1
|
Welby JP, Baumel NM, Daher GS, Kocharyan A, Lohse CM, Bathla G, Carlson ML, Lane JI, Benson JC. Vestibular Schwannoma-Related Increased Labyrinthine Postgadolinium 3D-FLAIR Signal Intensity and Association with Hearing Impairment. AJNR Am J Neuroradiol 2025; 46:567-571. [PMID: 39284634 PMCID: PMC11979816 DOI: 10.3174/ajnr.a8498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND AND PURPOSE Vestibular schwannomas (VSs) are benign neurogenic tumors commonly associated with progressive unilateral hearing loss, tinnitus, and vestibular symptoms. Growing evidence links signal changes in the VS-adjacent labyrinth with sensorineural hearing loss. This study seeks to quantify the association of labyrinthine signal on postgadolinium 3D-FLAIR imaging correlates with hearing loss and to evaluate potential longitudinal changes over time. MATERIALS AND METHODS Selected patients were identified from a prospectively maintained VS registry. Mean signal intensity ratios of the bilateral labyrinth and pons were measured on 3D-FLAIR postgadolinium MRI. Correlations with paired audiometric data, including pure tone average (PTA), word recognition score (WRS), and American Academy of Otolaryngology-Head and Neck Surgery (AAO-HNS) hearing class within 1 year, were evaluated. RESULTS One hundred twenty-five studies obtained from 2015 to 2022 among 66 patients undergoing observational management for sporadic VS were analyzed. Increased signal intensity was noted in the VS-affected labyrinth/contralateral labyrinth (mean ratio 1.56, SD 0.58). Increased signal intensity was associated with increased PTA on both labyrinthine (correlation coefficient [CC] 0.20, P = .03) and pontine comparisons (CC 0.24, P = .006), and with decreased WRS on pontine comparisons (CC -0.18, P = .04). Increased signal intensity was significantly associated with nonserviceable AAO-HNS C/D hearing when intensities were compared with the pons (P = .01) but not the contralateral labyrinth (P = .1). Among 44 patients with available follow-up, no statistically significant associations were identified between audiometric data and signal changes over the same interval. CONCLUSIONS Increased 3D-FLAIR postgadolinium labyrinthine signal is associated with sensorineural hearing loss; however, its relationship with hearing trajectory remains unclear. Overall findings suggest that while postgadolinium 3D-FLAIR techniques are sensitive to inner ear involvement associated with VS, the driving mechanism and their temporal relationships with labyrinthine signal intensity and hearing impairment remain unknown.
Collapse
Affiliation(s)
- John P Welby
- From the Department of Radiology (J.P.W., G.B., J.I.L., J.C.B.), Mayo Clinic, Rochester, Minnesota
| | | | - Ghazal S Daher
- Department of Otolaryngology-Head and Neck Surgery (G.S.D., A.K., M.L.C.), Mayo Clinic, Rochester, Minnesota
| | - Armine Kocharyan
- Department of Otolaryngology-Head and Neck Surgery (G.S.D., A.K., M.L.C.), Mayo Clinic, Rochester, Minnesota
| | - Christine M Lohse
- Department of Quantitative Health Sciences (C.M.L.), Mayo Clinic, Rochester, Minnesota
| | - Girish Bathla
- From the Department of Radiology (J.P.W., G.B., J.I.L., J.C.B.), Mayo Clinic, Rochester, Minnesota
| | - Matthew L Carlson
- Department of Otolaryngology-Head and Neck Surgery (G.S.D., A.K., M.L.C.), Mayo Clinic, Rochester, Minnesota
- Department of Neurosurgery (M.L.C.), Mayo Clinic, Rochester, Minnesota
| | - John I Lane
- From the Department of Radiology (J.P.W., G.B., J.I.L., J.C.B.), Mayo Clinic, Rochester, Minnesota
| | - John C Benson
- From the Department of Radiology (J.P.W., G.B., J.I.L., J.C.B.), Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
2
|
Zhang W, Xie J, Liu H, Wang M. Blood-labyrinth barrier breakdown in Meniere's disease. Eur Arch Otorhinolaryngol 2024; 281:2327-2332. [PMID: 38057488 DOI: 10.1007/s00405-023-08353-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/13/2023] [Indexed: 12/08/2023]
Abstract
OBJECTIVE We compared the signal intensity ratio (SIR) of the cochlear basal turn between Meniere's disease and healthy controls to investigate potential damage of the blood-labyrinth barrier in Meniere's disease. METHODS Thirty patients diagnosed with unilateral definite Meniere's disease and 24 healthy controls were enrolled. 3D-FLAIR scan was conducted to assess the grades of endolymphatic hydrops in Meniere's patients while measuring the SIR of cochlear basal turns in both groups. The differences of bilateral SIR between Meniere's disease and healthy control were compared, and the correlation between the SIR on affected ear in Meniere's disease and the grades of cochlear and vestibular hydrops were analyzed. RESULTS SIR of affected ear in Meniere's disease exhibited significant increase compared to that of unaffected ear. No significant difference was observed in SIR between the two ears in the healthy control. Furthermore, the SIR of unaffected side in Meniere's disease was higher than that of both ears in healthy controls. The SIR in affected ear of Meniere's disease exhibited positive correlation with hydrops in both cochlea and vestibula. CONCLUSION The permeability of blood-labyrinth barrier is increased in Meniere's disease, in combination with the typical criteria of Meniere's disease it may be a good biological marker. Destruction of blood-labyrinth barrier may be one of the causes of endolymphatic hydrops in Meniere's disease.
Collapse
Affiliation(s)
- Weidong Zhang
- Department of Medical Imaging, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, 7 Weiwu Road, Zhengzhou, 450000, China
| | - Jiapei Xie
- Department of Medical Imaging, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, 7 Weiwu Road, Zhengzhou, 450000, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hongjian Liu
- Department of Otorhinolaryngology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, 7 Weiwu Road, Zhengzhou, 450000, China
| | - Meiyun Wang
- Department of Medical Imaging, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, 7 Weiwu Road, Zhengzhou, 450000, China.
- Laboratory of Brain Science and Brain-Like Intelligence Technology, Institute for Integrated Medical Science and Engineering, Henan Academy of Sciences, Zhengzhou, China.
| |
Collapse
|
3
|
Ohlemiller KK, Dwyer N, Henson V, Fasman K, Hirose K. A critical evaluation of "leakage" at the cochlear blood-stria-barrier and its functional significance. Front Mol Neurosci 2024; 17:1368058. [PMID: 38486963 PMCID: PMC10937559 DOI: 10.3389/fnmol.2024.1368058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/16/2024] [Indexed: 03/17/2024] Open
Abstract
The blood-labyrinth-barrier (BLB) is a semipermeable boundary between the vasculature and three separate fluid spaces of the inner ear, the perilymph, the endolymph and the intrastrial space. An important component of the BLB is the blood-stria-barrier, which shepherds the passage of ions and metabolites from strial capillaries into the intrastrial space. Some investigators have reported increased "leakage" from these capillaries following certain experimental interventions, or in the presence of inflammation or genetic variants. This leakage is generally thought to be harmful to cochlear function, principally by lowering the endocochlear potential (EP). Here, we examine evidence for this dogma. We find that strial capillaries are not exclusive, and that the asserted detrimental influence of strial capillary leakage is often confounded by hair cell damage or intrinsic dysfunction of the stria. The vast majority of previous reports speculate about the influence of strial vascular barrier function on the EP without directly measuring the EP. We argue that strial capillary leakage is common across conditions and species, and does not significantly impact the EP or hearing thresholds, either on evidentiary or theoretical grounds. Instead, strial capillary endothelial cells and pericytes are dynamic and allow permeability of varying degrees in response to specific conditions. We present observations from mice and demonstrate that the mechanisms of strial capillary transport are heterogeneous and inconsistent among inbred strains.
