1
|
Wang K, Wu G. Monoexponential, biexponential, stretched exponential and diffusion kurtosis models of diffusion-weighted imaging: a quantitative differentiation of solitary pulmonary lesion. BMC Med Imaging 2024; 24:346. [PMID: 39707237 DOI: 10.1186/s12880-024-01537-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/16/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Diffusion-weighted imaging (DWI) can be used for quantitative tumor assessment. DWI with different models may show different aspects of tissue characteristics. OBJECTIVE To investigate the diagnostic performance of parameters derived from monoexponential, biexponential, stretched exponential magnetic resonance diffusion weighted imaging (DWI) and diffusion kurtosis imaging (DKI) in differentiating benign from malignant solitary pulmonary lesions (SPLs). METHOD Forty-four SPL subjects were selected according to the inclusion criteria. All patients underwent conventional and multi‑b DWI sequences. Monoexponential DWI and DKI model were fitted using least square method. Levenberg-Marquardt nonlinear fitting biexponential and stretched exponential DWI. Region of interests (ROIs) were described manually. Parameters between benign and malignant SPLs were compared using independent sample t test or the Mann-Whitney U test. Receiver operating characteristic (ROC) curves analysis was used to investigate the diagnostic performance of different DWI parameters. Correlation between all parameters were evaluated by using Spearman correlation. RESULT ADC, ADCslow, α, DDC and Dapp values were significantly lower in malignant SPL than in benign SPL (P < 0.001). Kapp was significantly higher in malignant SPL than in benign SPL (P < 0.001). Among all subjects, ADCslow was significantly lower than ADC (P < 0.05), while DDC and Dapp were significantly higher than ADC (P < 0.05). When observing the ROC curves for distinguishing benign and malignant SPL, the AUC values of ADC, ADCslow, DDC, Dapp, and Kapp were 0.904, 0.815, 0.942, 0.93, and 0.815, respectively. The DDC value has the highest area under ROC curve value. DeLong analysis showed no statistically significant difference in the area under ADC, DDC, and Dapp curves. There were strong correlations among ADC, ADCslow, ADCfast, f, α, DDC, Dapp, and Kapp (P < 0.001). CONCLUSION Multi‑b DWI is a promising method for differentiating benign from malignant SPLs with high diagnostic accuracy. In addition, the DDC derived from stretched‑exponential model is the most promising DWI parameter for the differentiation of benign and malignant SPLs. TRAIL REGISTRATION This study was a clinical trail study, with study protocol published at ClinicalTrails. Retrospectively registered number ChiCTR2300074258, date of registration 02/08/2023.
Collapse
Affiliation(s)
- Ke Wang
- PET/CT-MRI and Molecular Imaging Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Guangyao Wu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
2
|
Zheng Y, Han N, Huang W, Jiang Y, Zhang J. Evaluating Mediastinal Lymph Node Metastasis of Non-Small Cell Lung Cancer Using Mono-exponential, Bi-exponential, and Stretched-exponential Models of Diffusion-weighted Imaging. J Thorac Imaging 2024; 39:285-292. [PMID: 38153288 DOI: 10.1097/rti.0000000000000771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
PURPOSE To explore and compare the diagnostic values of mono-exponential, bi-exponential, and stretched-exponential diffusion-weighted imaging (DWI) parameters of primary lesions and lymph nodes (LNs) to predict mediastinal LN metastasis in patients with non-small cell lung cancer. PATIENTS AND METHODS Sixty-one patients with non-small cell lung cancer underwent preoperative magnetic resonance imaging, including multiple b -value DWI. The DWI parameters, including apparent diffusion coefficient (ADC) from a mono-exponential model, true diffusion (D) coefficient, pseudo-diffusion (D*) coefficient, and perfusion fraction (f) from a bi-exponential model, distributed diffusion coefficient (DDC) and intravoxel diffusion heterogeneity index (α) from a stretched-exponential model of primary tumors and LNs and the size characteristics of LNs, were measured and compared. Multivariate logistic regression analysis was used to establish models for predicting mediastinal LN metastasis. Receiver operating characteristic analysis was applied to evaluate diagnostic performances. RESULTS The DWI parameters of primary tumors showed no statistical significance between LN metastasis-positive and LN metastasis-negative groups. Nonmetastatic LNs had significantly higher ADC, D, DDC, and α values compared with metastatic LNs (all P < 0.05). The short-dimension, long-dimension, and short-long dimension ratio of metastatic LNs was significantly larger than those of nonmetastatic ones (all P < 0.05). The D value showed the best diagnostic performance among all DWI-derived single parameters, and the short dimension of LNs performed the same among all the size variables. Furthermore, the combination of DWI parameters (ADC and D) and the short dimension of LNs can significantly improve diagnostic efficiency. CONCLUSIONS The ADC, D, DDC, and α from the mono-exponential, bi-exponential, and stretched-exponential models were demonstrated efficient in differentiating benign from metastatic LNs, and the combination of ADC, D, and short dimension of LNs may have a better diagnostic performance than DWI or size-derived parameters either in combination or individually.
