1
|
Accurate assessment of LV function using the first automated 2D-border detection algorithm for small animals - evaluation and application to models of LV dysfunction. Cardiovasc Ultrasound 2019; 17:7. [PMID: 31010431 PMCID: PMC6477743 DOI: 10.1186/s12947-019-0156-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 03/26/2019] [Indexed: 01/01/2023] Open
Abstract
Echocardiography is the most commonly applied technique for non-invasive assessment of cardiac function in small animals. Manual tracing of endocardial borders is time consuming and varies with operator experience. Therefore, we aimed to evaluate a novel automated two-dimensional software algorithm (Auto2DE) for small animals and compare it to the standard use of manual 2D-echocardiographic assessment (2DE). We hypothesized that novel Auto2DE will provide rapid and robust data sets, which are in agreement with manually assessed data of animals.2DE and Auto2DE were carried out using a high-resolution imaging-system for small animals. First, validation cohorts of mouse and rat cine loops were used to compare Auto2DE against 2DE. These data were stratified for image quality by a blinded expert in small animal imaging. Second, we evaluated 2DE and Auto2DE in four mouse models and four rat models with different cardiac pathologies.Automated assessment of LV function by 2DE was faster than conventional 2DE analysis and independent of operator experience levels. The accuracy of Auto2DE-assessed data in healthy mice was dependent on cine loop quality, with excellent agreement between Auto2DE and 2DE in cine loops with adequate quality. Auto2DE allowed for valid detection of impaired cardiac function in animal models with pronounced cardiac phenotypes, but yielded poor performance in diabetic animal models independent of image quality.Auto2DE represents a novel automated analysis tool for rapid assessment of LV function, which is suitable for data acquisition in studies with good and very good echocardiographic image quality, but presents systematic problems in specific pathologies.
Collapse
|
2
|
Long-term left ventricular remodelling in rat model of nonreperfused myocardial infarction: sequential MR imaging using a 3T clinical scanner. J Biomed Biotechnol 2012; 2012:504037. [PMID: 23118511 PMCID: PMC3479400 DOI: 10.1155/2012/504037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 06/11/2012] [Indexed: 11/18/2022] Open
Abstract
Purpose. To evaluate whether 3T clinical MRI with a small-animal coil and gradient-echo (GE) sequence could be used to characterize long-term left ventricular remodelling (LVR) following nonreperfused myocardial infarction (MI) using semi-automatic segmentation software (SASS) in a rat model. Materials and Methods. 5 healthy rats were used to validate left ventricular mass (LVM) measured by MRI with postmortem values. 5 sham and 7 infarcted rats were scanned at 2 and 4 weeks after surgery to allow for functional and structural analysis of the heart. Measurements included ejection fraction (EF), end-diastolic volume (EDV), end-systolic volume (ESV), and LVM. Changes in different regions of the heart were quantified using wall thickness analyses. Results. LVM validation in healthy rats demonstrated high correlation between MR and postmortem values. Functional assessment at 4 weeks after MI revealed considerable reduction in EF, increases in ESV, EDV, and LVM, and contractile dysfunction in infarcted and noninfarcted regions. Conclusion. Clinical 3T MRI with a small animal coil and GE sequence generated images in a rat heart with adequate signal-to-noise ratio (SNR) for successful semiautomatic segmentation to accurately and rapidly evaluate long-term LVR after MI.
Collapse
|
3
|
Clark D, Badea A, Liu Y, Johnson GA, Badea CT. Registration-based segmentation of murine 4D cardiac micro-CT data using symmetric normalization. Phys Med Biol 2012; 57:6125-45. [PMID: 22971564 DOI: 10.1088/0031-9155/57/19/6125] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Micro-CT can play an important role in preclinical studies of cardiovascular disease because of its high spatial and temporal resolution. Quantitative analysis of 4D cardiac images requires segmentation of the cardiac chambers at each time point, an extremely time consuming process if done manually. To improve throughput this study proposes a pipeline for registration-based segmentation and functional analysis of 4D cardiac micro-CT data in the mouse. Following optimization and validation using simulations, the pipeline was applied to in vivo cardiac micro-CT data corresponding to ten cardiac phases acquired in C57BL/6 mice (n = 5). After edge-preserving smoothing with a novel adaptation of 4D bilateral filtration, one phase within each cardiac sequence was manually segmented. Deformable registration was used to propagate these labels to all other cardiac phases for segmentation. The volumes of each cardiac chamber were calculated and used to derive stroke volume, ejection fraction, cardiac output, and cardiac index. Dice coefficients and volume accuracies were used to compare manual segmentations of two additional phases with their corresponding propagated labels. Both measures were, on average, >0.90 for the left ventricle and >0.80 for the myocardium, the right ventricle, and the right atrium, consistent with trends in inter- and intra-segmenter variability. Segmentation of the left atrium was less reliable. On average, the functional metrics of interest were underestimated by 6.76% or more due to systematic label propagation errors around atrioventricular valves; however, execution of the pipeline was 80% faster than performing analogous manual segmentation of each phase.