Collapse
Affiliation(s)
- Kevin K. Ohlemiller
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, United States
- Program in Communication Sciences and Audiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Noël Dwyer
- Program in Communication Sciences and Audiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Veronica Henson
- Program in Communication Sciences and Audiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Kaela Fasman
- Program in Communication Sciences and Audiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Keiko Hirose
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
4
|
Welby JP, Benson JC, Lohse CM, Carlson ML, Lane JI. Increased Labyrinthine T1 Postgadolinium Signal Intensity Is Associated with the Degree of Ipsilateral Sensorineural Hearing Loss in Patients with Sporadic Vestibular Schwannoma. AJNR Am J Neuroradiol 2023; 44:317-322. [PMID: 36797029 PMCID: PMC10187814 DOI: 10.3174/ajnr.a7800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/31/2023] [Indexed: 02/18/2023]
Abstract
BACKGROUND AND PURPOSE Vestibular schwannomas are benign, generally slow-growing tumors, commonly presenting with hearing loss. Alterations in the labyrinthine signal are seen in patients with vestibular schwannoma; however, the association between imaging abnormalities and hearing function remains poorly defined. The purpose of this study was to determine whether labyrinthine signal intensity is associated with hearing in patients with sporadic vestibular schwannoma. MATERIALS AND METHODS This was an institutional review board-approved retrospective review of patients from a prospectively maintained vestibular schwannoma registry imaged in 2003-2017. Signal-intensity ratios of the ipsilateral labyrinth were obtained using T1, T2-FLAIR, and postgadolinium T1 sequences. Signal-intensity ratios were compared with tumor volume and audiometric hearing threshold data including pure tone average, word recognition score, and American Academy of Otolaryngology-Head and Neck Surgery hearing class. RESULTS One hundred ninety-five patients were analyzed. Ipsilateral labyrinthine signal intensity including postgadolinium T1 images was positively correlated with tumor volume (correlation coefficient = 0.17, P = .02). Among signal-intensity ratios, postgadolinium T1 was significantly positively associated with pure tone average (correlation coefficient = 0.28, P < .001) and negatively associated with the word recognition score (correlation coefficient = -0.21, P = .003). Overall, this result correlated with impaired American Academy of Otolaryngology-Head and Neck Surgery hearing class (P = .04). Multivariable analysis suggested persistent associations independent of tumor volume with pure tone average (correlation coefficient = 0.25, P < .001) and the word recognition score (correlation coefficient = -0.17, P = .02) but not hearing class (P = .14). No consistent significant associations were noted between noncontrast T1 and T2-FLAIR signal intensities and audiometric testing. CONCLUSIONS Increased ipsilateral labyrinthine postgadolinium signal intensity is associated with hearing loss in patients with vestibular schwannoma.
Collapse
Affiliation(s)
- J P Welby
- From the Departments of Radiology (J.P.W., J.C.B., J.I.L.)
| | - J C Benson
- From the Departments of Radiology (J.P.W., J.C.B., J.I.L.)
| | - C M Lohse
- Quantitative Health Sciences (C.M.L.)
| | - M L Carlson
- Otorhinolaryngology (M.L.C.), Mayo Clinic, Rochester, Minnesota
| | - J I Lane
- From the Departments of Radiology (J.P.W., J.C.B., J.I.L.)
| |
Collapse
|
5
|
Xiao Q, Zhang Y, Lv J, Yang J, Zhang Q. Case Report: Suppurative Labyrinthitis Induced by Chronic Suppurative Otitis Media. Front Neurol 2022; 13:892045. [PMID: 35756914 PMCID: PMC9218268 DOI: 10.3389/fneur.2022.892045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
A discussion on suppurative labyrinthitis associated with chronic suppurative otitis media (CSOM) may seem to be an outdated issue due to the advent of antibiotics in the last century. In previous literature, limited cases of suppurative labyrinthitis have been reported. This case, therefore, is an excellent and rare opportunity to study its clinical symptoms, diagnoses, and treatments. This report described the case of a 39-year-old female with a history of CSOM for 20 years, and she often presented with otorrhea, vestibular disorder, and hearing impairment. CT of the temporal bone revealed fistulae in both the basal turn of the cochlea and the horizontal semicircular canal. Combined with the otolaryngology examination results, suppurative labyrinthitis was considered. During a three-month follow-up, her symptoms were improved significantly after surgery. In conclusion, suppurative labyrinthitis must not be overlooked and neglected; early diagnosis and treatments are of vital importance.
Collapse
Affiliation(s)
- Qianwen Xiao
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Yuzhong Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Jingrong Lv
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Jun Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Qing Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| |
Collapse
|
6
|
Kociszewska D, Vlajkovic SM. The Association of Inflammatory Gut Diseases with Neuroinflammatory and Auditory Disorders. Front Biosci (Elite Ed) 2022; 14:8. [PMID: 35730449 DOI: 10.31083/j.fbe1402008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/11/2022] [Accepted: 02/24/2022] [Indexed: 11/06/2022]
Abstract
Disorders such as inflammatory bowel disease (IBD) and celiac disease (CeD) result in intestinal hyperpermeability or 'leaky' gut. The increased permeability of the intestinal barrier allows microbial metabolites, toxins, and pathogens to infiltrate the bloodstream and extraintestinal tissues, causing systemic inflammation. Despite differences in aetiology and pathophysiology, IBD and CeD share several extraintestinal manifestations such as neuroinflammation, neurological and psychiatric manifestations, and sensorineural hearing loss (SNHL). This narrative review focuses on the association between intestinal hyperpermeability with the brain and inner ear diseases. We postulate that the microbial metabolites and pathogens released from the gut increase the permeability of natural barriers, such as the blood-brain barrier (BBB) and blood-labyrinth barrier (BLB). The barrier breakdown allows the spreading of inflammatory processes to the brain and inner ear, leading to disease.