Collapse
Affiliation(s)
- Yu Zheng
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| | - Na Han
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| | - Wenjing Huang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| | - Yanli Jiang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| | - Jing Zhang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| |
Collapse
|
3
|
Cai Y, Liu J, Yang H, Zheng L, Wu D, Xiao E, Dai Y. Utilizing multicompartmental restriction spectrum magnetic resonance imaging for liver fibrosis characterization in a mouse model. Med Phys 2024; 51:4635-4645. [PMID: 38753987 DOI: 10.1002/mp.17126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Currently, an advanced imaging method may be necessary for magnetic resonance imaging (MRI) to diagnosis and quantify liver fibrosis (LF). PURPOSE To evaluate the feasibility of the multicompartmental restriction spectrum imaging (RSI) model to characterize LF in a mouse model. METHODS Thirty mice with carbon tetrachloride (CCl4)-induced LF and eight control mice were investigated using multi-b-value (ranging from 0 to 2000 s/mm2) diffusion-weighted imaging (DWI) on a 3T scanner. DWI data were processed using RSI model (2-5 compartments) with the Bayesian Information Criterion (BIC) determining the optimal model. Conventional ADC value and signal fraction of each compartment in the optimal RSI model were compared across groups. Receiver operating characteristics (ROC) curve analysis was performed to determine the diagnosis performances of different parameters, while Spearman correlation analysis was employed to investigate the correlation between different tissue compartments and the stage of LF. RESULTS According to BIC results, a 4-compartment RSI model (RSI4) with optimal ADCs of 0.471 × 10-3, 1.653 × 10-3, 9.487 × 10-3, and > 30 × 10-3, was the optimal model to characterize LF. Significant differences in signal contribution fraction of the C1 and C3 compartments were observed between LF and control groups (P = 0.018 and 0.003, respectively). ROC analysis showed that RSI4-C3 was the most effective single diffusion parameter for characterizing LF (AUC = 0.876, P = 0.003). Furthermore, the combination of ADC values and RSI4-C3 value increased the diagnosis performance significantly (AUC = 0.894, P = 0.002). CONCLUSION The 4-compartment RSI model has the potential to distinguish LF from the control group based on diffusion parameters. RSI4-C3 showed the highest diagnostic performance among all the parameters. The combination of ADC and RSI4-C3 values further improved the discrimination performance.
Collapse
Affiliation(s)
- Yeyu Cai
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Jiayi Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - HaiTao Yang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Liyun Zheng
- Shanghai Institute of Medical Imaging, Shanghai, China
| | - Dongmei Wu
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronics Science, East China Normal University, Shanghai, China
| | - Enhua Xiao
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yongming Dai
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China
| |
Collapse
|
4
|
Skwierawska D, Laun FB, Wenkel E, Kapsner LA, Janka R, Uder M, Ohlmeyer S, Bickelhaupt S. Diffusion-Weighted Imaging for Skin Pathologies of the Breast-A Feasibility Study. Diagnostics (Basel) 2024; 14:934. [PMID: 38732348 PMCID: PMC11083106 DOI: 10.3390/diagnostics14090934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Several breast pathologies can affect the skin, and clinical pathways might differ significantly depending on the underlying diagnosis. This study investigates the feasibility of using diffusion-weighted imaging (DWI) to differentiate skin pathologies in breast MRIs. This retrospective study included 88 female patients who underwent diagnostic breast MRI (1.5 or 3T), including DWI. Skin areas were manually segmented, and the apparent diffusion coefficients (ADCs) were compared between different pathologies: inflammatory breast cancer (IBC; n = 5), benign skin inflammation (BSI; n = 11), Paget's disease (PD; n = 3), and skin-involved breast cancer (SIBC; n = 11). Fifty-eight women had healthy skin (H; n = 58). The SIBC group had a significantly lower mean ADC than the BSI and IBC groups. These differences persisted for the first-order features of the ADC (mean, median, maximum, and minimum) only between the SIBC and BSI groups. The mean ADC did not differ significantly between the BSI and IBC groups. Quantitative DWI assessments demonstrated differences between various skin-affecting pathologies, but did not distinguish clearly between all of them. More extensive studies are needed to assess the utility of quantitative DWI in supplementing the diagnostic assessment of skin pathologies in breast imaging.
