1
|
Bae WC. Editorial for "In Vivo Assessment of Age- and Loading Configuration-Related Changes in Multiscale Mechanical Behavior of the Human Proximal Femur Using MRI-Based Finite Element Analysis". J Magn Reson Imaging 2021; 53:913-914. [PMID: 33155743 DOI: 10.1002/jmri.27427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 11/08/2022] Open
Affiliation(s)
- Won C Bae
- Department of Radiology, VA San Diego Healthcare System, San Diego, California, USA
- Department of Radiology, University of California-San Diego, La Jolla, California, USA
| |
Collapse
|
2
|
Zhang L, Wang L, Fu R, Wang J, Yang D, Liu Y, Zhang W, Liang W, Yang R, Yang H, Cheng X. In Vivo
Assessment of Age‐ and Loading Configuration‐Related Changes in Multiscale Mechanical Behavior of the Human Proximal Femur Using MRI‐Based Finite Element Analysis. J Magn Reson Imaging 2020; 53:905-912. [PMID: 33075178 DOI: 10.1002/jmri.27403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 01/08/2023] Open
Affiliation(s)
- Lingyun Zhang
- Department of Biomedical Engineering, Faculty of Environment and Life Science Beijing University of Technology Beijing China
| | - Ling Wang
- Department of Radiology Beijing Jishuitan Hospital Beijing China
| | - Ruisen Fu
- Department of Biomedical Engineering, Faculty of Environment and Life Science Beijing University of Technology Beijing China
| | - Jianing Wang
- Department of Biomedical Engineering, Faculty of Environment and Life Science Beijing University of Technology Beijing China
| | - Dongyue Yang
- Department of Biomedical Engineering, Faculty of Environment and Life Science Beijing University of Technology Beijing China
| | - Yandong Liu
- Department of Radiology Beijing Jishuitan Hospital Beijing China
| | - Wei Zhang
- Department of Radiology Beijing Jishuitan Hospital Beijing China
| | - Wei Liang
- Department of Radiology Beijing Jishuitan Hospital Beijing China
| | - Ruopei Yang
- Department of Radiology Beijing Jishuitan Hospital Beijing China
| | - Haisheng Yang
- Department of Biomedical Engineering, Faculty of Environment and Life Science Beijing University of Technology Beijing China
| | - Xiaoguang Cheng
- Department of Radiology Beijing Jishuitan Hospital Beijing China
| |
Collapse
|
3
|
Sollmann N, Löffler MT, Kronthaler S, Böhm C, Dieckmeyer M, Ruschke S, Kirschke JS, Carballido-Gamio J, Karampinos DC, Krug R, Baum T. MRI-Based Quantitative Osteoporosis Imaging at the Spine and Femur. J Magn Reson Imaging 2020; 54:12-35. [PMID: 32584496 DOI: 10.1002/jmri.27260] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 12/27/2022] Open
Abstract
Osteoporosis is a systemic skeletal disease with a high prevalence worldwide, characterized by low bone mass and microarchitectural deterioration, predisposing an individual to fragility fractures. Dual-energy X-ray absorptiometry (DXA) has been the clinical reference standard for diagnosing osteoporosis and for assessing fracture risk for decades. However, other imaging modalities are of increasing importance to investigate the etiology, treatment, and fracture risk. The purpose of this work is to review the available literature on quantitative magnetic resonance imaging (MRI) methods and related findings in osteoporosis at the spine and proximal femur as the clinically most important fracture sites. Trabecular bone microstructure analysis at the proximal femur based on high-resolution MRI allows for a better prediction of osteoporotic fracture risk than DXA-based bone mineral density (BMD) alone. In the 1990s, T2 * mapping was shown to correlate with the density and orientation of the trabecular bone. Recently, quantitative susceptibility mapping (QSM), which overcomes some of the limitations of T2 * mapping, has been applied for trabecular bone quantifications at the spine, whereas