1
|
Xu H, Xu C, Xu J. Altered gray matter structural covariance networks in young adults with obesity. Int J Obes (Lond) 2025; 49:801-808. [PMID: 39695278 DOI: 10.1038/s41366-024-01703-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/27/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND Overwhelming evidence showed that obesity was associated with abnormal brain functional networks. However, the changes of structural covariance networks (SCNs) based on cortical thickness (CT) and cortical surface area (CSA) in obesity is still unclear. METHODS In this study, 243 young adults with obesity and matched 243 lean individuals were enrolled from the Human Connectome Project Release S1200 dataset. All participants underwent magnetic resonance imaging scans following clinical and neuropsychological assessments. SCNs matrices were constructed by Brain Connectivity Toolbox based on both CT and CSA. Nonparametric permutation tests were adopted to examine group differences of these matrices. RESULTS Young adults with obesity exhibited lower CSA of left entorhinal cortex, but higher CT of both left rostral anterior cingulate cortex and right superior parietal lobule, as well as lower CT of left temporal pole. While in terms of global network measures, there were no significant group differences; in terms of nodal network measures, young adults with obesity exhibited alterations in widespread brain regions including left posterior cingulate cortex, bilateral superior frontal gyrus, left entorhinal cortex and right insula. CONCLUSIONS Young adults with obesity exhibited abnormal nodal network measures in widespread brain regions involved in default mode network, central executive network and salience network. These findings indicate the adverse effects of obesity on young adults might be associated with the altered triple network.
Collapse
Affiliation(s)
- Hui Xu
- School of Mental Health, Zhejiang Provincial Clinical Research Center for Mental Health, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, China.
| | - Cheng Xu
- School of Mental Health, Zhejiang Provincial Clinical Research Center for Mental Health, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jing Xu
- School of Mental Health, Zhejiang Provincial Clinical Research Center for Mental Health, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
2
|
Guo H, Han J, Xiao M, Chen H. Functional alterations in overweight/obesity: focusing on the reward and executive control network. Rev Neurosci 2024; 35:697-707. [PMID: 38738975 DOI: 10.1515/revneuro-2024-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/26/2024] [Indexed: 05/14/2024]
Abstract
Overweight (OW) and obesity (OB) have become prevalent issues in the global public health arena. Serving as a prominent risk factor for various chronic diseases, overweight/obesity not only poses serious threats to people's physical and mental health but also imposes significant medical and economic burdens on society as a whole. In recent years, there has been a growing focus on basic scientific research dedicated to seeking the neural evidence underlying overweight/obesity, aiming to elucidate its causes and effects by revealing functional alterations in brain networks. Among them, dysfunction in the reward network (RN) and executive control network (ECN) during both resting state and task conditions is considered pivotal in neuroscience research on overweight/obesity. Their aberrations contribute to explaining why persons with overweight/obesity exhibit heightened sensitivity to food rewards and eating disinhibition. This review centers on the reward and executive control network by analyzing and organizing the resting-state and task-based fMRI studies of functional brain network alterations in overweight/obesity. Building upon this foundation, the authors further summarize a reward-inhibition dual-system model, with a view to establishing a theoretical framework for future exploration in this field.
Collapse
Affiliation(s)
- Haoyu Guo
- Faculty of Psychology, 26463 Southwest University , Chongqing, China
- Key Laboratory of Cognition and Personality, Ministry of Education, 26463 Southwest University , Chongqing 400715, China
| | - Jinfeng Han
- Faculty of Psychology, 26463 Southwest University , Chongqing, China
- Key Laboratory of Cognition and Personality, Ministry of Education, 26463 Southwest University , Chongqing 400715, China
| | - Mingyue Xiao
- Faculty of Psychology, 26463 Southwest University , Chongqing, China
- Key Laboratory of Cognition and Personality, Ministry of Education, 26463 Southwest University , Chongqing 400715, China
| | - Hong Chen
- Faculty of Psychology, 26463 Southwest University , Chongqing, China
- Key Laboratory of Cognition and Personality, Ministry of Education, 26463 Southwest University , Chongqing 400715, China
- Research Center of Psychology and Social Development, 26463 Southwest University , Chongqing 400715, China
| |
Collapse
|
3
|
Mercante F, Micioni Di Bonaventura E, Pucci M, Botticelli L, Cifani C, D'Addario C, Micioni Di Bonaventura MV. Repeated binge-like eating episodes in female rats alter adenosine A 2A and dopamine D2 receptor genes regulation in the brain reward system. Int J Eat Disord 2024; 57:1433-1446. [PMID: 38650547 DOI: 10.1002/eat.24216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 04/25/2024]
Abstract
OBJECTIVE Binge-eating disorder is an eating disorder characterized by recurrent binge-eating episodes, during which individuals consume excessive amounts of highly palatable food (HPF) in a short time. This study investigates the intricate relationship between repeated binge-eating episode and the transcriptional regulation of two key genes, adenosine A2A receptor (A2AAR) and dopamine D2 receptor (D2R), in selected brain regions of rats. METHOD Binge-like eating behavior on HPF was induced through the combination of food restrictions and frustration stress (15 min exposure to HPF without access to it) in female rats, compared to control rats subjected to only restriction or only stress or none of these two conditions. After chronic binge-eating episodes, nucleic acids were extracted from different brain regions, and gene expression levels were assessed through real-time quantitative PCR. The methylation pattern on genes' promoters was investigated using pyrosequencing. RESULTS The analysis revealed A2AAR upregulation in the amygdala and in the ventral tegmental area (VTA), and D2R downregulation in the nucleus accumbens in binge-eating rats. Concurrently, site-specific DNA methylation alterations at gene promoters were identified in the VTA for A2AAR and in the amygdala and caudate putamen for D2R. DISCUSSION The alterations on A2AAR and D2R genes regulation highlight the significance of epigenetic mechanisms in the etiology of binge-eating behavior, and underscore the potential for targeted therapeutic interventions, to prevent the development of this maladaptive feeding behavior. These findings provide valuable insights for future research in the field of eating disorders. PUBLIC SIGNIFICANCE Using an animal model with face, construct, and predictive validity, in which cycles of food restriction and frustration stress evoke binge-eating behavior, we highlight the significance of epigenetic mechanisms on adenosine A2A receptor (A2AAR) and dopamine D2 receptor (D2R) genes regulation. They could represent new potential targets for the pharmacological management of eating disorders characterized by this maladaptive feeding behavior.