Collapse
Affiliation(s)
- Dominika Skwierawska
- Institute of Radiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Maximiliansplatz 3, 91054 Erlangen, Germany
| | - Frederik B. Laun
- Institute of Radiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Maximiliansplatz 3, 91054 Erlangen, Germany
| | - Evelyn Wenkel
- Radiologie München, Burgstraße 7, 80331 München, Germany
- Medical Faculty, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Lorenz A. Kapsner
- Institute of Radiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Maximiliansplatz 3, 91054 Erlangen, Germany
- Chair of Medical Informatics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Wetterkreuz 15, 91058 Erlangen-Tennenlohe, Germany
| | - Rolf Janka
- Institute of Radiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Maximiliansplatz 3, 91054 Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Maximiliansplatz 3, 91054 Erlangen, Germany
| | - Sabine Ohlmeyer
- Institute of Radiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Maximiliansplatz 3, 91054 Erlangen, Germany
| | - Sebastian Bickelhaupt
- Institute of Radiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Maximiliansplatz 3, 91054 Erlangen, Germany
| |
Collapse
|
5
|
He L, Qin Y, Hu Q, Liu Z, Zhang Y, Ai T. Quantitative characterization of breast lesions and normal fibroglandular tissue using compartmentalized diffusion-weighted model: comparison of intravoxel incoherent motion and restriction spectrum imaging. Breast Cancer Res 2024; 26:71. [PMID: 38658999 PMCID: PMC11044413 DOI: 10.1186/s13058-024-01828-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND To compare the compartmentalized diffusion-weighted models, intravoxel incoherent motion (IVIM) and restriction spectrum imaging (RSI), in characterizing breast lesions and normal fibroglandular tissue. METHODS This prospective study enrolled 152 patients with 157 histopathologically verified breast lesions (41 benign and 116 malignant). All patients underwent a full-protocol preoperative breast MRI, including a multi-b-value DWI sequence. The diffusion parameters derived from the mono-exponential model (ADC), IVIM model (Dt, Dp, f), and RSI model (C1, C2, C3, C1C2, F1, F2, F3, F1F2) were quantitatively measured and then compared among malignant lesions, benign lesions and normal fibroglandular tissues using Kruskal-Wallis test. The Mann-Whitney U-test was used for the pairwise comparisons. Diagnostic models were built by logistic regression analysis. The ROC analysis was performed using five-fold cross-validation and the mean AUC values were calculated and compared to evaluate the discriminative ability of each parameter or model. RESULTS Almost all quantitative diffusion parameters showed significant differences in distinguishing malignant breast lesions from both benign lesions (other than C2) and normal fibroglandular tissue (all parameters) (all P < 0.0167). In terms of the comparisons of benign lesions and normal fibroglandular tissues, the parameters derived from IVIM (Dp, f) and RSI (C1, C2, C1C2, F1, F2, F3) showed significant differences (all P < 0.005). When using individual parameters, RSI-derived parameters-F1, C1C2, and C2 values yielded the highest AUCs for the comparisons of malignant vs. benign, malignant vs. normal tissue and benign vs. normal tissue (AUCs = 0.871, 0.982, and 0.863, respectively). Furthermore, the combined diagnostic model (IVIM + RSI) exhibited the highest diagnostic efficacy for the pairwise discriminations (AUCs = 0.893, 0.991, and 0.928, respectively). CONCLUSIONS Quantitative parameters derived from the three-compartment RSI model have great promise as imaging indicators for the differential diagnosis of breast lesions compared with the bi-exponential IVIM model. Additionally, the combined model of IVIM and RSI achieves superior diagnostic performance in characterizing breast lesions.
Collapse
Affiliation(s)
- Litong He
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, NO. 1095 Jiefang Avenue, Qiaokou District, Wuhan, 430030, China
| | - Yanjin Qin
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, 58th the Second Zhongshan Road, Guangzhou, 510080, China
| | - Qilan Hu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, NO. 1095 Jiefang Avenue, Qiaokou District, Wuhan, 430030, China
| | - Zhiqiang Liu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, NO. 1095 Jiefang Avenue, Qiaokou District, Wuhan, 430030, China
| | - Yunfei Zhang
- MR Collaboration, Central Research Institute, United Imaging Healthcare, Shanghai, China
| | - Tao Ai
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, NO. 1095 Jiefang Avenue, Qiaokou District, Wuhan, 430030, China.
