaging will strengthen personlized and prophylactic medicine through timely and precise diagnostics. In our review we describe selected molecular imaging strategies in atherosclerosis, myocardial ischemia and healing.
Collapse
Affiliation(s)
- M Nahrendorf
- Center for Molecular Imaging Research, Massachusetts General Hospital, Harvard Medical School, Rm. 5406, 149 13th St., Charlestown, MA 02129, USA.
| | | |
Collapse
|
46
|
Thomas D, Dumont C, Pickup S, Misselwitz B, Zhou R, Horowitz J, Ferrari VA. T1-weighted cine FLASH is superior to IR imaging of post-infarction myocardial viability at 4.7T. J Cardiovasc Magn Reson 2006; 8:345-52. [PMID: 16669177 PMCID: PMC2581493 DOI: 10.1080/10976640500451986] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
PURPOSE Data are unavailable for rational selection of pulse sequences to assess postinfarction myocardial viability in rodents at high field strength. We implemented a widely used clinical inversion recovery (IR) sequence at 4.7T and compared the results to a heavily T1-weighted cine FLASH sequence (T1-CF) for assessment of infarction size. MATERIALS AND METHODS Eleven infarcted rats were examined within 24 h of infarction after injection of Gadophrin-3 contrast agent. Images were acquired using both pulse sequences and a standard cine (SC) sequence. Estimates of infarct size were compared to TTC. Global LV function was compared between the T1-CF and SC sequences. RESULTS SNR, relative SNR, and CNR for the infarcted and normal myocardium were significantly greater for the IR sequence. Infarction size was overestimated by both sequences, but correlated highly and showed very close agreement with TTC. Global function revealed no significant differences between T1-CF and SC. CONCLUSION Both IR and T1-CF produced reliable results for assessment of infarction size at 4.7T. While the IR sequence delivers better overall SNR and CNR, the T1-CF allows concomitant assessment of global cardiac function with a much shorter acquisition time.
Collapse
Affiliation(s)
- D Thomas
- Department of Radiology and Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Montet-Abou K, Daire JL, Ivancevic MK, Hyacinthe JN, Nguyen D, Jorge-Costa M, Morel DR, Vallée JP. Optimization of cardiac cine in the rat on a clinical 1.5-T MR system. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2006; 19:144-51. [PMID: 16865385 DOI: 10.1007/s10334-006-0037-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 06/09/2006] [Accepted: 06/12/2006] [Indexed: 11/30/2022]
Abstract
OBJECT The overall goal was to study cardiovascular function in small animals using a clinical 1.5-T MR scanner optimizing a fast gradient-echo cine sequence to obtain high spatial and temporal resolution. MATERIALS AND METHODS Normal rat hearts (n = 9) were imaged using a 1.5-T MR scanner with a spiral fast gradient-echo (fast field echo for Philips scanners) sequence, three Cartesian fast gradient-echo (turbo field echo for Philips scanners) sequences with different in-plane resolution, and with and without flow compensation and half-Fourier acquisition. The hearts of four rats were then excised and left-ventricle mass was weighed. Inter- and intra-observer variability analysis was performed for magnetic resonance imaging (MRI) measurements. RESULTS Half-Fourier acquisition with flow compensation gave the best sequence in terms of image quality, spatial as well as temporal resolution, and suppression of flow artifact. Ejection fraction was 71 +/- 4% with less than 5% inter- and intra-observer variability. A good correlation was found between MRI-calculated left-ventricular mass and wet weight. CONCLUSIONS Using optimized sequences on a clinical 1.5-T MR scanner can provide accurate quantification of cardiac function in small animals and can promote cardiovascular research on small animals at 1.5-T.
Collapse
Affiliation(s)
- K Montet-Abou
- Radiology and Medical Informatics Department, Digital Imaging Unit (UIN), Geneva University Hospital, 1211 Geneva 14, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Prunier F, Marescaux L, Franconi F, Thia A, Legras P, Lejeune JJ, Furber A. Serial magnetic resonance imaging based assessment of the early effects of an ACE inhibitor on postinfarction left ventricular remodeling in rats. Can J Physiol Pharmacol 2005; 83:1109-15. [PMID: 16462910 DOI: 10.1139/y05-115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In vivo assessment of treatment efficacy on postinfarct left ventricular (LV) remodeling is crucial for experimental studies. We examined the technical feasibility of serial magnetic resonance imaging (MRI) for monitoring early postinfarct remodeling in rats. MRI studies were performed with a 7-Tesla unit, 1, 3, 8, 15, and 30 days after myocardial infarction (MI) or sham operation, to measure LV mass, volume, and the ejection fraction (EF). Three groups of animals were analyzed: sham-operated rats (n = 6), MI rats receiving lisinopril (n = 11), and MI rats receiving placebo (n = 8). LV dilation occurred on day 3 in both MI groups. LV end-systolic and end-diastolic volumes were significantly lower in lisinopril-treated rats than in placebo-treated rats at days 15 and 30. EF was lower in both MI groups than in the sham group at all time points, and did not differ between the MI groups during follow-up. Less LV hypertrophy was observed in rats receiving lisinopril than in rats receiving placebo at days 15 and 30. We found acceptable within- and between-observer agreement and an excellent correlation between MRI and ex vivo LV mass (r = 0.96; p < 0.001). We demonstrated the ability of MRI to detect the early beneficial impact of angiotensin-converting enzyme (ACE) inhibitors on LV remodeling. Accurate and noninvasive, MRI is the tool of choice to document response to treatment targeting postinfarction LV remodeling in rats.
Collapse
Affiliation(s)
- Fabrice Prunier
- UPRES EA 3860 Préconditionnement et Remodelage du myocarde, UFR Sciences Médicales, Angers, France.
| | | | | | | | | | | | | |
Collapse
|
49
|
Prasad S, Henein MY. Novel Insights into LV Remodelling after Murine Myocardial Infarction by In vivo Magnetic Resonance Tissue Velocity Mapping. Int J Cardiovasc Imaging 2005; 21:565-7. [PMID: 16175448 DOI: 10.1007/s10554-005-0671-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
50
|
Heijman E, Strijkers GJ, Habets J, Janssen B, Nicolay K. Magnetic resonance imaging of regional cardiac function in the mouse. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2004; 17:170-8. [PMID: 15614514 DOI: 10.1007/s10334-004-0082-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Revised: 10/27/2004] [Accepted: 10/29/2004] [Indexed: 12/17/2022]
Abstract
In this paper we introduce an improved harmonic phase (HARP) analysis for complementary spatial modulation of magnetization (CSPAMM) tagging of the mouse left ventricular wall, which enables the determination of regional displacement fields with the same resolution as the corresponding CINE anatomical images. CINE MRI was used to measure global function, such as the ejection fraction. The method was tested on two healthy mouse hearts and two mouse hearts with a myocardial infarction, which was induced by a ligation of the left anterior descending coronary artery. We show that the regional displacement fields can be determined. The mean circumferential strain for the left ventricular wall of one of the healthy mice was -0.09 +/- 0.04 (mean +/- standard deviation), while for one of the infarcted mouse hearts strains of -0.02 +/- 0.02 and -0.10 +/- 0.03 were found in the infarcted and remote regions, respectively.
Collapse
Affiliation(s)
- E Heijman
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | | | | | | | | |
Collapse
|