Collapse
Affiliation(s)
- Darin Clark
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
4
|
Optical and magnetic resonance imaging as complementary modalities in drug discovery. Future Med Chem 2011; 2:317-37. [PMID: 21426169 DOI: 10.4155/fmc.09.175] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Imaging has the ability to study various biological and chemical processes noninvasively in living subjects in a longitudinal way. For this reason, imaging technologies have become an integral part of the drug-discovery and development program and are commonly used in following disease processes and drug action in both preclinical and clinical stages. As the domain of imaging sciences transitions from anatomical/functional to molecular applications, the development of molecular probes becomes crucial for the advancement of the field. This review summarizes the role of two complementary techniques, magnetic resonance and fluorescence optical imaging, in drug discovery. While the first approach exploits intrinsic tissue characteristics as the source of image contrast, the second necessitates the use of appropriate probes for signal generation. The anatomical, functional, metabolic and molecular information that becomes accessible through imaging can provide invaluable insights into disease mechanisms and mechanisms of drug action.
Collapse
|
5
|
Zurek M, Bessaad A, Cieslar K, Crémillieux Y. Validation of simple and robust protocols for high-resolution lung proton MRI in mice. Magn Reson Med 2011; 64:401-7. [PMID: 20665784 DOI: 10.1002/mrm.22360] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
One fundamental limitation of spatial resolution for in vivo MR lung imaging is related to motion in the thoracic cavity. To overcome this limitation, several methods have been proposed, including scan-synchronous ventilation and the cardiac gating approach. However, with cardiac and ventilation triggered techniques, the use of a predetermined and constant sequence repetition time is not possible, resulting in variable image contrast. In this study, the potential of two "constant repetition time" approaches based on retrospective self-gating and signal averaging were investigated for lung imaging. Image acquisitions were performed at a very short echo time for visualization of the lung structures and the parenchyma. Highly spatially resolved images acquired using retrospective self-gating, signal averaging technique and conventional cardiorespiratory gating are presented and compared.
Collapse
|
6
|
Badea CT, Hedlund LW, Cook J, Berridge BR, Johnson GA. Micro-CT imaging assessment of dobutamine-induced cardiac stress in rats. J Pharmacol Toxicol Methods 2011; 63:24-9. [PMID: 20399875 PMCID: PMC2916074 DOI: 10.1016/j.vascn.2010.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 04/06/2010] [Accepted: 04/08/2010] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Dobutamine (DOB) stress in animal models of heart disease has been imaged so far using echocardiography and magnetic resonance imaging. The purpose of this study was to assess normal response to DOB stress in rats using anatomical and functional data using micro-computed tomography (CT). METHODS Ten normal adult male rats were first injected with a liposomal-based blood pool contrast agent and next infused with DOB via a tail vein catheter. Using prospective gating, 5 pairs of systole/diastole micro-CT images were acquired (a) pre-infusion baseline; (b) at heart rate plateau during infusion of 10 μg/kg/min DOB; (c) at post-DOB infusion baseline; (d) at heart rate plateau during infusion of 30 μg/kg/min DOB; and (e) after post-infusion return to baseline. Heart rate, peripheral and breathing distensions were monitored by oximetry. Micro-CT images with 88-μm isotropic voxels were segmented to obtain cardiac function based on volumetric measurements of the left ventricle. RESULTS DOB stress increased heart rate and cardiac output with both doses. Ejection fraction increased above baseline by an average of 35.9% with the first DOB dose and 18.4% with the second dose. No change was observed in the relative peripheral arterial pressures associated with the significant increases in cardiac output. DISCUSSION Micro-CT proved to be a robust imaging method able to provide isotropic data on cardiac morphology and function. Micro-CT has the advantage of being faster and more cost-effective than MR and is able to provide higher accuracy than echocardiography. The impact of such an enabling technology can be enormous in evaluating cardiotoxic effects of various test drugs.