| |
Collapse
|
6
|
Mao C, Hu L, Jiang W, Qiu Y, Yang Z, Liu Y, Wang M, Wang D, Su Y, Lin J, Yan X, Cai Z, Zhang X, Shen J. Discrimination between human epidermal growth factor receptor 2 (HER2)-low-expressing and HER2-overexpressing breast cancers: a comparative study of four MRI diffusion models. Eur Radiol 2024; 34:2546-2559. [PMID: 37672055 DOI: 10.1007/s00330-023-10198-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/13/2023] [Accepted: 07/08/2023] [Indexed: 09/07/2023]
Abstract
OBJECTIVES To determine the value of conventional DWI, continuous-time random walk (CTRW), fractional order calculus (FROC), and stretched exponential model (SEM) in discriminating human epidermal growth factor receptor 2 (HER2) status of breast cancer (BC). METHODS This prospective study included 158 women who underwent DWI, CTRW, FROC, and SEM and were pathologically categorized into the HER2-zero-expressing group (n = 10), HER2-low-expressing group (n = 86), and HER2-overexpressing group (n = 62). Nine diffusion parameters, namely ADC, αCTRW, βCTRW, DCTRW, βFROC, DFROC, μFROC, αSEM, and DDCSEM of the primary tumor, were derived from four diffusion models. These diffusion metrics and clinicopathologic features were compared between groups. Logistic regression was used to determine the optimal diffusion metrics and clinicopathologic variables for classifying the HER2-expressing statuses. Receiver operating characteristic (ROC) curves were used to evaluate their discriminative ability. RESULTS The estrogen receptor (ER) status, progesterone receptor (PR) status, and tumor size differed between HER2-low-expressing and HER2-overexpressing groups (p < 0.001 to p = 0.009). The αCTRW, DCTRW, βFROC, DFROC, μFROC, αSEM, and DDCSEM were significantly lower in HER2-low-expressing BCs than those in HER2-overexpressing BCs (p < 0.001 to p = 0.01). Further multivariable logistic regression analysis showed that the αCTRW was the single best discriminative metric, with an area under the curve (AUC) being higher than that of ADC (0.802 vs. 0.610, p < 0.05); the addition of ER status, PR status, and tumor size to the αCTRW improved the AUC to 0.877. CONCLUSIONS The αCTRW could help discriminate the HER2-low-expressing and HER2-overexpressing BCs. CLINICAL RELEVANCE STATEMENT Human epidermal growth factor receptor 2 (HER2)-low-expressing breast cancer (BC) might also benefit from the HER2-targeted therapy. Prediction of HER2-low-expressing BC or HER2-overexpressing BC is crucial for appropriate management. Advanced continuous-time random walk diffusion MRI offers a solution to this clinical issue. KEY POINTS • Human epidermal receptor 2 (HER2)-low-expressing BC had lower αCTRW, DCTRW, βFROC, DFROC, μFROC, αSEM, and DDCSEM values compared with HER2-overexpressing breast cancer. • The αCTRW was the single best diffusion metric (AUC = 0.802) for discrimination between the HER2-low-expressing and HER2-overexpressing breast cancers. • The addition of αCTRW to the clinicopathologic features (estrogen receptor status, progesterone receptor status, and tumor size) further improved the discriminative ability.
Collapse
Affiliation(s)
- Chunping Mao
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Lanxin Hu
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Wei Jiang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Ya Qiu
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zehong Yang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yeqing Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Department of Pathology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Mengzhu Wang
- MR Scientific Marketing, Siemens Healthcare, Guangzhou, Guangdong, China
| | - Dongye Wang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yun Su
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jinru Lin
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xu Yan
- MR Scientific Marketing, Siemens Healthcare, Guangzhou, Guangdong, China
| | - Zhaoxi Cai
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiang Zhang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| | - Jun Shen
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
7
|
Zheng L, Jiang P, Lin D, Chen X, Zhong T, Zhang R, Chen J, Song Y, Xue Y, Lin L. Histogram analysis of mono-exponential, bi-exponential and stretched-exponential diffusion-weighted MR imaging in predicting consistency of meningiomas. Cancer Imaging 2023; 23:117. [PMID: 38053183 DOI: 10.1186/s40644-023-00633-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 11/03/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND The consistency of meningiomas is critical to determine surgical planning and has a significant impact on surgical outcomes. Our aim was to compare mono-exponential, bi-exponential and stretched exponential MR diffusion-weighted imaging in predicting the consistency of meningiomas before surgery. METHODS Forty-seven consecutive patients with pathologically confirmed meningiomas were prospectively enrolled in this study. Two senior neurosurgeons independently evaluated tumour consistency and classified them into soft and hard groups. A volume of interest was placed on the preoperative MR diffusion images to outline the whole tumour area. Histogram parameters (mean, median, 10th percentile, 90th percentile, kurtosis, skewness) were extracted from 6 different diffusion maps including ADC (DWI), D*, D, f (IVIM), alpha and DDC (SEM). Comparisons between two groups were made using Student's t-Test or Mann-Whitney U test. Parameters with significant differences between the two groups were included for Receiver operating characteristic analysis. The DeLong test was used to compare AUCs. RESULTS DDC, D* and ADC 10th percentile were significantly lower in hard tumours than in soft tumours (P ≤ 0.05). The alpha 90th percentile was significantly higher in hard tumours than in soft tumours (P < 0.02). For all histogram parameters, the alpha 90th percentile yielded the highest AUC of 0.88, with an accuracy of 85.10%. The D* 10th percentile had a relatively higher AUC value, followed by the DDC and ADC 10th percentile. The alpha 90th percentile had a significantly greater AUC value than the ADC 10th percentile (P ≤ 0.05). The D* 10th percentile had a significantly greater AUC value than the ADC 10th percentile and DDC 10th percentile (P ≤ 0.03). CONCLUSION Histogram parameters of Alpha and D* may serve as better imaging biomarkers to aid in predicting the consistency of meningioma.