Collapse
Affiliation(s)
- Francesca Mercante
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | | | - Mariangela Pucci
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - Luca Botticelli
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Carlo Cifani
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Claudio D'Addario
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
4
|
Dodd K, Legget KT, Cornier MA, Novick AM, McHugo M, Berman BD, Lawful BP, Tregellas JR. Relationship between functional connectivity and weight-gain risk of antipsychotics in schizophrenia. Schizophr Res 2024; 267:173-181. [PMID: 38552340 PMCID: PMC11332974 DOI: 10.1016/j.schres.2024.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/19/2024] [Accepted: 03/18/2024] [Indexed: 05/21/2024]
Abstract
BACKGROUND The mechanisms by which antipsychotic medications (APs) contribute to obesity in schizophrenia are not well understood. Because AP effects on functional brain connectivity may contribute to weight effects, the current study investigated how AP-associated weight-gain risk relates to functional connectivity in schizophrenia. METHODS Fifty-five individuals with schizophrenia (final N = 54) were divided into groups based on previously reported AP weight-gain risk (no APs/low risk [N = 19]; moderate risk [N = 17]; high risk [N = 18]). Resting-state functional magnetic resonance imaging (fMRI) was completed after an overnight fast ("fasted") and post-meal ("fed"). Correlations between AP weight-gain risk and functional connectivity were assessed at the whole-brain level and in reward- and eating-related brain regions (anterior insula, caudate, nucleus accumbens). RESULTS When fasted, greater AP weight-gain risk was associated with increased connectivity between thalamus and sensorimotor cortex (pFDR = 0.021). When fed, greater AP weight-gain risk was associated with increased connectivity between left caudate and left precentral/postcentral gyri (pFDR = 0.048) and between right caudate and multiple regions, including the left precentral/postcentral gyri (pFDR = 0.001), intracalcarine/precuneal/cuneal cortices (pFDR < 0.001), and fusiform gyrus (pFDR = 0.008). When fed, greater AP weight-gain risk was also associated with decreased connectivity between right anterior insula and ventromedial prefrontal cortex (pFDR = 0.002). CONCLUSIONS APs with higher weight-gain risk were associated with greater connectivity between reward-related regions and sensorimotor regions when fasted, perhaps relating to motor anticipation for consumption. Higher weight-gain risk APs were also associated with increased connectivity between reward, salience, and visual regions when fed, potentially reflecting greater desire for consumption following satiety.
Collapse
Affiliation(s)
- Keith Dodd
- Department of Psychiatry, University of Colorado School of Medicine, Anschutz Medical Campus, Anschutz Health Sciences Building, 1890 N Revere Ct, Aurora, CO 80045, USA; Department of Bioengineering, University of Colorado Denver, 12705 E Montview Blvd Suite 100, Aurora, CO 80045, USA
| | - Kristina T Legget
- Department of Psychiatry, University of Colorado School of Medicine, Anschutz Medical Campus, Anschutz Health Sciences Building, 1890 N Revere Ct, Aurora, CO 80045, USA; Research Service, Rocky Mountain Regional VA Medical Center, 1700 N Wheeling St, Aurora, CO 80045, USA
| | - Marc-Andre Cornier
- Division of Endocrinology, Diabetes and Metabolic Diseases, Department of Medicine, Medical University of South Carolina, Clinical Sciences Building, CSB 96 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Andrew M Novick
- Department of Psychiatry, University of Colorado School of Medicine, Anschutz Medical Campus, Anschutz Health Sciences Building, 1890 N Revere Ct, Aurora, CO 80045, USA
| | - Maureen McHugo
- Department of Psychiatry, University of Colorado School of Medicine, Anschutz Medical Campus, Anschutz Health Sciences Building, 1890 N Revere Ct, Aurora, CO 80045, USA
| | - Brian D Berman
- Department of Neurology, Virginia Commonwealth University, 1101 E Marshall Street, Richmond, VA 23298, USA
| | - Benjamin P Lawful
- Department of Psychiatry, University of Colorado School of Medicine, Anschutz Medical Campus, Anschutz Health Sciences Building, 1890 N Revere Ct, Aurora, CO 80045, USA
| | - Jason R Tregellas
- Department of Psychiatry, University of Colorado School of Medicine, Anschutz Medical Campus, Anschutz Health Sciences Building, 1890 N Revere Ct, Aurora, CO 80045, USA; Research Service, Rocky Mountain Regional VA Medical Center, 1700 N Wheeling St, Aurora, CO 80045, USA.
| |
Collapse
|
5
|
Wang J, Dong D, Liu Y, Yang Y, Chen X, He Q, Lei X, Feng T, Qiu J, Chen H. Multivariate resting-state functional connectomes predict and characterize obesity phenotypes. Cereb Cortex 2023; 33:8368-8381. [PMID: 37032621 PMCID: PMC10505423 DOI: 10.1093/cercor/bhad122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Abstract
The univariate obesity-brain associations have been extensively explored, while little is known about the multivariate associations between obesity and resting-state functional connectivity. We therefore utilized machine learning and resting-state functional connectivity to develop and validate predictive models of 4 obesity phenotypes (i.e. body fat percentage, body mass index, waist circumference, and waist-height ratio) in 3 large neuroimaging datasets (n = 2,992). Preliminary evidence suggested that the resting-state functional connectomes effectively predicted obesity/weight status defined by each obesity phenotype with good generalizability to longitudinal and independent datasets. However, the differences between resting-state functional connectivity patterns characterizing different obesity phenotypes indicated that the obesity-brain associations varied according to the type of measure of obesity. The shared structure among resting-state functional connectivity patterns revealed reproducible neuroimaging biomarkers of obesity, primarily comprising the connectomes within the visual cortex and between the visual cortex and inferior parietal lobule, visual cortex and orbital gyrus, and amygdala and orbital gyrus, which further suggested that the dysfunctions in the perception, attention and value encoding of visual information (e.g. visual food cues) and abnormalities in the reward circuit may act as crucial neurobiological bases of obesity. The recruitment of multiple obesity phenotypes is indispensable in future studies seeking reproducible obesity-brain associations.