Collapse
Affiliation(s)
- Cristian T. Badea
- Center for In Vivo Microscopy, Department of Radiology, Box 3302 Duke University Medical Center, Durham, NC U.S.A. 27710
| | - Laurence W. Hedlund
- Center for In Vivo Microscopy, Department of Radiology, Box 3302 Duke University Medical Center, Durham, NC U.S.A. 27710
| | - James Cook
- Center for In Vivo Microscopy, Department of Radiology, Box 3302 Duke University Medical Center, Durham, NC U.S.A. 27710
| | - Brian R. Berridge
- GlaxoSmithKline Safety Assessment, 5 Moore Drive, Research Triangle Park, NC U.S.A. 27709
| | - G. Allan Johnson
- Center for In Vivo Microscopy, Department of Radiology, Box 3302 Duke University Medical Center, Durham, NC U.S.A. 27710
| |
Collapse
|
7
|
Breton E, Goetz C, Choquet P, Constantinesco A. Low field magnetic resonance imaging in rat in vivo. Ing Rech Biomed 2008. [DOI: 10.1016/j.rbmret.2008.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Bucholz E, Ghaghada K, Qi Y, Mukundan S, Johnson GA. Four-dimensional MR microscopy of the mouse heart using radial acquisition and liposomal gadolinium contrast agent. Magn Reson Med 2008; 60:111-8. [PMID: 18581419 DOI: 10.1002/mrm.21618] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Magnetic resonance microscopy (MRM) has become an important tool for small animal cardiac imaging. In relation to competing technologies (microCT and ultrasound), MR is limited by spatial resolution, temporal resolution, and acquisition time. All three of these limitations have been addressed by developing a four-dimensional (4D) (3D plus time) radial acquisition (RA) sequence. The signal-to-noise ratio (SNR) has been optimized by minimizing the echo time (TE) (300 us). The temporal resolution and throughput have been improved by center-out trajectories resulting in repetition time (TR) <2.5 ms. The contrast has been enhanced through the use of a liposomal blood pool agent that reduces the T(1) of the blood to <400 ms. We have developed protocols for three specific applications: 1) high-throughput with spatial resolution of 87 x 87 x 352 um(3) (voxel volume = 2.7 nL) and acquisition time of 16 min; 2) high-temporal resolution with spatial resolution of 87 x 87 x 352 um(3) (voxel volume = 2.7 nL) and temporal resolution at 4.8 ms and acquisition time of 32 minutes; and 3) high-resolution isotropic imaging at 87 x 87 x 87 um(3) (voxel volume = 0.68 nL) and acquisition time of 31 min. The 4D image arrays allow direct measure of cardiac functional parameters dependent on chamber volumes, e.g., ejection fraction (EF), end diastolic volume (EDV), and end systolic volume (ESV).
Collapse
Affiliation(s)
- Elizabeth Bucholz
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
9
|
Badea CT, Wetzel AW, Mistry N, Pomerantz S, Nave D, Johnson GA. Left ventricle volume measurements in cardiac micro-CT: the impact of radiation dose and contrast agent. Comput Med Imaging Graph 2008; 32:239-50. [PMID: 18243656 DOI: 10.1016/j.compmedimag.2007.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 10/03/2007] [Accepted: 12/17/2007] [Indexed: 10/24/2022]
Abstract
Micro-CT-based cardiac function estimation in small animals requires measurement of left ventricle (LV) volume at multiple time points during the cardiac cycle. Measurement accuracy depends on the image resolution, its signal and noise properties, and the analysis procedure. This work compares the accuracy of the Otsu thresholding and a region sampled binary mixture approach, for live mouse LV volume measurement using 100 microm resolution datasets. We evaluate both analysis methods after varying the volume of injected contrast agent and the number of projections used for CT reconstruction with a goal of permitting reduced levels of both X-ray and contrast agent doses.
Collapse
Affiliation(s)
- Cristian T Badea
- Center for In Vivo Microscopy, Duke University Medical Center, Box 3302, Durham, NC 27710, United States.