Collapse
Affiliation(s)
- Lingmin Zheng
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Peirong Jiang
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Danjie Lin
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Xiaodan Chen
- Department of Radiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Tianjin Zhong
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Rufei Zhang
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Jing Chen
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Yang Song
- MR Scientific Marketing, Healthineers Ltd, Siemens, Shanghai, China
| | - Yunjing Xue
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
| | - Lin Lin
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
- School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, 350004, China.
| |
Collapse
|
8
|
Liao D, Liu YC, Liu JY, Wang D, Liu XF. Differentiating tumour progression from pseudoprogression in glioblastoma patients: a monoexponential, biexponential, and stretched-exponential model-based DWI study. BMC Med Imaging 2023; 23:119. [PMID: 37697237 PMCID: PMC10494379 DOI: 10.1186/s12880-023-01082-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 08/19/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND To investigate the diagnostic performance of parameters derived from monoexponential, biexponential, and stretched-exponential diffusion-weighted imaging models in differentiating tumour progression from pseudoprogression in glioblastoma patients. METHODS Forty patients with pathologically confirmed glioblastoma exhibiting enhancing lesions after completion of chemoradiation therapy were enrolled in the study, which were then classified as tumour progression and pseudoprogression. All patients underwent conventional and multi-b diffusion-weighted MRI. The apparent diffusion coefficient (ADC) from a monoexponential model, the true diffusion coefficient (D), pseudodiffusion coefficient (D*) and perfusion fraction (f) from a biexponential model, and the distributed diffusion coefficient (DDC) and intravoxel heterogeneity index (α) from a stretched-exponential model were compared between tumour progression and pseudoprogression groups. Receiver operating characteristic curves (ROC) analysis was used to investigate the diagnostic performance of different DWI parameters. Interclass correlation coefficient (ICC) was used to evaluate the consistency of measurements. RESULTS The values of ADC, D, DDC, and α values were lower in tumour progression patients than that in pseudoprogression patients (p < 0.05). The values of D* and f were higher in tumour progression patients than that in pseudoprogression patients (p < 0.05). Diagnostic accuracy for differentiating tumour progression from pseudoprogression was highest for α(AUC = 0.94) than that for ADC (AUC = 0.91), D (AUC = 0.92), D* (AUC = 0.81), f (AUC = 0.75), and DDC (AUC = 0.88). CONCLUSIONS Multi-b DWI is a promising method for differentiating tumour progression from pseudoprogression with high diagnostic accuracy. In addition, the α derived from stretched-exponential model is the most promising DWI parameter for the prediction of tumour progression in glioblastoma patients.
Collapse
Affiliation(s)
- Dan Liao
- Department of Radiology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou 550002 China
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010 China
| | - Yuan-Cheng Liu
- Department of Radiology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou 550002 China
| | - Jiang-Yong Liu
- Department of Radiology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou 550002 China
| | - Di Wang
- Department of Radiology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou 550002 China
| | - Xin-Feng Liu
- Department of Radiology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou 550002 China
| |
Collapse
|
9
|
Qin Y, Tang C, Hu Q, Yi J, Yin T, Ai T. Assessment of Prognostic Factors and Molecular Subtypes of Breast Cancer With a Continuous-Time Random-Walk MR Diffusion Model: Using Whole Tumor Histogram Analysis. J Magn Reson Imaging 2023; 58:93-105. [PMID: 36251468 DOI: 10.1002/jmri.28474] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND The continuous-time random-walk (CTRW) diffusion model to evaluate breast cancer prognosis is rarely reported. PURPOSE To investigate the correlations between apparent diffusion coefficient (ADC) and CTRW-specific parameters with prognostic factors and molecular subtypes of breast cancer. STUDY TYPE Retrospective. POPULATION One hundred fifty-seven women (median age, 50 years; range, 26-81 years) with histopathology-confirmed breast cancer. FIELD STRENGTH/SEQUENCE Simultaneous multi-slice readout-segmented echo-planar imaging at 3.0T. ASSESSMENT The histogram metrics of ADC, anomalous diffusion coefficient (D), temporal diffusion heterogeneity (α), and spatial diffusion heterogeneity (β) were calculated for whole-tumor volume. Associations between histogram metrics and prognostic factors (estrogen