Collapse
Affiliation(s)
- Junjie Wang
- Faculty of Psychology, Southwest University, Chongqing, China
- Key Laboratory of Cognition and Personality of Ministry of Education, Southwest University, Chongqing, China
| | - Debo Dong
- Faculty of Psychology, Southwest University, Chongqing, China
- Key Laboratory of Cognition and Personality of Ministry of Education, Southwest University, Chongqing, China
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Yong Liu
- Faculty of Psychology, Southwest University, Chongqing, China
- Key Laboratory of Cognition and Personality of Ministry of Education, Southwest University, Chongqing, China
| | - Yingkai Yang
- Faculty of Psychology, Southwest University, Chongqing, China
- Key Laboratory of Cognition and Personality of Ministry of Education, Southwest University, Chongqing, China
| | - Ximei Chen
- Faculty of Psychology, Southwest University, Chongqing, China
- Key Laboratory of Cognition and Personality of Ministry of Education, Southwest University, Chongqing, China
| | - Qinghua He
- Faculty of Psychology, Southwest University, Chongqing, China
- Key Laboratory of Cognition and Personality of Ministry of Education, Southwest University, Chongqing, China
| | - Xu Lei
- Faculty of Psychology, Southwest University, Chongqing, China
- Key Laboratory of Cognition and Personality of Ministry of Education, Southwest University, Chongqing, China
| | - Tingyong Feng
- Faculty of Psychology, Southwest University, Chongqing, China
- Key Laboratory of Cognition and Personality of Ministry of Education, Southwest University, Chongqing, China
| | - Jiang Qiu
- Faculty of Psychology, Southwest University, Chongqing, China
- Key Laboratory of Cognition and Personality of Ministry of Education, Southwest University, Chongqing, China
| | - Hong Chen
- Faculty of Psychology, Southwest University, Chongqing, China
- Key Laboratory of Cognition and Personality of Ministry of Education, Southwest University, Chongqing, China
| |
Collapse
|
6
|
Li G, Hu Y, Zhang W, Wang J, Ji W, Manza P, Volkow ND, Zhang Y, Wang GJ. Brain functional and structural magnetic resonance imaging of obesity and weight loss interventions. Mol Psychiatry 2023; 28:1466-1479. [PMID: 36918706 PMCID: PMC10208984 DOI: 10.1038/s41380-023-02025-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
Obesity has tripled over the past 40 years to become a major public health issue, as it is linked with increased mortality and elevated risk for various physical and neuropsychiatric illnesses. Accumulating evidence from neuroimaging studies suggests that obesity negatively affects brain function and structure, especially within fronto-mesolimbic circuitry. Obese individuals show abnormal neural responses to food cues, taste and smell, resting-state activity and functional connectivity, and cognitive tasks including decision-making, inhibitory-control, learning/memory, and attention. In addition, obesity is associated with altered cortical morphometry, a lowered gray/white matter volume, and impaired white matter integrity. Various interventions and treatments including bariatric surgery, the most effective treatment for obesity in clinical practice, as well as dietary, exercise, pharmacological, and neuromodulation interventions such as transcranial direct current stimulation, transcranial magnetic stimulation and neurofeedback have been employed and achieved promising outcomes. These interventions and treatments appear to normalize hyper- and hypoactivations of brain regions involved with reward processing, food-intake control, and cognitive function, and also promote recovery of brain structural abnormalities. This paper provides a comprehensive literature review of the recent neuroimaging advances on the underlying neural mechanisms of both obesity and interventions, in the hope of guiding development of novel and effective treatments.
Collapse
Affiliation(s)
- Guanya Li
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710071, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Yang Hu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710071, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Wenchao Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710071, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Jia Wang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710071, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Weibin Ji
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710071, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Peter Manza
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA
| | - Nora D Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA
| | - Yi Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710071, China.
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China.
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA.
| |
Collapse
|
7
|
Kurt Tunagur EM, Yazici AB, Guzel D, Tunagur MT, Ermis C, Suda MA, Yazici E. Investigating associations between appetite-regulating hormones, aggression and craving in males with cannabis use disorder. Drug Alcohol Depend 2022; 238:109577. [PMID: 35905593 DOI: 10.1016/j.drugalcdep.2022.109577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/23/2022] [Accepted: 07/11/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Aggression and craving are common and important withdrawal symptoms in cannabis use disorder. The present study investigated the association between appetite-regulating hormones, aggression, and craving during cannabis withdrawal syndrome (CWS). METHODS Fifty-six male subjects diagnosed with cannabis withdrawal and 45 healthy males were included in the study. The Substance Craving Scale, the Buss-Perry Aggression Questionnaire, and the State-Trait Anxiety Inventory were implemented at baseline. Blood samples were drawn to measure ghrelin, leptin, adiponectin, and resistin levels in the serum. Then, the Point Subtraction Aggression Paradigm (PSAP) was applied. Bloodwork and psychometric assessment procedures were re-implemented after the PSAP. At the 7-day follow-up, psychometric assessments and hormone measurements were repeated in the CWS group. RESULTS Baseline serum ghrelin and adiponectin levels were lower in the CWS group than controls at baseline. After PSAP, there was a significant increase in ghrelin levels of patients with CWS compared to controls. Patients yielded higher aggression scores, while there was no significant correlation between hormonal changes and PSAP findings. At 7-day follow, ghrelin and resistin levels significantly increased, while serum leptin decreased in patients with CWS. Finally, there was a positive association between craving and resistin levels. CONCLUSIONS Our results present the changes in appetite-regulating hormones. Long-term follow-up studies are needed to shed light on neuroendocrinological aspects of cannabis withdrawal.