ultrashort echo time (UTE) imaging provides valuable surrogate markers of cortical bone quantity and quality. Magnetic resonance spectroscopy (MRS) and chemical shift encoding-based water-fat MRI (CSE-MRI) enable the quantitative assessment of the nonmineralized bone compartment through extraction of the bone marrow fat fraction (BMFF). Furthermore, CSE-MRI allows for the differentiation of osteoporotic vs. pathologic fractures, which is of high clinical relevance. Lastly, advanced postprocessing and image analysis tools, particularly considering statistical parametric mapping and region-specific BMFF distributions, have high potential to further improve MRI-based fracture risk assessments at the spine and hip. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Nico Sollmann
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Maximilian T Löffler
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Sophia Kronthaler
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Christof Böhm
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Michael Dieckmeyer
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Stefan Ruschke
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Jan S Kirschke
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Julio Carballido-Gamio
- Department of Radiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Roland Krug
- Department of Radiology and Biomedical Imaging, School of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Thomas Baum
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
4
|
Agten CA, Honig S, Saha PK, Regatte R, Chang G. Subchondral bone microarchitecture analysis in the proximal tibia at 7-T MRI. Acta Radiol 2018; 59:716-722. [PMID: 28899123 DOI: 10.1177/0284185117732098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background Bone remodels in response to mechanical loads and osteoporosis results from impaired ability of bone to remodel. Bone microarchitecture analysis provides information on bone quality beyond bone mineral density (BMD). Purpose To compare subchondral bone microarchitecture parameters in the medial and lateral tibia plateau in individuals with and without fragility fractures. Material and Methods Twelve female patients (mean age = 58 ± 15 years; six with and six without previous fragility fractures) were examined with dual-energy X-ray absorptiometry (DXA) and 7-T magnetic resonance imaging (MRI) of the proximal tibia. A transverse high-resolution three-dimensional fast low-angle shot sequence was acquired (0.234 × 0.234 × 1 mm). Digital topological analysis (DTA) was applied to the medial and lateral subchondral bone of the proximal tibia. The following DTA-based bone microarchitecture parameters were assessed: apparent bone volume; trabecular thickness; profile-edge-density (trabecular bone erosion parameter); profile-interior-density (intact trabecular rods parameter); plate-to-rod ratio; and erosion index. We compared femoral neck T-scores and bone microarchitecture parameters between patients with and without fragility fracture. Results There was no statistical significant difference in femoral neck T-scores between individuals with and without fracture (-2.4 ± 0.9 vs. -1.8 ± 0.7, P = 0.282). Apparent bone volume in the medial compartment was lower in patients with previous fragility fracture (0.295 ± 0.022 vs. 0.317 ± 0.009; P = 0.016). Profile-edge-density, a trabecular bone erosion parameter, was higher in patients with previous fragility fracture in the medial (0.008 ± 0.003 vs. 0.005 ± 0.001) and lateral compartment (0.008 ± 0.002 vs. 0.005 ± 0.001); both P = 0.025. Other DTA parameters did not differ between groups. Conclusion 7-T MRI and DTA permit detection of subtle changes in subchondral bone quality when differences in BMD are not evident.