receptor [ER], progesterone receptor [PR], human epidermal growth factor receptor 2 [HER2], and Ki-67 proliferation index), axillary lymph node metastasis (ALNM), and tumor grade were assessed. The performance of histogram metrics, both alone and in combination, for differentiating molecular subtypes (HER2-positive, Luminal or triple negative) was also assessed. STATISTICAL TESTS Comparisons were made using Mann-Whitney test between different prognostic factor statuses and molecular subtypes. Receiver operating characteristic curve analysis was used to assess the performance of mean and median histogram metrics in differentiating the molecular subtypes. A P value <0.05 was considered statistically significant. RESULTS The histogram metrics of ADC, D, and α differed significantly between ER-positive and ER-negative status, and between PR-positive and PR-negative status. The histogram metrics of ADC, D, α, and β were also significantly different between the HER2-positive and HER2-negative subgroups, and between ALNM-positive and ALNM-negative subgroups. The histogram metrics of α and β significantly differed between high and low Ki-67 proliferation subgroups, and between histological grade subgroups. The combination of αmean and βmean achieved the highest performance (AUC = 0.702) to discriminate the Luminal and HER2-positive subtypes. DATA CONCLUSION Whole-tumor histogram analysis of the CTRW model has potential to provide additional information on the prognosis and intrinsic subtyping classification of breast cancer. EVIDENCE LEVEL 4 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Yanjin Qin
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Caili Tang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qilan Hu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingru Yi
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Yin
- MR Collaborations, Siemens Healthineers Ltd., Chengdu, China
| | - Tao Ai
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Ji Y, Xu J, Wang Z, Guo X, Kong D, Wang H, Li K. Application of advanced diffusion models from diffusion weighted imaging in a large cohort study of breast lesions. BMC Med Imaging 2023; 23:52. [PMID: 37041466 PMCID: PMC10091641 DOI: 10.1186/s12880-023-01005-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/24/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND To evaluate multiple parameters in multiple b-value diffusion-weighted imaging (DWI) in characterizing breast lesions and predicting prognostic factors and molecular subtypes. METHODS In total, 504 patients who underwent 3-T magnetic resonance imaging (MRI) with T1-weighted dynamic contrast-enhanced (DCE) sequences, T2-weighted sequences and multiple b-value (7 values, from 0 to 3000 s/mm2) DWI were recruited. The average values of 13 parameters in 6 models were calculated and recorded. The pathological diagnosis of breast lesions was based on the latest World Health Organization (WHO) classification. RESULTS Twelve parameters exhibited statistical significance in differentiating benign and malignant lesions. alpha demonstrated the highest sensitivity (89.5%), while sigma demonstrated the highest specificity (77.7%). The stretched-exponential model (SEM) demonstrated the highest sensitivity (90.8%), while the biexponential model demonstrated the highest specificity (80.8%). The highest AUC (0.882, 95% CI, 0.852-0.912) was achieved when all 13 parameters were combined. Prognostic factors were correlated with different parameters, but the correlation was relatively weak. Among the 6 parameters with significant differences among molecular subtypes of breast cancer, the Luminal A group and Luminal B (HER2 negative) group had relatively low values, and the HER2-enriched group and TNBC group had relatively high values. CONCLUSIONS All 13 parameters, independent or combined, provide valuable information in distinguishing malignant from benign breast lesions. These new parameters have limited meaning for predicting prognostic factors and molecular subtypes of malignant breast tumors.
Collapse
Affiliation(s)
- Ying Ji
- Department of Radiology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, No. 650, New Songjiang Road, Shanghai, 201620, China
| | - Junqi Xu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, No. 220, Handan Road, Shanghai, 200433, China
| | - Zilin Wang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, No. 650, New Songjiang Road, Shanghai, 201620, China
| | - Xinyu Guo
- Department of Radiology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, No. 650, New Songjiang Road, Shanghai, 201620, China
| | - Dexing Kong
- School of Mathematical Sciences, Zhejiang University, No. 866, Yuhangtang Road, Zhejiang, 310027, China
| | - He Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, No. 220, Handan Road, Shanghai, 200433, China
| | - Kangan Li
- Department of Radiology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, No. 650, New Songjiang Road, Shanghai, 201620, China.