Collapse
Affiliation(s)
- Dagmara Kociszewska
- Department of Physiology and The Eisdell Moore Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 1142 Auckland, New Zealand
| | - Srdjan M Vlajkovic
- Department of Physiology and The Eisdell Moore Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 1142 Auckland, New Zealand
| |
Collapse
|
7
|
Song CI, Pogson JM, Andresen NS, Ward BK. MRI With Gadolinium as a Measure of Blood-Labyrinth Barrier Integrity in Patients With Inner Ear Symptoms: A Scoping Review. Front Neurol 2021; 12:662264. [PMID: 34093410 PMCID: PMC8173087 DOI: 10.3389/fneur.2021.662264] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/16/2021] [Indexed: 12/19/2022] Open
Abstract
Objective: Capillaries within the inner ear form a semi-permeable barrier called the blood-labyrinth barrier that is less permeable than capillary barriers elsewhere within the human body. Dysfunction of the blood-labyrinth barrier has been proposed as a mechanism for several audio-vestibular disorders. There has been interest in using magnetic resonance imaging (MRI) with intravenous gadolinium-based contrast agents (GBCA) as a marker for the integrity of the blood labyrinth barrier in research and clinical settings. This scoping review evaluates the evidence for using intravenous gadolinium-enhanced MRI to assess the permeability of the blood-labyrinth barrier in healthy and diseased ears. Methods: A systematic search was conducted of three databases: PubMed, EMBASE, CINAHL PLUS. Studies were included that used GBCA to study the inner ear and permeability of the blood-labyrinth barrier. Data was collected on MRI protocols used and inner ear enhancement patterns of healthy and diseased ears in both human and animal studies. Results: The search yielded 14 studies in animals and 53 studies in humans. In healthy animal and human inner ears, contrast-enhanced MRI demonstrated gradual increase in inner ear signal intensity over time that was limited to the perilymph. Signal intensity peaked at 100 min in rodents and 4 h in humans. Compared to controls, patients with idiopathic sudden sensorineural hearing loss and otosclerosis had increased signal intensity both before and shortly after GBCA injection. In patients with Ménière's disease and vestibular schwannoma, studies reported increased signal at 4 h, compared to controls. Quality assessment of included studies determined that all the studies lacked sample size justification and many lacked adequate control groups or blinded assessors of MRI. Conclusions: The included studies provided convincing evidence that gadolinium crosses the blood-labyrinth barrier in healthy ears and more rapidly in some diseased ears. The timing of increased signal differs by disease. There was a lack of evidence that these findings indicate general permeability of the blood-labyrinth barrier. Future studies with consistent and rigorous methods are needed to investigate the relationship between gadolinium uptake and assessments of inner ear function and to better determine whether signal enhancement indicates permeability for molecules other than gadolinium.
Collapse
Affiliation(s)
- Christopher I. Song
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jacob M. Pogson
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Nicholas S. Andresen
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Bryan K. Ward
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
8
|
Ihler F, Freytag S, Kloos B, Spiegel JL, Haubner F, Canis M, Weiss BG, Bertlich M. Lipopolysaccharide decreases cochlear blood flow dose dependently in a guinea pig animal model via TNF signaling. Microcirculation 2021; 28:e12681. [PMID: 33501679 DOI: 10.1111/micc.12681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To evaluate the effect of Lipopolysaccharide (LPS), a bacterial endotoxin on cochlear microcirculation, and its mode of action. METHODS Twenty-five Dunkin-Hartley guinea pigs were divided into five groups of five animals each. After surgical preparation, cochlear microcirculation was quantified by in vivo fluorescence microscopy. Placebo or LPS (1 mg, 10 µg, and 100 ng) was applied topically, and microcirculation was measured before and twice after application. A fifth group was pretreated with etanercept, a tumor necrosis factor (TNF) antagonist, and afterward the lowest LPS concentrations that yielded significant results (10 µg) were applied. RESULTS In the groups that had been treated with 1 mg and 10 µg LPS, a significant drop in cochlear microcirculation was observed after 30 (.791 ± .089 Arbitrary Units (AU), compared to baseline, and .888 ± .071AU) and 60 (.756 ± .101 AU and .817 ± .124 AU, respectively) minutes. The groups that had been treated with 100 ng LPS and that had been pretreated with etanercept showed no significant change in cochlear blood flow compared to placebo. CONCLUSION Lipopolysaccharide shows a dose-dependent effect on cochlear microcirculation; this effect can already be observed after 30 min. Pretreatment with etanercept can abrogate this effect, indicating that TNF mediates the effect of LPS on cochlear microcirculation.
Collapse
Affiliation(s)
- Friedrich Ihler
- Department of Otorhinolaryngology, Head and Neck Surgery, Ludwig-Maximilians-University of Munich, Munich, Germany.,Walter Brendel Centre of Experimental Medicine, University of Munich Hospital, Munich, Germany
| | - Saskia Freytag
- Population Health and Immunity Division, Walter and Eliza Hall Institute, Parkville, Vic., Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Vic., Australia
| | - Benedikt Kloos
- Department of Otorhinolaryngology, Head and Neck Surgery, Ludwig-Maximilians-University of Munich, Munich, Germany.,Walter Brendel Centre of Experimental Medicine, University of Munich Hospital, Munich, Germany
| | - Jennifer Lee Spiegel
- Department of Otorhinolaryngology, Head and Neck Surgery, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Frank Haubner
- Department of Otorhinolaryngology, Head and Neck Surgery, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Martin Canis
- Department of Otorhinolaryngology, Head and Neck Surgery, Ludwig-Maximilians-University of Munich, Munich, Germany.,Walter Brendel Centre of Experimental Medicine, University of Munich Hospital, Munich, Germany
| | - Bernhard G Weiss
- Department of Otorhinolaryngology, Head and Neck Surgery, Ludwig-Maximilians-University of Munich, Munich, Germany.,Walter Brendel Centre of Experimental Medicine, University of Munich Hospital, Munich, Germany
| | - Mattis Bertlich
- Department of Otorhinolaryngology, Head and Neck Surgery, Ludwig-Maximilians-University of Munich, Munich, Germany.,Walter Brendel Centre of Experimental Medicine, University of Munich Hospital, Munich, Germany
| |
Collapse
|
9
|
High-Dose Furosemide Enhances the Magnetic Resonance Signal of Systemic Gadolinium in the Mammalian Cochlea. Otol Neurotol 2020; 41:545-553. [DOI: 10.1097/mao.0000000000002571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Ishiyama G, Lopez IA, Acuna D, Ishiyama A. Investigations of the Microvasculature of the Human Macula Utricle in Meniere's Disease. Front Cell Neurosci 2019; 13:445. [PMID: 31636542 PMCID: PMC6787152 DOI: 10.3389/fncel.2019.00445] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 09/18/2019] [Indexed: 12/20/2022] Open
Abstract
The integrity and permeability of the blood labyrinthine barrier (BLB) in the inner ear is important to maintain adequate blood supply, and to control the passage of fluids, molecules and ions. Identifying the cellular and structural components of the BLB, the vascular endothelial cells (VECs), pericytes, and the perivascular basement membrane, is critical to understand the pathophysiology of the inner ear microvasculature and to design efficient delivery of therapeutics across the BLB. A recent study of the normal and pathological ultrastructural changes in the human macula utricle microvasculature demonstrated that the VECs are damaged in Meniere’s disease (MD), and further studies identified oxidative stress markers (iNOS and nitrotyrosine) in the VECs. Using fluorescence microscopy, the microvasculature was studied in the macula utricle of patients diagnosed with MD that required transmastoid labyrinthectomy for intractable vertigo (n = 5), and patients who required a translabyrinthine approach for vestibular schwannoma (VS) resection (n = 3). Normal utricles (controls) were also included (n = 3). VECs were identified using rabbit polyclonal antibodies against the glucose transporter-1 (GLUT-1) and pericytes were identified using mouse monoclonal antibodies against alpha-smooth muscle actin (α-SMA). Immunofluorescence (IF) staining was made in half of the utricle and flat mounted. The other half was used to study the integrity of the BLB using transmission electron microscopy (TEM). GLUT-1-IF, allowed delineation of the macula utricle microvasculature (located in the stroma underneath the sensory epithelia) in both MD and VS specimens. Three sizes of vessels were present in the utricle vasculature: Small size (<15 μm), medium size (15–25 μm) and large size >25 μm. α-SMA-IF was present in pericytes that surround the VECS in medium and thick size vessels. Thin size vessels showed almost no α-SMA-IF. AngioTool software was used for quantitative analysis. A significant decreased number of junctions, total vessel length, and average vessel length was detected in the microvasculature in MD specimens compared with VS and control specimens. The deeper understanding of the anatomy of the BLB in the human vestibular periphery and its pathological changes in disease will enable the development of non-invasive delivery strategy for the treatment of hearing and balance disorders.