Collapse
Affiliation(s)
| | | | - Derya Guzel
- Department of Physiology, Sakarya University, 54290 Sakarya, Turkey
| | | | - Cagatay Ermis
- Diyarbakır Children's Hospital, 21000 Diyarbakır, Turkey
| | - Mehmet Akif Suda
- Department of Psychiatry, Sakarya University, 54290 Sakarya, Turkey
| | - Esra Yazici
- Department of Psychiatry, Sakarya University, 54290 Sakarya, Turkey
| |
Collapse
|
8
|
Parsons N, Steward T, Clohesy R, Almgren H, Duehlmeyer L. A systematic review of resting-state functional connectivity in obesity: Refining current neurobiological frameworks and methodological considerations moving forward. Rev Endocr Metab Disord 2022; 23:861-879. [PMID: 34159504 DOI: 10.1007/s11154-021-09665-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/09/2021] [Indexed: 02/07/2023]
Abstract
Obesity is the second most common cause of preventable morbidity worldwide. Resting-state functional magnetic resonance imaging (fMRI) has been used extensively to characterise altered communication between brain regions in individuals with obesity, though findings from this research have not yet been systematically evaluated within the context of prominent neurobiological frameworks. This systematic review aggregated resting-state fMRI findings in individuals with obesity and evaluated the contribution of these findings to current neurobiological models. Findings were considered in relation to a triadic model of problematic eating, outlining disrupted communication between reward, inhibitory, and homeostatic systems. We identified a pattern of consistently increased orbitofrontal and decreased insula cortex resting-state functional connectivity in individuals with obesity in comparison to healthy weight controls. BOLD signal amplitude was also increased in people with obesity across studies, predominantly confined to subcortical regions, including the hippocampus, amygdala, and putamen. We posit that altered orbitofrontal cortex connectivity may be indicative of a shift in the valuation of food-based rewards and that dysfunctional insula connectivity likely contributes to altered homeostatic signal processing. Homeostatic violation signals in obesity may be maintained despite satiety, thereby 'hijacking' the executive system and promoting further food intake. Moving forward, we provide a roadmap for more reliable resting-state and task-based functional connectivity experiments, which must be reconciled within a common framework if we are to uncover the interplay between psychological and biological factors within current theoretical frameworks.
Collapse
Affiliation(s)
- Nicholas Parsons
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Melbourne Burwood Campus, VIC, Australia
| | - Trevor Steward
- Melbourne School of Psychological Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Rebecca Clohesy
- School of Psychology, Deakin University, Melbourne Burwood Campus, VIC, Australia
| | - Hannes Almgren
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Data Analysis, Faculty of Psychology and Educational Sciences, Ghent University, Ghent, Belgium
| | | |
Collapse
|
9
|
Zhang P, Wu GW, Tang LR, Yu FX, Li MY, Wang Z, Yang ZH, Zhang ZT, Lv H, Liu Y, Wang ZC. Altered Brain Structural Reorganization and Hierarchical Integrated Processing in Obesity. Front Neurosci 2022; 16:796792. [PMID: 35368267 PMCID: PMC8971659 DOI: 10.3389/fnins.2022.796792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 02/01/2022] [Indexed: 11/17/2022] Open
Abstract
The brain receives sensory information about food, evaluates its desirability and value, and responds with approach or withdrawal. The evaluation process of food in the brain with obesity may involve a variety of neurocircuit abnormalities in the integration of internal and external information processing. There is a lack of consistency of the results extant reported for aberrant changes in the brain with obesity that prohibits key brain alterations to be identified. Moreover, most studies focus on the observation of neural plasticity of function or structure, and the evidence for functional and structural correlations in the neuronal plasticity process of obesity is still insufficient. The aims of this article are to explore the key neural structural regions and the hierarchical activity pattern of key structural nodes and evaluate the correlation between changes in functional modulation and eating behavior. Forty-two participants with obesity and 33 normal-weight volunteers were recruited. Gray matter volume (GMV) and Granger causality analysis (GCA) were performed using the DPARSF, CAT12, and DynamicBC toolbox. Compared with the normal weight group, the obesity group exhibited significantly increased GMV in the left parahippocampal gyrus (PG). The obesity group showed decreased causal inflow to the left PG from the left orbitofrontal cortex (OFC), right calcarine, and bilateral supplementary motor area (SMA). Decreased causal outflow to the left OFC, right precuneus, and right SMA from the left PG, as well as increased causal outflow to the left middle occipital gyrus (MOG) were observed in the obesity group. Negative correlations were found between DEBQ-External scores and causal outflow from the left PG to the left OFC, and DEBQ-Restraint scores and causal inflow from the left OFC to the left PG in the obesity group. Positive correlation was found between DEBQ-External scores and causal outflow from the left PG to the left MOG. These results show that the increased GMV in the PG may play an important role in obesity, which may be related to devalued reward system, altered behavioral inhibition, and the disengagement of attentional and visual function for external signals. These findings have important implications for understanding neural mechanisms in obesity and developing individual-tailored strategies for obesity prevention.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Guo-wei Wu
- Chinese Institute for Brain Research, Beijing, China
| | - Li-rong Tang
- Department of Clinical Psychology Center, Beijing Anding Hospital, Capital Medical University and National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing, China
| | - Feng-xia Yu
- Medical Imaging Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Meng-yi Li
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University and National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Zheng Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zheng-han Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhong-tao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University and National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Han Lv
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- *Correspondence: Han Lv,
| | - Yang Liu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University and National Clinical Research Center for Digestive Diseases, Beijing, China
- Yang Liu,
| | - Zhen-chang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Zhen-chang Wang,
| |
Collapse
|
10
|
He Y, von Deneen KM, Li G, Jing B, Zhou Y, Zhang K, Zhang Y, Ren Y. Electroacupuncture enhances resting-state functional connectivity between dorsal caudate and precuneus and decreases associated leptin levels in overweight/obese subjects. Brain Imaging Behav 2022; 16:445-454. [PMID: 34415492 DOI: 10.1007/s11682-021-00519-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2021] [Indexed: 10/20/2022]
Abstract
Electroacupuncture (EA) is a safe and effective method for treating obesity. However, how it modulates reward-related brain activity/functional connectivity and gut hormones remains unclear. We employed resting-state functional magnetic resonance imaging (RS-fMRI) and resting-state functional connectivity (RSFC) to investigate EA induced changes in resting-state activity and RSFC in reward-related regions and its association with gut hormones in overweight/obese subjects who received real (n = 20) and Sham (n = 15) stimulation. Results showed reduced leptin levels was positively correlated with reduced body mass index (BMI) and negatively correlated with increased cognitive-control as measured with Three-Factor-Eating-Questionnaire (TFEQ). Significant time effects on RSFC between dorsal caudate (DC) and precuneus were due to significant increased RSFC strength in both EA and Sham groups. In addition, increased RSFC of DC-precuneus was negatively correlated with reduced BMI and leptin levels in the EA group. Mediation analysis showed that the relationship between increased DC-precuneus RSFC strength and reduced BMI was mediated by reduced leptin levels. These findings reflect the association between EA-induced brain reward-related RSFC and leptin levels, and decreased leptin levels mediated altered DC-precuneus RSFC strength and consequent weight-loss, suggesting the potential role of EA in reducing weight and appetite.