| | | | | | | | | | | |
Collapse
|
10
|
Driehuys B, Nouls J, Badea A, Bucholz E, Ghaghada K, Petiet A, Hedlund LW. Small animal imaging with magnetic resonance microscopy. ILAR J 2008; 49:35-53. [PMID: 18172332 PMCID: PMC2770253 DOI: 10.1093/ilar.49.1.35] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Small animal magnetic resonance microscopy (MRM) has evolved significantly from testing the boundaries of imaging physics to its expanding use today as a tool in noninvasive biomedical investigations. MRM now increasingly provides functional information about living animals, with images of the beating heart, breathing lung, and functioning brain. Unlike clinical MRI, where the focus is on diagnosis, MRM is used to reveal fundamental biology or to noninvasively measure subtle changes in the structure or function of organs during disease progression or in response to experimental therapies. High-resolution anatomical imaging reveals increasingly exquisite detail in healthy animals and subtle architectural aberrations that occur in genetically altered models. Resolution of 100 mum in all dimensions is now routinely attained in living animals, and (10 mum)(3) is feasible in fixed specimens. Such images almost rival conventional histology while allowing the object to be viewed interactively in any plane. In this review we describe the state of the art in MRM for scientists who may be unfamiliar with this modality but who want to apply its capabilities to their research. We include a brief review of MR concepts and methods of animal handling and support, before covering a range of MRM applications-including the heart, lung, and brain-and the emerging field of MR histology. The ability of MRM to provide a detailed functional and anatomical picture in rats and mice, and to track this picture over time, makes it a promising platform with broad applications in biomedical research.
Collapse
Affiliation(s)
- Bastiaan Driehuys
- Department of Radiology, Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
Driehuys B, Hedlund LW. Imaging techniques for small animal models of pulmonary disease: MR microscopy. Toxicol Pathol 2007; 35:49-58. [PMID: 17325972 PMCID: PMC2747380 DOI: 10.1080/01926230601132048] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In vivo magnetic resonance microscopy (MRM) of the small animal lung has become a valuable research tool, especially for preclinical studies. MRM offers a noninvasive and nondestructive tool for imaging small animals longitudinally and at high spatial resolution. We summarize some of the technical and biologic problems and solutions associated with imaging the small animal lung and describe several important pulmonary disease applications. A major advantage of MR is direct imaging of the gas spaces of the lung using breathable gases such as helium and xenon. When polarized, these gases become rich MR signal sources. In animals breathing hyperpolarized helium, the dynamics of gas distribution can be followed and airway constrictions and obstructions can be detected. Diffusion coefficients of helium can be calculated from diffusion-sensitive images, which can reveal micro-structural changes in the lungs associated with pathologies such as emphysema and fibrosis. Unlike helium, xenon in the lung is absorbed by blood and exhibits different frequencies in gas, tissue, or erythrocytes. Thus, with MR imaging, the movement of xenon gas can be tracked through pulmonary compartments to detect defects of gas transfer. MRM has become a valuable tool for studying morphologic and functional changes in small animal models of lung diseases.
Collapse
Affiliation(s)
- Bastiaan Driehuys
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
12
|
Alsaid H, Sabbah M, Bendahmane Z, Fokapu O, Felblinger J, Desbleds-Mansard C, Corot C, Briguet A, Crémillieux Y, Canet-Soulas E. High-resolution contrast-enhanced MRI of atherosclerosis with digital cardiac and respiratory gating in mice. Magn Reson Med 2007; 58:1157-63. [DOI: 10.1002/mrm.21308] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
13
|
Hiba B, Richard N, Thibault H, Janier M. Cardiac and respiratory self-gated cine MRI in the mouse: Comparison between radial and rectilinear techniques at 7T. Magn Reson Med 2007; 58:745-53. [PMID: 17899593 DOI: 10.1002/mrm.21355] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
ECG-gated cardiac MRI in the mouse is hindered by many technical difficulties in ECG signal recording inside high magnetic field scanners. The present study proposes a robust rectilinear method of acquiring cardiac and respiratory self-gated cine images in mouse hearts. In this approach, a motion-synchronization MR signal is collected in the center of k-space simultaneously with imaging data in each readout of a nontriggered rectilinear acquisition. This signal is then used for both cardiac and respiratory retrospective gating before cine image reconstruction. The value of this approach for overcoming ECG-gating failure was demonstrated by performing cardiac imaging in eight mice with myocardial infarction. Comparison with an auto-gated radial k-space sampling technique, previously reported for cardiac applications in the mouse, found the rectilinear strategy more robust, thanks to a more reliable self-gating signal, while the radial strategy was less sensitive to motion and flow artifacts.