Collapse
Affiliation(s)
- Gail Ishiyama
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Ivan A Lopez
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Dora Acuna
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Akira Ishiyama
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
11
|
Electrical Impedance as a Biomarker for Inner Ear Pathology Following Lateral Wall and Peri-modiolar Cochlear Implantation. Otol Neurotol 2019; 40:e518-e526. [DOI: 10.1097/mao.0000000000002227] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
12
|
Hirose K, Li SZ. The role of monocytes and macrophages in the dynamic permeability of the blood-perilymph barrier. Hear Res 2019; 374:49-57. [PMID: 30710792 DOI: 10.1016/j.heares.2019.01.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/27/2018] [Accepted: 01/11/2019] [Indexed: 12/20/2022]
Abstract
The blood-perilymph barrier serves a critical role by separating the components of blood from inner ear fluids, limiting traffic of cells, proteins and other solutes into the labyrinth, and allowing gas (O2-CO2) exchange. Inflammation produces changes in the blood-perilymph barrier resulting in increased vascular permeability. It is commonly thought that compromise of the blood-inner ear barrier would lead to hearing impairment through loss of the endocochlear potential (EP). In fact, the effect of increasing cochlear vascular permeability on hearing function and EP is poorly understood. We used a novel method to measure the integrity of the blood-perilymph barrier and demonstrated the effects of barrier compromise on ABR threshold and EP. We also investigated the contribution of CX3CR1 cochlear macrophages and CCR2 inflammatory monocytes to barrier function after systemic exposure to lipopolysaccharide (LPS). We found that systemic LPS induced a profound change in vascular permeability, which correlated with minimal change in ABR threshold and EP. Macrophage depletion using CX3CR1-DTR mice did not alter the baseline permeability of cochlear vessels and resulted in preservation of barrier function in LPS-treated animals. We conclude that cochlear macrophages are not required to maintain the barrier in normal mice and activated macrophages are a critical factor in breakdown of the barrier after LPS. CCR2 null mice demonstrated that LPS induction of barrier leakiness occurs in the absence of CCR2 expression. Thus, enhanced aminoglycoside ototoxicity after LPS can be linked to the expression of CCR2 in inflammatory monocytes, and not to preservation of the blood-perilymph barrier in CCR2 knockout mice.
Collapse
Affiliation(s)
- Keiko Hirose
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, Missouri, USA.
| | - Song-Zhe Li
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
13
|
Brown DJ, Sokolic L, Fung A, Pastras CJ. Response of the inner ear to lipopolysaccharide introduced directly into scala media. Hear Res 2018; 370:105-112. [PMID: 30366193 DOI: 10.1016/j.heares.2018.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/03/2018] [Accepted: 10/14/2018] [Indexed: 12/18/2022]
Abstract
In an attempt to develop an animal model of immune mediated Meniere's disease, we have injected lipopolysaccharide (LPS) directly into scala media of guinea pigs and monitored functional and morphological changes over a period of 6 weeks. Depending on the concentration of LPS, changes ranged from moderate-to-severe hearing loss and endolymphatic hydrops with minimal cellular infiltrate or fibrosis, to dense cellular infiltration that filled the scalae. Interestingly, higher concentrations of LPS not only induced severe cellular infiltration, hydrops, and hearing loss, but also a substantial enlargement of the endolymphatic duct and sac. Moreover, LPS injections into perilymph failed to induce hydrops, yet still resulted in cellular infiltration and fibrosis in the cochlea. This suggests that chronic hydrops resulting from an immune challenge of the cochlea may not be due to blockage of the endolymphatic duct and sac, restricting fluid absorption. Furthermore, injecting antigen into endolymph may produce chronic immune-mediated hydrops, and provide a more promising animal model of Meniere's, although animals did not display signs of vestibular dysfunction, and the hearing loss was relatively severe.
Collapse
Affiliation(s)
| | - Ljiljana Sokolic
- The University of Sydney, Meniere's Research Laboratory, Australia
| | - Albert Fung
- The University of Sydney, Meniere's Research Laboratory, Australia
| | | |
Collapse
|
14
|
Berrettini S, Lombardo F, Bruschini L, Ciabotti A, Raffaello C, De Cori Sara, De Marchi Daniele, Forli F. 3D fluid attenuated inversion recovery (FLAIR) magnetic resonance imaging at different stages of otosclerosis. Eur Arch Otorhinolaryngol 2018; 275:2643-2652. [PMID: 30191304 DOI: 10.1007/s00405-018-5093-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/10/2018] [Indexed: 12/14/2022]
Abstract
PURPOSE The aim of this work is to study otosclerotic patients by 3D-FLAIR (fluid attenuated inversion recovery) sequence magnetic resonance imaging (MRI) with and without Gadolinium administration (-/+ Gd), to understand whether there is a direct relationship between radiological findings at 3D FLAIR MRI sequences and some clinical features of otosclerosis, such as the presence and entity of sensorineural involvement, duration of disease, patient gender, and other factors. METHODS 38 patients affected by different stages of unilateral or bilateral otosclerosis underwent 3D FLAIR MRI+/- Gd. 11 subjects with normal hearing, previously submitted to 3T MRI for other minor diseases, unrelated with otosclerosis, had been retrospectively enrolled as control group. RESULTS We found significant correlations between 3D FLAIR MRI findings and some clinical features of otosclerosis, such as severity of cochlear damage (in terms of entity of sensorineural loss) and duration of disease. These findings indicate that at 3D-FLAIR MRI different patterns may depend on the level of blood labyrinth barrier damage in the cochlea, and be related to different stages of cochlear involvement in otosclerotic patients. CONCLUSIONS We believe that our findings may contribute in understanding the pathogenesis of cochlear damage in otosclerosis and may have further prognostic value. Our results led us to consider the possible use of 3D-FLAIR sequences in monitoring the effectiveness of any medical therapy of otosclerosis and in selecting the patients eligible for treatment.