Collapse
Affiliation(s)
- Yang He
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, 710071, Shaanxi, China
| | - Karen M von Deneen
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, 710071, Shaanxi, China.
| | - Guanya Li
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, 710071, Shaanxi, China
| | - Borong Jing
- Department of Acupuncture and Massage, Xi'an Traditional Chinese Medicine Hospital, Shaanxi University of Chinese Medicine, Xi'an, 710021, Shaanxi, China
| | - Yanyan Zhou
- Department of Acupuncture and Massage, Xi'an Traditional Chinese Medicine Hospital, Shaanxi University of Chinese Medicine, Xi'an, 710021, Shaanxi, China
| | - Kaiya Zhang
- Department of Acupuncture and Massage, Xi'an Traditional Chinese Medicine Hospital, Shaanxi University of Chinese Medicine, Xi'an, 710021, Shaanxi, China
| | - Yi Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an, 710071, Shaanxi, China.
| | - Yuanyuan Ren
- Department of Acupuncture and Massage, Xi'an Traditional Chinese Medicine Hospital, Shaanxi University of Chinese Medicine, Xi'an, 710021, Shaanxi, China.
| |
Collapse
|
11
|
Grigorian A, Kennedy KG, Luciw NJ, MacIntosh BJ, Goldstein BI. Obesity and Cerebral Blood Flow in the Reward Circuitry of Youth With Bipolar Disorder. Int J Neuropsychopharmacol 2022; 25:448-456. [PMID: 35092432 PMCID: PMC9211014 DOI: 10.1093/ijnp/pyac011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/13/2022] [Accepted: 01/27/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Bipolar disorder (BD) is associated with elevated body mass index (BMI) and increased rates of obesity. Obesity among individuals with BD is associated with more severe course of illness. Motivated by previous research on BD and BMI in youth as well as brain findings in the reward circuit, the current study investigates differences in cerebral blood flow (CBF) in youth BD with and without comorbid overweight/obesity (OW/OB). METHODS Participants consisted of youth, ages 13-20 years, including BD with OW/OB (BDOW/OB; n = 25), BD with normal weight (BDNW; n = 55), and normal-weight healthy controls (HC; n = 61). High-resolution T1-weighted and pseudo-continuous arterial spin labeling images were acquired using 3 Tesla magnetic resonance imaging. CBF differences were assessed using both region of interest and whole-brain voxel-wise approaches. RESULTS Voxel-wise analysis revealed significantly higher CBF in reward-associated regions in the BDNW group relative to the HC and BDOW/OB groups. CBF did not differ between the HC and BDOW/OB groups. There were no significant region of interest findings. CONCLUSIONS The current study identified distinct CBF levels relating to BMI in BD in the reward circuit, which may relate to underlying differences in cerebral metabolism, compensatory effects, and/or BD severity. Future neuroimaging studies are warranted to examine for changes in the CBF-OW/OB link over time and in relation to treatment.
Collapse
Affiliation(s)
- Anahit Grigorian
- Centre for Youth Bipolar Disorder, Department of Child and Youth Psychiatry, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Kody G Kennedy
- Centre for Youth Bipolar Disorder, Department of Child and Youth Psychiatry, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Nicholas J Luciw
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Bradley J MacIntosh
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada,Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Ontario, Canada,Hurvitz Brain Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Benjamin I Goldstein
- Correspondence: Benjamin I. Goldstein, MD, PhD, Centre for Addiction and Mental Health, 80 Workman Way, Toronto, ON, Canada, M6J 1H4 ()
| |
Collapse
|
12
|
Song S, Li Q, Jiang Y, Liu Y, Xu A, Liu X, Chen H. Do Overweight People Have Worse Cognitive Flexibility? Cues-Triggered Food Craving May Have a Greater Impact. Nutrients 2022; 14:nu14020240. [PMID: 35057421 PMCID: PMC8779446 DOI: 10.3390/nu14020240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Overweight people have been revealed to have poor cognitive flexibility. Cognitive flexibility reflects proactive and reactive control abilities. However, the impairment had not been explicitly positioned at the cognitive stage. Therefore, this study provides increased support for impairment of cognitive flexibility due to overweight. Method: The study included 34 overweight and 35 normal-weight participants. They were required to complete the food and flower target AX-continuous performance test (AX–CPT), including the resting-state fMRI and cue-triggered food craving subscales. We compared the performance difference between the two tasks. Furthermore, we investigated whether the cue-triggered food cravings and the corresponding brain regions mediated the effect of overweight on the two control mechanisms. Result: Significant differences were found only in the food target AX-CPT task, where overweight participants performed worse. Cue-triggered food cravings mediated this relationship. Additionally, we found that the brain regions associated with cue-triggered food cravings (bilateral SFG) can completely mediate the relationship between BMI and the z-value of the fat mass index and sensitivity to proactive control. Conclusion: In the food target task, overweight participants performed worse in both control mechanisms. Moreover, we also revealed the potential mechanism by which being overweight might affect the two control mechanisms through cue-triggered food cravings.
Collapse
Affiliation(s)
- Shiqing Song
- Faculty of Psychology, Southwest University, Chongqing 400715, China; (S.S.); (Q.L.); (Y.J.); (Y.L.); (X.L.)