Collapse
Affiliation(s)
- Bassem Hiba
- ANIMAGE, Rhône-Alpes Genopole, Université Claude Bernard Lyon1, Lyon, France.
| | | | | | | |
Collapse
|
14
|
Montet-Abou K, Daire JL, Ivancevic MK, Hyacinthe JN, Nguyen D, Jorge-Costa M, Morel DR, Vallée JP. Optimization of cardiac cine in the rat on a clinical 1.5-T MR system. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2006; 19:144-51. [PMID: 16865385 DOI: 10.1007/s10334-006-0037-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 06/09/2006] [Accepted: 06/12/2006] [Indexed: 11/30/2022]
Abstract
OBJECT The overall goal was to study cardiovascular function in small animals using a clinical 1.5-T MR scanner optimizing a fast gradient-echo cine sequence to obtain high spatial and temporal resolution. MATERIALS AND METHODS Normal rat hearts (n = 9) were imaged using a 1.5-T MR scanner with a spiral fast gradient-echo (fast field echo for Philips scanners) sequence, three Cartesian fast gradient-echo (turbo field echo for Philips scanners) sequences with different in-plane resolution, and with and without flow compensation and half-Fourier acquisition. The hearts of four rats were then excised and left-ventricle mass was weighed. Inter- and intra-observer variability analysis was performed for magnetic resonance imaging (MRI) measurements. RESULTS Half-Fourier acquisition with flow compensation gave the best sequence in terms of image quality, spatial as well as temporal resolution, and suppression of flow artifact. Ejection fraction was 71 +/- 4% with less than 5% inter- and intra-observer variability. A good correlation was found between MRI-calculated left-ventricular mass and wet weight. CONCLUSIONS Using optimized sequences on a clinical 1.5-T MR scanner can provide accurate quantification of cardiac function in small animals and can promote cardiovascular research on small animals at 1.5-T.
Collapse
Affiliation(s)
- K Montet-Abou
- Radiology and Medical Informatics Department, Digital Imaging Unit (UIN), Geneva University Hospital, 1211 Geneva 14, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Hiba B, Richard N, Janier M, Croisille P. Cardiac and respiratory double self-gated cine MRI in the mouse at 7 T. Magn Reson Med 2006; 55:506-13. [PMID: 16463350 DOI: 10.1002/mrm.20815] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
ECG-gated cardiac MRI in the mouse is hindered by many technical difficulties in ECG signal recording inside static and variable high magnetic scanner fields. The present study proposes an alternative robust method of acquiring auto-gated cardiac and respiratory cine images in mouse heart. In our approach, a motion synchronization signal is extracted from the echo peak MR signal of a non-triggered radial acquisition. This signal is then used for both cardiac and respiratory retrospective gating before cine image reconstruction. Highly asymmetric echoes were acquired to achieve the radial k-space sampling in order to avoid radial acquisition related artifacts and to increase auto-gating robustness. In vivo experiments demonstrated the feasibility and robustness of self-gated cine-MRI in the mouse heart at 7T. The signal-to-noise and contrast-to-noise ratios of the self-gated and ECG-gated images were comparable, all parameters being equal. Magn Reson Med, 2006. (c) 2006 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Bassem Hiba
- Platform ANIMAGE, Rhône-Alpes Genopole, Lyon, France
| | | | | | | |
Collapse
|
16
|
Badea CT, Bucholz E, Hedlund LW, Rockman HA, Johnson GA. Imaging methods for morphological and functional phenotyping of the rodent heart. Toxicol Pathol 2006; 34:111-7. [PMID: 16507552 DOI: 10.1080/01926230500404126] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Small animal imaging has a critical role in phenotyping, drug discovery, and in providing a basic understanding of mechanisms of disease. Translating imaging methods from humans to small animals is not an easy task. The purpose of this work is to compare two cardiac imaging modalities, i.e., magnetic resonance microscopy (MRM) and microcomputed tomography (CT) for preclinical studies on rodents. We present the two technologies, the parameters that they can measure, the types of alterations that they can detect, and show how these imaging methods compare to techniques available in clinical medicine. While this paper does not refer per se to the cardiac risk assessment for drug or chemical development, we hope that the information will effectively address how MRM and micro-CT might be exploited to measure biomarkers critical for safety assessment.