Collapse
Affiliation(s)
- Stefano Berrettini
- ENT Audiology and Phoniatrics Unit, Department of Surgical, Medical, Molecular Pathology and Emergency Medicine, University of Pisa, Via Paradisa 2, 56100, Pisa, Italy. .,Division of ENT Diseases, Karolinska Institutet, Stockholm, Sweden.
| | - Francesco Lombardo
- Neuroradiology Unit, Fondazione CNR Regione Toscana "G. Monasterio", Pisa, Italy
| | - Luca Bruschini
- ENT Audiology and Phoniatrics Unit, Department of Surgical, Medical, Molecular Pathology and Emergency Medicine, University of Pisa, Via Paradisa 2, 56100, Pisa, Italy
| | - Annalisa Ciabotti
- ENT Audiology and Phoniatrics Unit, Department of Surgical, Medical, Molecular Pathology and Emergency Medicine, University of Pisa, Via Paradisa 2, 56100, Pisa, Italy
| | - Canapicchi Raffaello
- Neuroradiology Unit, Fondazione CNR Regione Toscana "G. Monasterio", Pisa, Italy
| | - De Cori Sara
- Neuroradiology Unit, Fondazione CNR Regione Toscana "G. Monasterio", Pisa, Italy
| | - De Marchi Daniele
- Neuroradiology Unit, Fondazione CNR Regione Toscana "G. Monasterio", Pisa, Italy
| | - Francesca Forli
- ENT Audiology and Phoniatrics Unit, Department of Surgical, Medical, Molecular Pathology and Emergency Medicine, University of Pisa, Via Paradisa 2, 56100, Pisa, Italy
| |
Collapse
|
15
|
Ishiyama G, Wester J, Lopez IA, Beltran-Parrazal L, Ishiyama A. Oxidative Stress in the Blood Labyrinthine Barrier in the Macula Utricle of Meniere's Disease Patients. Front Physiol 2018; 9:1068. [PMID: 30233382 PMCID: PMC6129601 DOI: 10.3389/fphys.2018.01068] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/17/2018] [Indexed: 12/13/2022] Open
Abstract
The blood labyrinthine barrier (BLB) is critical in the maintenance of inner ear ionic and fluid homeostasis. Recent studies using imaging and histopathology demonstrate loss of integrity of the BLB in the affected inner ear of Meniere's disease (MD) patients. We hypothesized that oxidative stress is involved in the pathogenesis of BLB degeneration, and to date there are no studies of oxidative stress proteins in the human BLB. We investigated the ultrastructural and immunohistochemical changes of the BLB in the vestibular endorgan, the macula utricle, from patients with MD (n = 10), acoustic neuroma (AN) (n = 6) and normative autopsy specimens (n = 3) with no inner ear disease. Each subject had a well-documented clinical history and audiovestibular testing. Utricular maculae were studied using light and transmission electron microscopy and double labeling immunofluorescence. Vascular endothelial cells (VECs) were identified using isolectin B4 (IB4) and glucose-transporter-1 (GLUT-1). Pericytes were identified using alpha smooth muscle actin (αSMA) and phalloidin. IB4 staining of VECS was consistently seen in both AN and normative. In contrast, IB4 was nearly undetectable in all MD specimens, consistent with the significant VEC damage confirmed on transmission electron microscopy. GLUT-1 was present in MD, AN, and normative. αSMA and phalloidin were expressed consistently in the BLB pericytes in normative, AN specimen, and Meniere's specimens. Endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS), and nitrotyrosine were used as markers of oxidative stress. The VECs of the BLB in Meniere's had significantly higher levels of expression of iNOS and nitrotyrosine compared with normative and AN specimen. eNOS-IF staining showed similar patterns in normative and Meniere's specimens. Microarray-based gene expression profiling confirmed upregulation of iNOS mRNA from the macula utricle of Meniere's patients compared with AN. Nitrotyrosine, a marker recognized as a hallmark of inflammation, especially when seen in association with an upregulation of iNOS, was detected in the epithelial and stromal cells in addition to VECs in MD. Immunohistochemical and ultrastructural degenerative changes of the VEC suggest that these cells are the primary targets of oxidative stress, and pericyte pathology including degeneration and migration, likely also plays a role in the loss of integrity of the BLB and triggering of inflammatory pathways in MD. These studies advance our scientific understanding of oxidative stress in the human inner ear BLB and otopathology.
Collapse
Affiliation(s)
- Gail Ishiyama
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Jacob Wester
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Ivan A. Lopez
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Luis Beltran-Parrazal
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Mexico
| | - Akira Ishiyama
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
16
|
Ultra-high-field (9.4 T) MRI Analysis of Contrast Agent Transport Across the Blood-Perilymph Barrier and Intrastrial Fluid-Blood Barrier in the Mouse Inner Ear. Otol Neurotol 2018; 38:1052-1059. [PMID: 28570419 DOI: 10.1097/mao.0000000000001458] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
HYPOTHESIS Effective paramagnetic contrast agent for the penetration of the perilymphatic spaces of the scala tympani, scala vestibuli, and scala media of the mouse inner ear can be determined using intravenous injection of various gadolinium (Gd) complexes and ultra-high-field magnetic resonance imaging (MRI) at 9.4 Tesla. BACKGROUND A number of contrast agents have been explored in experimental high-field MRI to determine the most effective Gd complex for ideal signal-to-noise ratio and maximal visualization of the in vivo mammalian inner ear in analyzing the temporal and spatial parameters involved in drug penetration of the blood-perilymph barrier and intrastrial fluid-blood barrier in the mouse model using MRI. METHODS Gadoteric acid (Dotarem), Gadobutrol (Gadovist), Gadodiamide (Omniscan), Gadopent acid (Magnevist), and Mangafodipir (Teslascan) were administered intravenously using the tail vein of 60 Balb/C mice. High-resolution T1 images of drug penetration were acquired with a horizontal 9.4 T Agilent magnet after intravenously injection. Signal intensity was used as a metric of temporal and spatial parameters of drug delivery and penetration of the perilymphatic and endolymphatic spaces. RESULTS ANOVA analysis of the area under the curve of intensity enhancement in perilymph revealed a significant difference (p < 0.05) in the scalae uptake using different contrast agents (F (3,25) = 3.54, p = 0.029). The Gadoteric acid complex Dotarem was found to be the most effective Gd compound in terms of rapid, morphological enhancement for analysis of the temporal, and spatial distribution in the perilymphatic space of the inner ear. CONCLUSION Gadoteric acid (Dotarem) demonstrated efficacy as a contrast agent for enhanced visualization of the perilymphatic spaces of the inner ear labyrinthine in the mouse, including the scala tympani and scala vestibuli of the cochlea, and the semicircular canals of the vestibular apparatus. These findings may inform the clinical application of Gd compounds in patients with inner ear fluid disorders and vertigo.
Collapse
|
17
|
Zhu J, Zhang F, Zhou J, Li H. Assessment of therapeutic response in Crohn's disease using quantitative dynamic contrast enhanced MRI (DCE-MRI) parameters: A preliminary study. Medicine (Baltimore) 2017; 96:e7759. [PMID: 28796069 PMCID: PMC5556235 DOI: 10.1097/md.0000000000007759] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The aim of the study was to investigate dynamic contrast enhanced MRI (DCE-MRI) as a potential marker to assess the therapeutic responses of fecal microbiota transplantation (FMT) in patients with Crohn's disease (CD) and to determine the parameter or combination of parameters most strongly associated with changes in clinical indicators after treatment.In 22 CD patients, DCE-MRI was performed with a 3.0T scanner. Parameters of DCE-MRI (vascular transfer constant [K] and blood volume [BV]) in the terminal ileum were compared between before and day 90 after FMT treatment. The differences of clinical indicators (C-reactive protein [CRP], Harvey-Bradshaw index [HBI]) and DCE-MRI parameters (K, BV) between pre- and post-treatment was calculated by Student's 2-tailed, paired t-test. The correlations between percent change of clinical indicators (ΔCRP, ΔHBI) with DCE-MRI parameters (ΔK, ΔBV) were analyzed by Pearson's correlation coefficients. A logistic regression model was used to identify the changes of DCE-MRI parameters related to the treatment outcomes. Receiver operating characteristic curves (ROCs) were generated to assess which DCE-MRI parameter showed the best accuracy for evaluation of therapeutic response.After treatment, mean values of clinical indicators decreased significantly (CRP: 62.68 ± 31.86 vs 43.55 ± 29.63 mg/L, P = .008; HBI: 7.18 ± 2.10 vs 5.73 ± 2.33, P = 0.012). Both DCE-MRI parameters showed prominent differences before and after treatment: K (1.86 ± 0.87 vs 1.39 ± 0.83 min, P = .017), BV (61.02 ± 28.49 vs 41.96 ± 22.75 mL/100 g, P = .005). There were significant correlations between ΔCRP or ΔHBI and percent change of CDE-MRI parameters (ΔK to ΔCRP: 0.659; ΔK to ΔHBI: 0.496; ΔBV to ΔCRP: 0.442; ΔBV to ΔHBI: 0.476). Compared to ΔK and ΔBV individually, the combination of both parameters performed best in assessment of therapeutic response with an area under the ROCs (AUC) of 0.948.K and BV parameters derived from DCE-MRI have the potential to assess for therapeutic response after FMT treatment for CD. The combination of K and BV measurements improved the predictive capability compared to the individual parameters.