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China
| | - Qingqing Li
- Faculty of Psychology, Southwest University, Chongqing 400715, China; (S.S.); (Q.L.); (Y.J.); (Y.L.); (X.L.)
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China
| | - Yan Jiang
- Faculty of Psychology, Southwest University, Chongqing 400715, China; (S.S.); (Q.L.); (Y.J.); (Y.L.); (X.L.)
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China
| | - Yong Liu
- Faculty of Psychology, Southwest University, Chongqing 400715, China; (S.S.); (Q.L.); (Y.J.); (Y.L.); (X.L.)
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China
| | - Aidi Xu
- Faculty of Health, Department of Psychology, York University, Toronto, ON M3J 1P3, Canada;
| | - Xinyuan Liu
- Faculty of Psychology, Southwest University, Chongqing 400715, China; (S.S.); (Q.L.); (Y.J.); (Y.L.); (X.L.)
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China
| | - Hong Chen
- Faculty of Psychology, Southwest University, Chongqing 400715, China; (S.S.); (Q.L.); (Y.J.); (Y.L.); (X.L.)
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China
- Correspondence: ; Tel.: +86-181-8307-9304
| |
Collapse
|
13
|
Li WH, Tang LR, Wang M, Wang JN, Guo T, He Q, He YY, Lv ZL, Chen Q, Wang Z, Li XH, Zhang P, Li ZJ, Wang ZC. Altered gray matter volume and functional connectivity in medial orbitofrontal cortex of bulimia nervosa patients: A combined VBM and FC study. Front Psychiatry 2022; 13:963092. [PMID: 36061303 PMCID: PMC9437330 DOI: 10.3389/fpsyt.2022.963092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Brain structural and functional abnormalities have been shown to be involved in the neurobiological underpinnings of bulimia nervosa (BN), while the mechanisms underlying this dysregulation are unclear. The main goal of this investigation was to explore the presence of brain structural alterations and relevant functional changes in BN. We hypothesized that BN patients had regional gray matter volume abnormalities and corresponding resting-state functional connectivity (rsFC) changes compared with healthy controls. Thirty-one BN patients and twenty-eight matched healthy controls underwent both high-resolution T1-weighted magnetic resonance imaging (MRI) and resting-state functional MRI. Structural analysis was performed by voxel-based morphometry (VBM), with subsequent rsFC analysis applied by a seed-based, whole-brain voxelwise approach using the abnormal gray matter volume (GMV) region of interest as the seed. Compared with the controls, the BN patients showed increased GMV in the left medial orbitofrontal cortex (mOFC). The BN patients also exhibited significantly increased rsFC between the left mOFC and the right superior occipital gyrus (SOG) and decreased rsFC between the left mOFC and the left precentral gyrus, postcentral gyrus, and supplementary motor area (SMA). Furthermore, the z values of rsFC between the left mOFC and right SOG was positively correlated with the Dutch Eating Behavior Questionnaire-external eating scores. Findings from this investigation further suggest that the mOFC plays a crucial role in the neural pathophysiological underpinnings of BN, which may lead to sensorimotor and visual regions reorganization and be related to representations of body image and the drive behind eating behavior. These findings have important implications for understanding neural mechanisms in BN and developing strategies for prevention.
Collapse
Affiliation(s)
- Wei-Hua Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Li-Rong Tang
- Beijing Anding Hospital, Capital Medical University, Beijing, China.,The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing, China
| | - Miao Wang
- Chinese Institute for Brain Research, Beijing, China
| | - Jia-Ni Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ting Guo
- Beijing Anding Hospital, Capital Medical University, Beijing, China.,The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing, China
| | - Qiong He
- Beijing Anding Hospital, Capital Medical University, Beijing, China.,The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing, China
| | - Yu-Yang He
- Beijing Anding Hospital, Capital Medical University, Beijing, China.,The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing, China
| | - Zi-Ling Lv
- Beijing Anding Hospital, Capital Medical University, Beijing, China.,The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing, China
| | - Qian Chen
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zheng Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiao-Hong Li
- Beijing Anding Hospital, Capital Medical University, Beijing, China.,The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing, China
| | - Peng Zhang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhan-Jiang Li
- Beijing Anding Hospital, Capital Medical University, Beijing, China.,The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing, China
| | - Zhen-Chang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Association of increased abdominal adiposity at birth with altered ventral caudate microstructure. Int J Obes (Lond) 2021; 45:2396-2403. [PMID: 34282269 DOI: 10.1038/s41366-021-00905-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/17/2021] [Accepted: 07/01/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Neonatal adiposity is associated with a higher risk of obesity and cardiometabolic risk factors in later life. It is however unknown if central food intake regulating networks in the ventral striatum are altered with in-utero abdominal growth, indexed by neonatal adiposity in our current study. We aim to examine the relationship between striatal microstructure and abdominal adipose tissue compartments (AATCs) in Asian neonates from the Growing Up in Singapore Toward healthy Outcomes mother-offspring cohort. STUDY DESIGN About 109 neonates were included in this study. Magnetic resonance imaging (MRI) was performed for the brain and abdominal regions between 5 to 17 days of life. Diffusion-weighted imaging of the brain was performed for the derivation of caudate and putamen fractional anisotropy (FA). Abdominal imaging was performed to quantify AATCs namely superficial subcutaneous adipose tissue (sSAT), deep subcutaneous adipose tissue (dSAT), and internal adipose tissue (IAT). Absolute and percentage adipose tissue of total abdominal volume (TAV) were calculated. RESULTS We showed that AATCs at birth were significantly associated with increased FA in bilateral ventral caudate heads which are part of the ventral striatum (sSAT: βleft = 0.56, p < 0.001; βright = 0.65, p < 0.001, dSAT: βleft = 0.43, p < 0.001; βright = 0.52, p < 0.001, IAT: βleft = 0.30, p = 0.005; βright = 0.32, p = 0.002) in neonates with low birth weights adjusted for gestational age. CONCLUSIONS Our study provides preliminary evidence of a potential relationship between neonatal adiposity and in-utero programming of the ventral striatum, a brain structure that governs feeding behavior.