| |
Collapse
|
11
|
Yao FF, Zhang Y. A review of quantitative diffusion-weighted MR imaging for breast cancer: Towards noninvasive biomarker. Clin Imaging 2023; 98:36-58. [PMID: 36996598 DOI: 10.1016/j.clinimag.2023.03.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/03/2023] [Accepted: 03/21/2023] [Indexed: 04/01/2023]
Abstract
Quantitative diffusion-weighted imaging (DWI) is an important adjunct to conventional breast MRI and shows promise as a noninvasive biomarker of breast cancer in multiple clinical scenarios, from the discrimination of benign and malignant lesions, prediction, and evaluation of treatment response to a prognostic assessment of breast cancer. Various quantitative parameters are derived from different DWI models based on special prior knowledge and assumptions, have different meanings, and are easy to confuse. In this review, we describe the quantitative parameters derived from conventional and advanced DWI models commonly used in breast cancer and summarize the promising clinical applications of these quantitative parameters. Although promising, it is still challenging for these quantitative parameters to become clinically useful noninvasive biomarkers in breast cancer, as multiple factors may result in variations in quantitative parameter measurements. Finally, we briefly describe some considerations regarding the factors that cause variations.
Collapse
Affiliation(s)
- Fei-Fei Yao
- Department of MRI in the First Affiliated Hospital, Zhengzhou University, Zhengzhou, China.
| | - Yan Zhang
- Department of MRI in the First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Lin CX, Tian Y, Li JM, Liao ST, Liu YT, Zhan RG, Du ZL, Yu XR. Diagnostic value of multiple b-value diffusion-weighted imaging in discriminating the malignant from benign breast lesions. BMC Med Imaging 2023; 23:10. [PMID: 36631781 PMCID: PMC9832757 DOI: 10.1186/s12880-022-00950-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 12/14/2022] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE The conventional breast Diffusion-weighted imaging (DWI) was subtly influenced by microcirculation owing to the insufficient selection of the b values. However, the multiparameter derived from multiple b-value exhibits more reliable image quality and maximize the diagnostic accuracy. We aim to evaluate the diagnostic performance of stand-alone parameter or in combination with multiparameter derived from multiple b-value DWI in differentiating malignant from benign breast lesions. METHODS A total of forty-one patients diagnosed with benign breast tumor and thirty-eight patients with malignant breast tumor underwent DWI using thirteen b values and other MRI functional sequence at 3.0 T magnetic resonance. Data were accepted mono-exponential, bi-exponential, stretched-exponential, aquaporins (AQP) model analysis. A receiver operating characteristic curve (ROC) was used to evaluate the diagnostic performance of quantitative parameter or multiparametric combination. The Youden index, sensitivity and specificity were used to assess the optimal diagnostic model. T-test, logistic regression analysis, and Z-test were used. P value < 0.05 was considered statistically significant. RESULT The ADCavg, ADCmax, f, and α value of the malignant group were lower than the benign group, while the ADCfast value was higher instead. The ADCmin, ADCslow, DDC and ADCAQP showed no statistical significance. The combination (ADCavg-ADCfast) yielded the largest area under curve (AUC = 0.807) with sensitivity (68.42%), specificity (87.8%) and highest Youden index, indicating that multiparametric combination (ADCavg-ADCfast) was validated to be a useful model in differentiating the benign from breast malignant lesion. CONCLUSION The current study based on the multiple b-value diffusion model demonstrated quantitatively multiparametric combination (ADCavg-ADCfast) exhibited the optimal diagnostic efficacy to differentiate malignant from benign breast lesions, suggesting that multiparameter would be a promising non-invasiveness to diagnose breast lesions.
Collapse
Affiliation(s)
- Chu-Xin Lin
- grid.452930.90000 0004 1757 8087Department of Radiology, Zhuhai Hospital Affiliated With Jinan University (Zhuhai People’s Hospital), 79 Kangning Road, Zhuhai, 519000 People’s Republic of China
| | - Ye Tian
- grid.452930.90000 0004 1757 8087Department of Radiology, Zhuhai Hospital Affiliated With Jinan University (Zhuhai People’s Hospital), 79 Kangning Road, Zhuhai, 519000 People’s Republic of China
| | - Jia-Min Li
- grid.452930.90000 0004 1757 8087Department of Radiology, Zhuhai Hospital Affiliated With Jinan University (Zhuhai People’s Hospital), 79 Kangning Road, Zhuhai, 519000 People’s Republic of China
| | - Shu-Ting Liao
- grid.452930.90000 0004 1757 8087Department of Radiology, Zhuhai Hospital Affiliated With Jinan University (Zhuhai People’s Hospital), 79 Kangning Road, Zhuhai, 519000 People’s Republic of China
| | - Yu-Tao Liu
- grid.452930.90000 0004 1757 8087Department of Radiology, Zhuhai Hospital Affiliated With Jinan University (Zhuhai People’s Hospital), 79 Kangning Road, Zhuhai, 519000 People’s Republic of China