Collapse
Affiliation(s)
| | - Faming Zhang
- Center of Intestinal Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | | | | |
Collapse
|
18
|
Ishiyama G, Lopez IA, Ishiyama P, Vinters HV, Ishiyama A. The blood labyrinthine barrier in the human normal and Meniere's disease macula utricle. Sci Rep 2017; 7:253. [PMID: 28325925 PMCID: PMC5428246 DOI: 10.1038/s41598-017-00330-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 02/20/2017] [Indexed: 12/12/2022] Open
Abstract
The ultrastructural organization of the blood labyrinthine barrier (BLB) was investigated in the human vestibular endorgan, the utricular macula, using postmortem specimens from individuals with documented normal auditory and vestibular function and surgical specimens from patients with intractable Meniere’s disease. Transmission electron microscopic analysis of capillaries located in the normal human utricular stroma showed vascular endothelial cells with few pinocytotic vesicles, covered by a smooth and uniform basement membrane surrounded by pericyte processes. Meniere’s disease specimens revealed differential ultrastructural pathological changes in the cellular elements of the microvasculature. With moderate degeneration of the BLB, there were numerous vesicles within the vascular endothelial cells (VECs), with increased numbers at the abluminal face, pericyte process detachment and disruption of the perivascular basement membrane surrounding the VECs. With severe degeneration of the BLB, there was severe vacuolization or frank apparent necrosis of VECs and loss of subcellular organelles. A higher severity of BLB degenerative changes was associated with a higher degree of basement membrane thickening and edematous changes within the vestibular stroma. This study presents the first ultrastructural analysis of the capillaries constituting the BLB in the human vestibular macula utricle from normal and Meniere’s disease.
Collapse
Affiliation(s)
- Gail Ishiyama
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, USA.
| | - Ivan A Lopez
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Paul Ishiyama
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Harry V Vinters
- Department of Pathology & Laboratory Medicine (Neuropathology), David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Akira Ishiyama
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, USA
| |
Collapse
|
19
|
Gentamicin Applied to the Oval Window Suppresses Vestibular Function in Guinea Pigs. J Assoc Res Otolaryngol 2017; 18:291-299. [PMID: 28050646 DOI: 10.1007/s10162-016-0609-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 12/05/2016] [Indexed: 10/20/2022] Open
Abstract
Intratympanic gentamicin therapy is widely used clinically to treat the debilitating symptoms of Ménière's disease. Cochleotoxicity is an undesirable potential side effect of the treatment and the risk of hearing loss increases proportionately with gentamicin concentration in the cochlea. It has recently been shown that gentamicin is readily absorbed through the oval window in guinea pigs. The present study uses quantitative functional measures of vestibular and cochlea function to investigate the efficacy of treating the vestibule by applying a small volume of gentamicin onto the stapes footplate in guinea pigs. Vestibular and cochlea function were assessed by recording short latency vestibular evoked potentials in response to linear head acceleration and changes in hearing threshold, respectively, 1 and 2 weeks following treatment. Histopathology was analyzed in the crista ampullaris of the posterior semi-circular canal and utricular macula in the vestibule, and in the basal and second turns of the cochlea. In animals receiving gentamicin on the stapes footplate, vestibular responses were significantly suppressed by 72.7 % 2 weeks after treatment with no significant loss of hearing. This suggests that the vestibule can be treated directly by applying gentamicin onto the stapes footplate.
Collapse
|
20
|
Wang X. The Structure and the Function of the Cochlear Intra-Strial Fluid-Blood Barrier. OTOLARYNGOLOGY (SUNNYVALE, CALIF.) 2017; 7. [PMID: 33282527 PMCID: PMC7713702 DOI: 10.4172/2161-119x.1000308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Xiaohan Wang
- Department of Otolaryngology/Head and Neck Surgery, Oregon Hearing Research Center, Oregon Health and Science University, USA
| |
Collapse
|
21
|
Brown DJ, Pastras CJ, Curthoys IS, Southwell CS, Van Roon L. Endolymph movement visualized with light sheet fluorescence microscopy in an acute hydrops model. Hear Res 2016; 339:112-24. [PMID: 27377233 DOI: 10.1016/j.heares.2016.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/30/2016] [Accepted: 06/13/2016] [Indexed: 10/21/2022]
Abstract
There are a variety of techniques available to investigate endolymph dynamics, primarily seeking to understand the cause of endolymphatic hydrops. Here we have taken the novel approach of injecting, via a glass micropipette, fluorescein isothiocyanate-dextran (FITC-dex) and artificial endolymph into scala media of anaesthetized guinea pigs, with subsequent imaging of the inner ear using Light Sheet Fluorescence Microscopy (LSFM) as a means to obtain highly resolved 3D visualization of fluid movements. Our results demonstrate endolymph movement into the utricle, semicircular canals and endolymphatic duct and sac when more than 2.5 μl of fluid had been injected into scala media, with no apparent movement of fluid into the perilymphatic compartments. There was no movement of endolymph into these compartments when less than 2.5 μl was injected. The remarkable uptake of the FITC-dex into the endolymphatic duct, including an absorption into the periductal channels surrounding the endolymphatic duct, highlights the functional role this structure plays in endolymph volume regulation.