Collapse
Affiliation(s)
- Cristian T Badea
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | | | |
Collapse
|
17
|
Hedlund LW, Johnson GA. Morphology of the small-animal lung using magnetic resonance microscopy. Ann Am Thorac Soc 2006; 2:481-3, 501-2. [PMID: 16352752 PMCID: PMC2713336 DOI: 10.1513/pats.200507-074ds] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Small-animal imaging with magnetic resonance microscopy (MRM) has become an important tool in biomedical research. When MRM is used to image perfusion-fixed and "stained" whole mouse specimens, cardiopulmonary morphology can be visualized, nondestructively, in exquisite detail in all three dimensions. This capability can be a valuable tool for morphologic phenotyping of different mouse strains commonly used in genomics research. When these imaging techniques are combined with specialized methods for biological motion control and animal support, the lungs of the live, small animal can be imaged. Although in vivo imaging may not achieve the high resolution possible with a fixed specimen, dynamic functional studies and survival studies that follow the progression of pulmonary change related to disease or environmental exposure are possible. By combining conventional proton imaging with gas imaging, using hyperpolarized 3He, it is possible to image the tissue and gas compartments of the lung. This capability is illustrated in studies on an emphysema model in rats and on radiation damage of the lung. With further improvements in imaging and animal handling technology, we will be able to image faster and at higher resolutions, making MRM an even more valuable research tool.
Collapse
Affiliation(s)
- Laurence W Hedlund
- Center for In Vivo Microscopy, Box 3302, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
18
|
Maï W, Badea CT, Wheeler CT, Hedlund LW, Johnson GA. Effects of breathing and cardiac motion on spatial resolution in the microscopic imaging of rodents. Magn Reson Med 2005; 53:858-65. [PMID: 15799053 DOI: 10.1002/mrm.20400] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
One can acquire high-resolution pulmonary and cardiac images in live rodents with MR microscopy by synchronizing the image acquisition to the breathing cycle across multiple breaths, and gating to the cardiac cycle. The precision with which one can synchronize image acquisition to the motion defines the ultimate resolution limit that can be attained in such studies. The present work was performed to evaluate how reliably the pulmonary and cardiac structures return to the same position from breath to breath and beat to beat across the prolonged period required for MR microscopy. Radiopaque beads were surgically glued to the abdominal surface of the diaphragm and on the cardiac ventricles of anesthetized, mechanically ventilated rats. We evaluated the range of motion for the beads (relative to a reference vertebral bead) using digital microradiography with two specific biological gating methods: 1) ventilation synchronous acquisition, and 2) both ventilation synchronous and cardiac-gated acquisitions. The standard deviation (SD) of the displacement was < or =100 microm, which is comparable to the resolution limit for in vivo MRI imposed by signal-to-noise ratio (SNR) constraints. With careful control of motion, its impact on resolution can be limited. This work provides the first quantitative measure of the motion-imposed resolution limits for in vivo imaging.
Collapse
Affiliation(s)
- Wilfried Maï
- Center for In Vivo Microscopy, Box 3302, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
19
|
Chen BT, Yordanov AT, Johnson GA. Ventilation-synchronous magnetic resonance microscopy of pulmonary structure and ventilation in mice. Magn Reson Med 2004; 53:69-75. [PMID: 15690504 DOI: 10.1002/mrm.20307] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Increasing use of transgenic animal models for pulmonary disease has raised the need for methods to assess pulmonary structure and function in a physiologically stable mouse. We report here an integrated protocol using magnetic resonance microscopy with gadolinium (Gd)-labeled starburst dendrimer (G6-1B4M-Gd, MW = 192 +/- 1 kDa, R(h) = 5.50 +/- 0.04 nm) and hyperpolarized (3)helium ((3)He) gas to acquire images that demonstrate pulmonary vasculature and ventilated airways in live mice (n = 9). Registered three-dimensional images of (1)H and (3)He were acquired during breath-hold at 2.0 T using radial acquisition (total acquisition time of 38 and 25 min, respectively). The macromolecular Gd-labeled dendrimer (a half-life of approximately 80 min) increased the signal-to-noise by 81 +/- 30% in the left ventricle, 43 +/- 22% in the lung periphery, and -4 +/- 5% in the chest wall, thus increasing the contrast of these structures relative to the less vascular surrounding tissues. A constant-flow ventilator was developed for the mouse to deliver varied gas mixtures of O(2) and N(2) (or (3)He) during imaging. To avoid hypoxemia, instrumental dead space was minimized and corrections were made to tidal volume lost due to gas compression. The stability of the physiologic support was assessed by the lack of spontaneous breathing and maintenance of a constant heart rate. We were able to stabilize the mouse for >8 hr using ventilation of 105 breath/min and approximately 0.2 mL/breath. The feasibility of acquiring both pulmonary vasculature and ventilated airways was demonstrated in the mouse lung with in-plane spatial resolution of 70 x 70 microm(2) and slice thickness of 800 microm.
Collapse
Affiliation(s)
- Ben T Chen
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|