Collapse
Affiliation(s)
- Christoph A Agten
- Center for Musculoskeletal Care, Department of Radiology, NYU School of Medicine, New York, NY, USA
- NYU Langone Medical Center, New York, NY, USA
| | - Stephen Honig
- NYU Langone Medical Center, New York, NY, USA
- Osteoporosis Center, Hospital for Joint Diseases, School of Medicine, New York University, New York, NY, USA
| | - Punam K Saha
- Structural Imaging Laboratory, Departments of ECE and Radiology, University of Iowa, Iowa City, IA, USA
| | - Ravinder Regatte
- NYU Langone Medical Center, New York, NY, USA
- Department of Radiology, NYU School of Medicine, New York, NY, USA
| | - Gregory Chang
- Center for Musculoskeletal Care, Department of Radiology, NYU School of Medicine, New York, NY, USA
- NYU Langone Medical Center, New York, NY, USA
| |
Collapse
|
5
|
Haque S, Lau A, Beattie K, Adachi JD. Novel Imaging Modalities in Osteoporosis Diagnosis and Risk Stratification. CURRENT TREATMENT OPTIONS IN RHEUMATOLOGY 2018. [DOI: 10.1007/s40674-018-0099-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
West SL, Rajapakse CS, Rayner T, Miller R, Slinger MA, Wells GD. The reproducibility of measuring trabecular bone parameters using a commercially available high-resolution magnetic resonance imaging approach: A pilot study. Bone Rep 2018; 8:180-186. [PMID: 29955637 PMCID: PMC6020268 DOI: 10.1016/j.bonr.2018.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 04/09/2018] [Accepted: 04/23/2018] [Indexed: 02/02/2023] Open
Abstract
Bone imaging is currently the best non-invasive way to assess changes to bone associated with aging or chronic disease. However, common imaging techniques such as dual energy x-ray absorptiometry are associated with limitations. Magnetic resonance imaging (MRI) is a radiation-free technique that can measure bone microarchitecture. However, published MRI bone assessment protocols use specialized MRI coils and sequences and therefore have limited transferability across institutions. We developed a protocol on a Siemens 3 Tesla MRI machine, using a commercially available coil (Siemens 15 CH knee coil), and manufacturer supplied sequences to acquire images at the tibia. We tested the reproducibility of the FSE and the GE Axial sequences and hypothesized that both would generate reproducible trabecular bone parameters. Eight healthy adults (age 25.5 ± 5.4 years) completed three measurements of each MRI sequence at the tibia. Each of the images was processed for 8 different bone parameters (such as volumetric bone volume fraction). We computed the coefficient of variation (CV) and intraclass correlation coefficients (ICC) to assess reproducibility and reliability. Both sequences resulted in trabecular parameters that were reproducible (CV <5% for most) and reliable (ICC >80% for all). Our study is one of the first to report that a commercially available MRI protocol can result in reproducible data, and is significant as MRI may be an accessible method to measure bone microarchitecture in clinical or research environments. This technique requires further testing, including validation and evaluation in other populations. Trabecular bone is difficult to measure using commercial MRI techniques Reproducibility of a MRI protocol measuring trabecular bone was assessed Tibia trabecular bone was reproducible using a knee coil and a FSE Axial sequence Tibia trabecular bone was reproducible using a knee coil and a GE Axial sequence
Collapse
Affiliation(s)
- Sarah L West
- Department of Biology, Trent/Fleming School of Nursing, Trent University, Peterborough, Ontario, Canada.,Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Chamith S Rajapakse
- Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.,Department of Orthopaedic Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Tammy Rayner
- Radiology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Rhiannon Miller
- Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.,Department of Orthopaedic Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Michelle A Slinger
- Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.,Department of Orthopaedic Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Greg D Wells