Collapse
Affiliation(s)
- Daniel J Brown
- Sydney Medical School, The University of Sydney, Sydney, NSW, 2050, Australia.
| | | | - Ian S Curthoys
- Vestibular Research Laboratory, The University of Sydney, School of Psychology, Sydney, NSW, 2050, Australia
| | | | - Lieke Van Roon
- University of Utrecht, Faculty Nature and Technique, Inst. for Life Sciences and Chemistry, Utrecht, 3508 AD, The Netherlands
| |
Collapse
|
22
|
Pakdaman MN, Ishiyama G, Ishiyama A, Peng KA, Kim HJ, Pope WB, Sepahdari AR. Blood-Labyrinth Barrier Permeability in Menière Disease and Idiopathic Sudden Sensorineural Hearing Loss: Findings on Delayed Postcontrast 3D-FLAIR MRI. AJNR Am J Neuroradiol 2016; 37:1903-1908. [PMID: 27256854 DOI: 10.3174/ajnr.a4822] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/26/2016] [Indexed: 01/29/2023]
Abstract
BACKGROUND AND PURPOSE Menière disease and idiopathic sudden sensorineural hearing loss can have overlapping clinical presentation and may have similar pathophysiology. Prior studies using postcontrast 3D-FLAIR MR imaging suggest abnormal blood-labyrinth barrier permeability in both conditions, but the 2 diseases have not been directly compared by using the same imaging techniques. We hypothesized that delayed postcontrast 3D-FLAIR MR imaging would show differences in blood-labyrinth barrier permeability between Menière disease and idiopathic sudden sensorineural hearing loss. MATERIALS AND METHODS Patients with unilateral Menière disease (n = 32) and unilateral idiopathic sudden sensorineural hearing loss (n = 11) imaged with delayed postcontrast 3D-FLAIR MR imaging were retrospectively studied. Signal intensities of the medulla and perilymph of the cochlear basal turns of both ears in each patient were measured in a blinded fashion. Cochlea/medulla ratios were calculated for each ear as a surrogate for blood-labyrinth barrier permeability. The ears were segregated by clinical diagnosis. RESULTS Cochlea/medulla ratio was higher in symptomatic ears of patients with Menière disease (12.6 ± 7.4) than in patients with idiopathic sudden sensorineural hearing loss (5.7 ± 2.0) and asymptomatic ears of patients with Menière disease (8.0 ± 3.1), indicating increased blood-labyrinth barrier permeability in Menière disease ears. The differences in cochlea/medulla ratio between symptomatic and asymptomatic ears were significantly higher in Menière disease than in idiopathic sudden sensorineural hearing loss. Asymptomatic ears in patients with Menière disease showed higher cochlea/medulla ratio than symptomatic and asymptomatic ears in patients with idiopathic sudden sensorineural hearing loss. CONCLUSIONS Increased cochlea/medulla ratio indicates increased blood-labyrinth barrier permeability in Menière disease compared with idiopathic sudden sensorineural hearing loss. Increased cochlea/medulla ratio in asymptomatic ears of patients with Menière disease also suggests an underlying systemic cause of Menière disease and may provide a pathophysiologic biomarker.
Collapse
Affiliation(s)
- M N Pakdaman
- From the Departments of Radiological Sciences (M.N.P., H.J.K., W.B.P., A.R.S.)
| | | | - A Ishiyama
- Head and Neck Surgery (A.I., K.A.P.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - K A Peng
- Head and Neck Surgery (A.I., K.A.P.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - H J Kim
- From the Departments of Radiological Sciences (M.N.P., H.J.K., W.B.P., A.R.S.)
| | - W B Pope
- From the Departments of Radiological Sciences (M.N.P., H.J.K., W.B.P., A.R.S.)
| | - A R Sepahdari
- From the Departments of Radiological Sciences (M.N.P., H.J.K., W.B.P., A.R.S.)
| |
Collapse
|
23
|
Pathophysiology of the cochlear intrastrial fluid-blood barrier (review). Hear Res 2016; 338:52-63. [PMID: 26802581 DOI: 10.1016/j.heares.2016.01.010] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 01/11/2016] [Accepted: 01/14/2016] [Indexed: 12/20/2022]
Abstract
The blood-labyrinth barrier (BLB) in the stria vascularis is a highly specialized capillary network that controls exchanges between blood and the intrastitial space in the cochlea. The barrier shields the inner ear from blood-born toxic substances and selectively passes ions, fluids, and nutrients to the cochlea, playing an essential role in the maintenance of cochlear homeostasis. Anatomically, the BLB is comprised of endothelial cells (ECs) in the strial microvasculature, elaborated tight and adherens junctions, pericytes (PCs), basement membrane (BM), and perivascular resident macrophage-like melanocytes (PVM/Ms), which together form a complex "cochlear-vascular unit" in the stria vascularis. Physical interactions between the ECs, PCs, and PVM/Ms, as well as signaling between the cells, is critical for controlling vascular permeability and providing a proper environment for hearing function. Breakdown of normal interactions between components of the BLB is seen in a wide range of pathological conditions, including genetic defects and conditions engendered by inflammation, loud sound trauma, and ageing. In this review, we will discuss prevailing views of the structure and function of the strial cochlear-vascular unit (also referred to as the "intrastrial fluid-blood barrier"). We will also discuss the disrupted homeostasis seen in a variety of hearing disorders. Therapeutic targeting of the strial barrier may offer opportunities for improvement of hearing health and amelioration of auditory disorders. This article is part of a Special Issue entitled <Annual Reviews 2016>.
Collapse
|
24
|
Lombardo F, De Cori S, Aghakhanyan G, Montanaro D, De Marchi D, Frijia F, Fortunato S, Forli F, Chiappino D, Berrettini S, Canapicchi R. 3D-Flair sequence at 3T in cochlear otosclerosis. Eur Radiol 2016; 26:3744-51. [PMID: 26747254 DOI: 10.1007/s00330-015-4170-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 09/16/2015] [Accepted: 12/14/2015] [Indexed: 01/01/2023]
Abstract
PURPOSE To assess the capability of three-dimensional fluid-attenuated inversion recovery (3D-FLAIR) sequences in detecting signal alterations of the endolabyrinthine fluid in patients with otosclerosis. MATERIALS AND METHODS 3D-FLAIR before and after (-/+) gadolinium (Gd) administration was added to the standard MR protocol and acquired in 13 patients with a clinical/audiological diagnosis of severe/profound hearing loss in otosclerosis who were candidates for cochlear implantation and in 11 control subjects using 3-T magnetic resonance imaging (MRI) equipment. The MRI signal of the fluid-filled cochlea was assessed both visually and calculating the signal intensity ratio (SIR = signal intensity cochlea/brainstem). RESULTS We revealed no endocochlear signal abnormalities on T1-weighted -/+ Gd images for either group, while on 3D-FLAIR we found bilateral hyperintensity with enhancement after Gd administration in eight patients and bilateral hyperintensity without enhancement in one patient. No endocochlear signal abnormalities were detected in other patients or the control group. CONCLUSION Using 3-T MRI equipment, the 3D-FLAIR -/+ Gd sequence is able to detect the blood-labyrinth barrier (BLB) breakdown responsible for alterations of the endolabyrinthine fluid in patients with cochlear otosclerosis. We believe that 3D-FLAIR +/- Gd is an excellent imaging modality to assess the intra-cochlear damage in otosclerosis patients. KEY POINTS • Gd-enhanced T1-weighted MRI has limited application to detect intra-cochlear damage. • 3D-FLAIR is less sensitive to flux artefacts and allows multiplanar reconstruction. • Post-Gd 3D-FLAIR is advantageous as it may highlight the BLB breakdown. • Using 3D-FLAIR -/+ Gd, we were able to identify intra-cochlear signal hyperintensities. • 3D-FLAIR might be applied for monitoring disease progression and treatment response.