Collapse
|
15
|
Syan SK, McIntyre-Wood C, Minuzzi L, Hall G, McCabe RE, MacKillop J. Dysregulated resting state functional connectivity and obesity: A systematic review. Neurosci Biobehav Rev 2021; 131:270-292. [PMID: 34425125 DOI: 10.1016/j.neubiorev.2021.08.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/13/2021] [Accepted: 08/17/2021] [Indexed: 12/16/2022]
Abstract
Obesity has been variously linked to differences in brain functional connectivity in regions associated with reward, emotional regulation and cognition, potentially revealing neural mechanisms contributing to its development and maintenance. This systematic review summarizes and critically appraises the existing literature on differences in resting state functional connectivity (Rs-FC) between overweight and individuals with obesity in relation healthy-BMI controls. Twenty-nine studies were identified and the results consistently support the hypothesis that obesity is associated with differences in Rs-FC. Specifically, obesity/overweight was consistently associated with (i) DMN hypoconnectivity and salience network hyperconnectivity; (ii) increased Rs-FC between the hypothalamus and reward, limbic and salience networks, and decreased Rs-FC between the hypothalamus and cognitive regions; (iii) increased power within regions associated with inhibition/emotional reasoning; (iv) decreased nodal efficiency, degree centrality, and global efficiency. Collectively, the results suggest obesity is associated with disrupted connectivity of brain networks responsible for cognition, reward, self-referential processing and emotional regulation.
Collapse
Affiliation(s)
- Sabrina K Syan
- Peter Boris Centre for Addictions Research, McMaster University & St. Joseph's Healthcare Hamilton, Canada; Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada.
| | - Carly McIntyre-Wood
- Peter Boris Centre for Addictions Research, McMaster University & St. Joseph's Healthcare Hamilton, Canada
| | - Luciano Minuzzi
- Mood Disorders Program and Women's Health Concerns Clinic, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| | - Geoffrey Hall
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada
| | - Randi E McCabe
- Anxiety Treatment and Research Clinic, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| | - James MacKillop
- Peter Boris Centre for Addictions Research, McMaster University & St. Joseph's Healthcare Hamilton, Canada; Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
16
|
Devoto F, Ferrulli A, Zapparoli L, Massarini S, Banfi G, Paulesu E, Luzi L. Repetitive deep TMS for the reduction of body weight: Bimodal effect on the functional brain connectivity in "diabesity". Nutr Metab Cardiovasc Dis 2021; 31:1860-1870. [PMID: 33853721 DOI: 10.1016/j.numecd.2021.02.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/14/2021] [Accepted: 02/16/2021] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND AIMS Deep repetitive Transcranial Magnetic Stimulation (deep rTMS) over the bilateral insula and prefrontal cortex (PFC) can promote weight-loss in obesity, preventing cardiometabolic complications as Type 2 Diabetes (T2D). To investigate the changes in the functional brain integration after dTMS, we conducted a resting-state functional connectivity (rsFC) study in obesity. METHODS AND RESULTS This preliminary study was designed as a randomized, double-blind, sham-controlled study: 9 participants were treated with high-frequency stimulation (realTMS group), 8 were sham-treated (shamTMS group). Out of the 17 enrolled patients, 6 were affected by T2D. Resting-state fMRI scans were acquired at baseline (T0) and after the 5-week intervention (T1). Body weight was measured at three time points [T0, T1, 1-month follow-up visit (FU1)]. A mixed-model analysis showed a significant group-by-time interaction for body weight (p = .04), with a significant decrease (p < .001) in the realTMS group. The rsFC data revealed a significant increase of degree centrality for the realTMS group in the medial orbitofrontal cortex (mOFC) and a significant decrease in the occipital pole. CONCLUSION An increase of whole-brain functional connections of the mOFC, together with the decrease of whole-brain functional connections with the occipital pole, may reflect a brain mechanism behind weight-loss through a diminished reactivity to bottom-up visual-sensory processes in favor of increased reliance on top-down decision-making processes. TRIAL REGISTRATION NUMBER ClinicalTrials.gov NCT03009695.
Collapse
Affiliation(s)
- Francantonio Devoto
- Department of Psychology and PhD Program in Neuroscience of the School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Anna Ferrulli
- Department of Biomedical Sciences for Health, Università Degli Studi di Milano, Milan, Italy; Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Sesto San Giovanni, MI, Italy
| | - Laura Zapparoli
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
| | - Stefano Massarini
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Sesto San Giovanni, MI, Italy
| | | | - Eraldo Paulesu
- Department of Psychology, University of Milano-Bicocca, Milan, Italy; IRCCS Orthopedic Institute Galeazzi, Milan, Italy
| | - Livio Luzi
- Department of Biomedical Sciences for Health, Università Degli Studi di Milano, Milan, Italy; Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Sesto San Giovanni, MI, Italy.