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Chang G, Rajapakse CS, Chen C, Welbeck A, Egol K, Regatte RR, Saha PK, Honig S. 3-T MR Imaging of Proximal Femur Microarchitecture in Subjects with and without Fragility Fracture and Nonosteoporotic Proximal Femur Bone Mineral Density. Radiology 2018; 287:608-619. [PMID: 29457963 DOI: 10.1148/radiol.2017170138] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose To determine if 3-T magnetic resonance (MR) imaging of proximal femur microarchitecture can allow discrimination of subjects with and without fragility fracture who do not have osteoporotic proximal femur bone mineral density (BMD). Materials and Methods Sixty postmenopausal women (30 with and 30 without fragility fracture) who had BMD T scores of greater than -2.5 in the hip were recruited. All subjects underwent dual-energy x-ray absorptiometry to assess BMD and 3-T MR imaging of the same hip to assess bone microarchitecture. World Health Organization Fracture Risk Assessment Tool (FRAX) scores were also computed. We used the Mann-Whitney test, receiver operating characteristics analyses, and Spearman correlation estimates to assess differences between groups, discriminatory ability with parameters, and correlations among BMD, microarchitecture, and FRAX scores. Results Patients with versus without fracture showed a lower trabecular plate-to-rod ratio (median, 2.41 vs 4.53, respectively), lower trabecular plate width (0.556 mm vs 0.630 mm, respectively), and lower trabecular thickness (0.114 mm vs 0.126 mm) within the femoral neck, and higher trabecular rod disruption (43.5 vs 19.0, respectively), higher trabecular separation (0.378 mm vs 0.323 mm, respectively), and lower trabecular number (0.158 vs 0.192, respectively), lower trabecular connectivity (0.015 vs 0.027, respectively) and lower trabecular plate-to-rod ratio (6.38 vs 8.09, respectively) in the greater trochanter (P < .05 for all). Trabecular plate-to-rod ratio, plate width, and thickness within the femoral neck (areas under the curve [AUCs], 0.654-0.683) and trabecular rod disruption, number, connectivity, plate-to-rod ratio, and separation within the greater trochanter (AUCs, 0.662-0.694) allowed discrimination of patients with fracture from control subjects. Femoral neck, total hip, and spine BMD did not differ between and did not allow discrimination between groups. FRAX scores including and not including BMD allowed discrimination between groups (AUCs, 0.681-0.773). Two-factor models (one MR imaging microarchitectural parameter plus a FRAX score without BMD) allowed discrimination between groups (AUCs, 0.702-0.806). There were no linear correlations between BMD and microarchitectural parameters (Spearman ρ, -0.198 to 0.196). Conclusion 3-T MR imaging of proximal femur microarchitecture allows discrimination between subjects with and without fragility fracture who have BMD T scores of greater than -2.5 and may provide different information about bone quality than that provided by dual-energy x-ray absorptiometry. © RSNA, 2018.
Collapse
Affiliation(s)
- Gregory Chang
- From the Department of Radiology, Center for Biomedical Imaging (G.C., A.W., R.R.R.), Department of Orthopaedic Surgery, Hospital for Joint Diseases (K.E.), and Division of Rheumatology, Osteoporosis Center, Hospital for Joint Diseases (S.H.), NYU Langone Medical Center, 660 First Ave, New York, NY 10016; Departments of Radiology and Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pa (C.S.R.); and College of Engineering, University of Iowa, Iowa City, Iowa (C.C., P.K.S.)
| | - Chamith S Rajapakse
- From the Department of Radiology, Center for Biomedical Imaging (G.C., A.W., R.R.R.), Department of Orthopaedic Surgery, Hospital for Joint Diseases (K.E.), and Division of Rheumatology, Osteoporosis Center, Hospital for Joint Diseases (S.H.), NYU Langone Medical Center, 660 First Ave, New York, NY 10016; Departments of Radiology and Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pa (C.S.R.); and College of Engineering, University of Iowa, Iowa City, Iowa (C.C., P.K.S.)
| | - Cheng Chen
- From the Department of Radiology, Center for Biomedical Imaging (G.C., A.W., R.R.R.), Department of Orthopaedic Surgery, Hospital for Joint Diseases (K.E.), and Division of Rheumatology, Osteoporosis Center, Hospital for Joint Diseases (S.H.), NYU Langone Medical Center, 660 First Ave, New York, NY 10016; Departments of Radiology and Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pa (C.S.R.); and College of Engineering, University of Iowa, Iowa City, Iowa (C.C., P.K.S.)
| | - Arakua Welbeck
- From the Department of Radiology, Center for Biomedical Imaging (G.C., A.W., R.R.R.), Department of Orthopaedic Surgery, Hospital for Joint Diseases (K.E.), and Division of Rheumatology, Osteoporosis Center, Hospital for Joint Diseases (S.H.), NYU Langone Medical Center, 660 First Ave, New York, NY 10016; Departments of Radiology and Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pa (C.S.R.); and College of Engineering, University of Iowa, Iowa City, Iowa (C.C., P.K.S.)