Collapse
Affiliation(s)
- Francesco Lombardo
- Fondazione CNR Regione Toscana "G. Monasterio", Neuroradiology Unit, Via Moruzzi, 1, 56124, Pisa, Italy.
| | - Sara De Cori
- Fondazione CNR Regione Toscana "G. Monasterio", Neuroradiology Unit, Via Moruzzi, 1, 56124, Pisa, Italy
| | - Gayane Aghakhanyan
- Fondazione CNR Regione Toscana "G. Monasterio", Neuroradiology Unit, Via Moruzzi, 1, 56124, Pisa, Italy
| | - Domenico Montanaro
- Fondazione CNR Regione Toscana "G. Monasterio", Neuroradiology Unit, Via Moruzzi, 1, 56124, Pisa, Italy
| | - Daniele De Marchi
- Fondazione CNR Regione Toscana "G. Monasterio", Neuroradiology Unit, Via Moruzzi, 1, 56124, Pisa, Italy
| | - Francesca Frijia
- Fondazione CNR Regione Toscana "G. Monasterio", Neuroradiology Unit, Via Moruzzi, 1, 56124, Pisa, Italy
| | - Susanna Fortunato
- ENT Audiology Phoniatry Unit, Department of Neuroscience, University of Pisa, Pisa, Italy
| | - Francesca Forli
- ENT Audiology Phoniatry Unit, Department of Neuroscience, University of Pisa, Pisa, Italy
| | - Dante Chiappino
- Fondazione CNR Regione Toscana "G. Monasterio", Department of Radiology, Massa, Italy
| | - Stefano Berrettini
- ENT Audiology Phoniatry Unit, Department of Neuroscience, University of Pisa, Pisa, Italy
| | - Raffaello Canapicchi
- Fondazione CNR Regione Toscana "G. Monasterio", Neuroradiology Unit, Via Moruzzi, 1, 56124, Pisa, Italy
| |
Collapse
|
25
|
Suppurative labyrinthitis associated with otitis media: 26 years’ experience. Braz J Otorhinolaryngol 2016; 82:82-7. [PMID: 26718959 PMCID: PMC9444629 DOI: 10.1016/j.bjorl.2014.12.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 12/24/2014] [Indexed: 11/20/2022] Open
|
26
|
Iron-based superparamagnetic nanoparticle contrast agents for MRI of infection and inflammation. AJR Am J Roentgenol 2015; 204:W302-13. [PMID: 25714316 DOI: 10.2214/ajr.14.12733] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE. In this article, we summarize the progress to date on the use of superparamagnetic iron oxide nanoparticles (SPIONs) as contrast agents for MRI of inflammatory processes. CONCLUSION. Phagocytosis by macrophages of injected SPIONs results in a prolonged shortening of both T2 and T2* leading to hypointensity of macrophage-infiltrated tissues in contrast-enhanced MR images. SPIONs as contrast agents are therefore useful for the in vivo MRI detection of macrophage infiltration, and there is substantial research and clinical interest in the use of SPION-based contrast agents for MRI of infection and inflammation. This technique has been used to identify active infection in patients with septic arthritis and osteomyelitis; importantly, the MRI signal intensity of the tissue has been found to return to its unenhanced value on successful treatment of the infection. In SPION contrast-enhanced MRI of vascular inflammation, animal studies have shown decreased macrophage uptake in atherosclerotic plaques after treatment with statin drugs. Human studies have shown that both coronary and carotid plaques that take up SPIONs are more prone to rupture and that abdominal aneurysms with increased SPION uptake are more likely to grow. Studies of patients with multiple sclerosis suggest that MRI using SPIONs may have increased sensitivity over gadolinium for plaque detection. Finally, SPIONs have enabled the tracking and imaging of transplanted stem cells in a recipient host.
Collapse
|
27
|
Shi X, Zhang F, Urdang Z, Dai M, Neng L, Zhang J, Chen S, Ramamoorthy S, Nuttall AL. Thin and open vessel windows for intra-vital fluorescence imaging of murine cochlear blood flow. Hear Res 2014; 313:38-46. [PMID: 24780131 DOI: 10.1016/j.heares.2014.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 03/07/2014] [Accepted: 04/15/2014] [Indexed: 12/20/2022]
Abstract
Normal microvessel structure and function in the cochlea is essential for maintaining the ionic and metabolic homeostasis required for hearing function. Abnormal cochlear microcirculation has long been considered an etiologic factor in hearing disorders. A better understanding of cochlear blood flow (CoBF) will enable more effective amelioration of hearing disorders that result from aberrant blood flow. However, establishing the direct relationship between CoBF and other cellular events in the lateral wall and response to physio-pathological stress remains a challenge due to the lack of feasible interrogation methods and difficulty in accessing the inner ear. Here we report on new methods for studying the CoBF in a mouse model using a thin or open vessel-window in combination with fluorescence intra-vital microscopy (IVM). An open vessel-window enables investigation of vascular cell biology and blood flow permeability, including pericyte (PC) contractility, bone marrow cell migration, and endothelial barrier leakage, in wild type and fluorescent protein-labeled transgenic mouse models with high spatial and temporal resolution. Alternatively, the thin vessel-window method minimizes disruption of the homeostatic balance in the lateral wall and enables study CoBF under relatively intact physiological conditions. A thin vessel-window method can also be used for time-based studies of physiological and pathological processes. Although the small size of the mouse cochlea makes surgery difficult, the methods are sufficiently developed for studying the structural and functional changes in CoBF under normal and pathological conditions.
Collapse
Affiliation(s)
- Xiaorui Shi
- Oregon Hearing Research Center, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, OR, USA.
| | - Fei Zhang
- Oregon Hearing Research Center, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Zachary Urdang
- Oregon Hearing Research Center, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Min Dai
- Oregon Hearing Research Center, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Lingling Neng
- Oregon Hearing Research Center, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Jinhui Zhang
- Oregon Hearing Research Center, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Songlin Chen
- Oregon Hearing Research Center, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Sripriya Ramamoorthy
- Oregon Hearing Research Center, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Alfred L Nuttall
- Oregon Hearing Research Center, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
28
|
Tan WJT, Thorne PR, Vlajkovic SM. Noise-induced cochlear inflammation. World J Otorhinolaryngol 2013; 3:89-99. [DOI: 10.5319/wjo.v3.i3.89] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/08/2013] [Accepted: 08/20/2013] [Indexed: 02/06/2023] Open
Abstract
Hearing loss is the most common sensory disability with considerable social and economic implications. According to recent World Health Organization estimates, 360 million people worldwide suffer from moderate to profound hearing loss. Exposure to excessive noise is one of the major causes of sensorineural hearing loss, secondary only to age-related hearing loss (presbyacusis). Since cochlear tissues have limited abilities of repair and regeneration, this damage can be irreversible, leading to cochlear dysfunction and permanent hearing loss. Recent studies have shown that cochlear inflammation can be induced by noise exposure and contribute to the overall pathogenesis of cochlear injury and hearing loss. The cochlea is separated from the systemic circulation by the blood-labyrinth barrier, which is physiologically similar to the blood-brain barrier of the central nervous system. Because of this feature, the cochlea was originally considered an immunologically privileged organ. However, this postulate has been challenged by the evidence of an inflammatory response in the cochlea in the presence of bacterial or viral pathogens or antigens that can cause labyrinthitis. Although the main purpose of the inflammatory reaction is to protect against invading pathogens, the inflammatory response can also cause significant bystander injury to the delicate structures of the cochlea. The cochlear inflammatory response is characterised by the generation of proinflammatory mediators (cytokines, chemokines and adhesion molecules), and the recruitment of inflammatory cells (leukocytes). Here, we present an overview of the current research on cochlear inflammation, with particular emphasis on noise-induced cochlear inflammation. We also discuss treatment strategies aimed at the suppression of inflammation, which may potentially lead to mitigation of hearing loss.
Collapse
|