| |
Collapse
|
17
|
Zhang P, Liu Y, Yu FX, Wu GW, Li MY, Wang Z, Ding HY, Wang LX, Zhao KX, Zhang ZY, Zhao PF, Li J, Yang ZH, Lv H, Zhang ZT, Wang ZC. Hierarchical integrated processing of reward-related regions in obese males: A graph-theoretical-based study. Appetite 2020; 159:105055. [PMID: 33248191 DOI: 10.1016/j.appet.2020.105055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 10/20/2020] [Accepted: 11/17/2020] [Indexed: 10/22/2022]
Abstract
Abnormal activities in reward-related regions are associated with overeating or obesity. Preliminary studies have shown that changes in neural activity in obesity include not only regional reward regions abnormalities but also impairments in the communication between reward-related regions and multiple functional areas. A recent study has shown that the transitions between different neural networks are nonrandom and hierarchical, and that activation of particular brain networks is more likely to occur after other brain networks. The aims of this study were to investigate the key nodes of reward-related regions in obese males and explore the hierarchical integrated processing of key nodes. Twenty-four obese males and 24 normal-weight male controls of similar ages were recruited. The fMRI data were acquired using 3.0 T MRI. The fMRI data preprocessing was performed in DPABI and SPM 12. Degree centrality analyses were conducted using GRETNA toolkit, and Granger causality analyses were calculated using DynamicBC toolbox. Decreased degree centrality was observed in left ventral medial prefrontal cortex (vmPFC) and right parahippocampal/hippocampal gyrus in group with obesity. The group with obesity demonstrated increased effective connectivity between left vmPFC and several regions (left inferior temporal gyrus, left supplementary motor area, right insular cortex, right postcentral gyrus, right paracentral lobule and bilateral fusiform gyrus). Increased effective connectivity was observed between right parahippocampal/hippocampal gyrus and left precentral/postcentral gyrus. Decreased effective connectivity was found between right parahippocampal/hippocampal gyrus and left inferior parietal lobule. This study identified the features of hierarchical interactions between the key reward nodes and multiple function networks. These findings may provide more evidence for the existing view of hierarchical organization in reward processing.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Yang Liu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & National Clinical Research Center for Digestive Diseases, Beijing, 100050, China
| | - Feng-Xia Yu
- Medical Imaging Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Guo-Wei Wu
- School of Language Science and Art, Jiang Su Normal University, Xuzhou, 221116, China
| | - Meng-Yi Li
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & National Clinical Research Center for Digestive Diseases, Beijing, 100050, China
| | - Zheng Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - He-Yu Ding
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Li-Xue Wang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & National Clinical Research Center for Digestive Diseases, Beijing, 100050, China
| | - Kai-Xin Zhao
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & National Clinical Research Center for Digestive Diseases, Beijing, 100050, China
| | - Zheng-Yu Zhang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Peng-Fei Zhao
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Jing Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Zheng-Han Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Han Lv
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| | - Zhong-Tao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & National Clinical Research Center for Digestive Diseases, Beijing, 100050, China.
| | - Zhen-Chang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
18
|
Zhang P, Wu GW, Yu FX, Liu Y, Li MY, Wang Z, Ding HY, Li XS, Wang H, Jin M, Zhang ZY, Zhao PF, Li J, Yang ZH, Lv H, Zhang ZT, Wang ZC. Abnormal Regional Neural Activity and Reorganized Neural Network in Obesity: Evidence from Resting-State fMRI. Obesity (Silver Spring) 2020; 28:1283-1291. [PMID: 32510870 DOI: 10.1002/oby.22839] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 04/02/2020] [Accepted: 04/05/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE This study aimed to investigate regional neural activity and regulation of patterns in the reorganized neural network of obesity and explore the correlation between brain activities and eating behavior. METHODS A total of 23 individuals with obesity and 23 controls with normal weight were enrolled. Functional magnetic resonance imaging (fMRI) data were acquired using 3.0-T MRI. Amplitude of low-frequency fluctuation and functional connectivity (FC) analyses were conducted using Data Processing Assistant for resting-state fMRI and Resting-State fMRI Data Analysis Toolkit (REST). RESULTS The group with obesity showed increased amplitude of low-frequency values in left fusiform gyrus/amygdala, inferior temporal gyrus (ITG), hippocampus/parahippocampal gyrus, and bilateral caudate but decreased values in right superior temporal gyrus. The group with obesity showed increased FC between left caudate and right superior temporal gyrus, left fusiform gyrus/amygdala and left ITG, right caudate and left fusiform gyrus/amygdala, and right caudate and left hippocampus/parahippocampal gyrus. Dutch Eating Behavior Questionnaire-Emotional scores were positively correlated with FC between left hippocampus/parahippocampal gyrus and right caudate but negatively correlated with FC between left fusiform gyrus/amygdala and left ITG. CONCLUSIONS The study indicated the reorganized neural network presented as a bilateral cross-regulation pattern across hemispheres between reward and various appetite-related functional processing, thus affecting emotional and external eating behavior. These results could provide further evidence for neuropsychological underpinnings of food intake and their neuromodulatory therapeutic potential in obesity.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Guo-Wei Wu
- School of Language Science and Art, Jiang Su Normal University, Xuzhou, China
| | - Feng-Xia Yu
- Medical Imaging Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yang Liu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Meng-Yi Li
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Zheng Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - He-Yu Ding
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiao-Shuai Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hao Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Mei Jin
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zheng-Yu Zhang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Peng-Fei Zhao
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jing Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zheng-Han Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Han Lv
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhong-Tao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Zhen-Chang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
19
|
Hovens IB, Dalenberg JR, Small DM. A Brief Neuropsychological Battery for Measuring Cognitive Functions Associated with Obesity. Obesity (Silver Spring) 2019; 27:1988-1996. [PMID: 31654505 PMCID: PMC6868337 DOI: 10.1002/oby.22644] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Although ample evidence links obesity to cognitive dysfunction, the trajectory of cognitive change, the underlying mechanisms, and the involvement of related factors, such as metabolic disease and diet, remain unclear. To support further investigations of BMI and cognition, this study aimed to create a concise test battery to be used in future trials. METHODS Twenty neurocognitive measures were regressed on BMI in the Human Connectome Project Healthy Young Adult S1200 data release by using linear mixed models and by adjusting for major confounders. Measures were then identified by using least absolute shrinkage and selection operator regression analysis to select tests most strongly associated with BMI. To guide further test selection, the explained variance for each variable was visualized in the final model. RESULTS BMI was negatively associated with seven neurocognitive measures. Variable selection yielded a model that included years of education and, in order of model weight, delay discounting, the relational task, the Penn Progressive Matrices test, the oral reading recognition test, the Variable Short Penn Line Orientation test, and the Penn Word Memory test. CONCLUSIONS This research resulted in an approximate 40-minute test battery for the BMI-cognition relationship in young adults that can be used in trials investigating the interrelationship between obesity and cognitive performance.
Collapse
Affiliation(s)
- Iris B. Hovens
- Modern Diet and Physiology Research Center, New Haven, CT, United States
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Jelle R. Dalenberg
- Modern Diet and Physiology Research Center, New Haven, CT, United States
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Dana M. Small
- Modern Diet and Physiology Research Center, New Haven, CT, United States
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Department of Psychology, Yale University, New Haven, CT, United States
| |
Collapse
|