| | - Kenneth Egol
- From the Department of Radiology, Center for Biomedical Imaging (G.C., A.W., R.R.R.), Department of Orthopaedic Surgery, Hospital for Joint Diseases (K.E.), and Division of Rheumatology, Osteoporosis Center, Hospital for Joint Diseases (S.H.), NYU Langone Medical Center, 660 First Ave, New York, NY 10016; Departments of Radiology and Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pa (C.S.R.); and College of Engineering, University of Iowa, Iowa City, Iowa (C.C., P.K.S.)
| | - Ravinder R Regatte
- From the Department of Radiology, Center for Biomedical Imaging (G.C., A.W., R.R.R.), Department of Orthopaedic Surgery, Hospital for Joint Diseases (K.E.), and Division of Rheumatology, Osteoporosis Center, Hospital for Joint Diseases (S.H.), NYU Langone Medical Center, 660 First Ave, New York, NY 10016; Departments of Radiology and Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pa (C.S.R.); and College of Engineering, University of Iowa, Iowa City, Iowa (C.C., P.K.S.)
| | - Punam K Saha
- From the Department of Radiology, Center for Biomedical Imaging (G.C., A.W., R.R.R.), Department of Orthopaedic Surgery, Hospital for Joint Diseases (K.E.), and Division of Rheumatology, Osteoporosis Center, Hospital for Joint Diseases (S.H.), NYU Langone Medical Center, 660 First Ave, New York, NY 10016; Departments of Radiology and Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pa (C.S.R.); and College of Engineering, University of Iowa, Iowa City, Iowa (C.C., P.K.S.)
| | - Stephen Honig
- From the Department of Radiology, Center for Biomedical Imaging (G.C., A.W., R.R.R.), Department of Orthopaedic Surgery, Hospital for Joint Diseases (K.E.), and Division of Rheumatology, Osteoporosis Center, Hospital for Joint Diseases (S.H.), NYU Langone Medical Center, 660 First Ave, New York, NY 10016; Departments of Radiology and Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pa (C.S.R.); and College of Engineering, University of Iowa, Iowa City, Iowa (C.C., P.K.S.)
| |
Collapse
|
8
|
Chang G, Boone S, Martel D, Rajapakse CS, Hallyburton RS, Valko M, Honig S, Regatte RR. MRI assessment of bone structure and microarchitecture. J Magn Reson Imaging 2017; 46:323-337. [PMID: 28165650 PMCID: PMC5690546 DOI: 10.1002/jmri.25647] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/21/2016] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis is a disease of weak bone and increased fracture risk caused by low bone mass and microarchitectural deterioration of bone tissue. The standard-of-care test used to diagnose osteoporosis, dual-energy x-ray absorptiometry (DXA) estimation of areal bone mineral density (BMD), has limitations as a tool to identify patients at risk for fracture and as a tool to monitor therapy response. Magnetic resonance imaging (MRI) assessment of bone structure and microarchitecture has been proposed as another method to assess bone quality and fracture risk in vivo. MRI is advantageous because it is noninvasive, does not require ionizing radiation, and can evaluate both cortical and trabecular bone. In this review article, we summarize and discuss research progress on MRI of bone structure and microarchitecture over the last decade, focusing on in vivo translational studies. Single-center, in vivo studies have provided some evidence for the added value of MRI as a biomarker of fracture risk or treatment response. Larger, prospective, multicenter studies are needed in the future to validate the results of these initial translational studies. LEVEL OF EVIDENCE 5 Technical Efficacy: Stage 5 J. MAGN. RESON. IMAGING 2017;46:323-337.
Collapse
Affiliation(s)
- Gregory Chang
- Department of Radiology, Center for Biomedical Imaging, NYU Langone Medical Center, New York, New York, USA
| | - Sean Boone
- Department of Radiology, Center for Biomedical Imaging, NYU Langone Medical Center, New York, New York, USA
| | - Dimitri Martel
- Department of Radiology, Center for Biomedical Imaging, NYU Langone Medical Center, New York, New York, USA
| | - Chamith S Rajapakse
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert S Hallyburton
- Department of Radiology, Center for Biomedical Imaging, NYU Langone Medical Center, New York, New York, USA
| | - Mitch Valko
- Department of Radiology, Center for Biomedical Imaging, NYU Langone Medical Center, New York, New York, USA
| | - Stephen Honig
- Osteoporosis Center, Hospital for Joint Diseases, NYU Langone Medical Center, New York, New York, USA
| | - Ravinder R Regatte
- Department of Radiology, Center for Biomedical Imaging, NYU Langone Medical Center, New York, New York, USA
| |
Collapse
|
9
|
Chen M, Yuan H. Assessment of porosity index of the femoral neck and tibia by 3D ultra-short echo-time MRI. J Magn Reson Imaging 2017; 47:820-828. [PMID: 28561910 DOI: 10.1002/jmri.25782] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/19/2017] [Indexed: 12/23/2022] Open
Affiliation(s)
- Min Chen
- Department of Radiology; Peking University Third Hospital; Beijing P.R. China
| | - Huishu Yuan
- Department of Radiology; Peking University Third Hospital; Beijing P.R. China
| |
Collapse
|
10
|
Manhard MK, Nyman JS, Does MD. Advances in imaging approaches to fracture risk evaluation. Transl Res 2017; 181:1-14. [PMID: 27816505 PMCID: PMC5357194 DOI: 10.1016/j.trsl.2016.09.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 09/19/2016] [Accepted: 09/27/2016] [Indexed: 01/23/2023]
Abstract
Fragility fractures are a growing problem worldwide, and current methods for diagnosing osteoporosis do not always identify individuals who require treatment to prevent a fracture and may misidentify those not a risk. Traditionally, fracture risk is assessed using dual-energy X-ray absorptiometry, which provides measurements of areal bone mineral density at sites prone to fracture. Recent advances in imaging show promise in adding new information that could improve the prediction of fracture risk in the clinic. As reviewed herein, advances in quantitative computed tomography (QCT) predict hip and vertebral body strength; high-resolution HR-peripheral QCT (HR-pQCT) and micromagnetic resonance imaging assess the microarchitecture of trabecular bone; quantitative ultrasound measures the modulus or tissue stiffness of cortical bone; and quantitative ultrashort echo-time MRI methods quantify the concentrations of bound water and pore water in cortical bone, which reflect a variety of mechanical properties of bone. Each of these technologies provides unique characteristics of bone and may improve fracture risk diagnoses and reduce prevalence of fractures by helping to guide treatment decisions.
Collapse
Affiliation(s)
- Mary Kate Manhard
- Biomedical Engineering, Vanderbilt University, Nashville, TN; Vanderbilt University Institute of Imaging Science, Nashville, TN
| | - Jeffry S Nyman
- Biomedical Engineering, Vanderbilt University, Nashville, TN; Vanderbilt University Institute of Imaging Science, Nashville, TN; Orthopaedic Surgery and Rehabilitation, Vanderbilt University, Nashville, TN; Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, TN; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN
| | - Mark D Does
- Biomedical Engineering, Vanderbilt University, Nashville, TN; Vanderbilt University Institute of Imaging Science, Nashville, TN; Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN; Electrical Engineering, Vanderbilt University, Nashville, TN.
| |
Collapse
|
11
|
Kraiger M, Schnizer B, Stollberger R. The vertebral trabecular model revisited: magnetic field distribution in the vicinity of osseous disconnections. Phys Med Biol 2016; 61:N618-N631. [DOI: 10.1088/0031-9155/61/23/n618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|