| | - Run-Gen Zhan
- grid.452930.90000 0004 1757 8087Department of Radiology, Zhuhai Hospital Affiliated With Jinan University (Zhuhai People’s Hospital), 79 Kangning Road, Zhuhai, 519000 People’s Republic of China
| | - Zhong-Li Du
- grid.452930.90000 0004 1757 8087Department of Radiology, Zhuhai Hospital Affiliated With Jinan University (Zhuhai People’s Hospital), 79 Kangning Road, Zhuhai, 519000 People’s Republic of China
| | - Xiang-Rong Yu
- grid.452930.90000 0004 1757 8087Department of Radiology, Zhuhai Hospital Affiliated With Jinan University (Zhuhai People’s Hospital), 79 Kangning Road, Zhuhai, 519000 People’s Republic of China
| |
Collapse
|
13
|
Qin Y, Tang C, Hu Q, Zhang Y, Yi J, Dai Y, Ai T. Quantitative Assessment of Restriction Spectrum MR Imaging for the Diagnosis of Breast Cancer and Association With Prognostic Factors. J Magn Reson Imaging 2022; 57:1832-1841. [PMID: 36205354 DOI: 10.1002/jmri.28468] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Restriction spectrum imaging (RSI) is an advanced quantitative diffusion-weighted magnetic resonance imaging (DWI) technique to assess breast cancer. PURPOSE To investigate the ability of RSI to differentiate the benign and malignant breast lesions and the association with prognostic factors of breast cancer. STUDY TYPE Retrospective. POPULATION Seventy women (mean age, 49.6 ± 12.3 years) with 56 malignant and 19 benign breast lesions. FIELD STRENGTH/SEQUENCE 3-T; RSI-based DWI sequence with echo-planar imaging technique. ASSESSMENT The apparent diffusion coefficient (ADC) and RSI parameters (restricted diffusion f1 , hindered diffusion f2 , free diffusion f3 , and signal fractions f1 f2 ) were calculated by two readers for the whole lesion volume and compared between the benign and malignant groups and the subgroups with different statuses of prognostic factors in breast cancer. STATISTICAL TESTS Mann-Whitney U test or Student's t-test was applied to compare the quantitative parameters between the different groups. Intraclass correlation coefficient (ICC) was used to assess readers' reproducibility. Binary logistic regression was used to combine parameters. Area under the curve (AUC) of receiver operating characteristic curve analysis was used to evaluate the diagnostic performance of parameters to distinguish benign from malignant breast lesions. A P-value <0.05 was considered statistically significant. RESULTS Malignant breast lesions showed significantly lower ADC and f3 values, and significantly higher f1 and f1 f2 values than the benign lesions, with AUC of 0.951, 0.877, 0.868, and 0.860, respectively. When RSI-derived parameters and ADC were combined, the diagnostic performance was superior to either single parameter (AUC = 0.973). The f3 value was significantly differed between estrogen receptor (ER)-positive and ER-negative tumors. The ADC, f1 , f3 , and f1 f2 values were significantly different progesterone receptor (PR)-positive and PR-negative status. DATA CONCLUSION The RSI-derived parameters (f1 , f3 , and f1 f2 ) may facilitate the differential diagnosis between benign and malignant breast lesions. LEVEL OF EVIDENCE 4 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Yanjin Qin
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Caili Tang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qilan Hu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunfei Zhang
- MR Collaboration, Central Research Institute, United Imaging Healthcare, Shanghai, China
| | - Jingru Yi
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongming Dai
- MR Collaboration, Central Research Institute, United Imaging Healthcare, Shanghai, China
| | - Tao Ai
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Almutlaq ZM, Wilson DJ, Bacon SE, Sharma N, Stephens S, Dondo T, Buckley DL. Evaluation of Monoexponential, Stretched-Exponential and Intravoxel Incoherent Motion MRI Diffusion Models in Early Response Monitoring to Neoadjuvant Chemotherapy in Patients With Breast Cancer-A Preliminary Study. J Magn Reson Imaging 2022; 56:1079-1088. [PMID: 35156741 PMCID: PMC9543625 DOI: 10.1002/jmri.28113] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND There has been a growing interest in exploring the applications of stretched-exponential (SEM) and intravoxel incoherent motion (IVIM) models of diffusion-weighted imaging (DWI) in breast imaging, with the focus on differentiation of breast lesions. However, the use of SEM and IVIM models to predict early response to neoadjuvant chemotherapy (NACT) has received less attention. PURPOSE To investigate the value of monoexponential, SEM, and IVIM models to predict early response to NACT in patients with primary breast cancer. STUDY TYPE Prospective. POPULATION Thirty-seven patients with primary breast cancer (aged 46 ± 11 years) due to undergo NACT. FIELD STRENGTH/SEQUENCES A 1.5-T MR scanner, T1 -weighted three-dimensional spoiled gradient-echo, two-dimensional single-shot spin-echo echo-planar imaging sequence (DWI) at six b-values (0-800 s mm-2 ). ASSESSMENT Tumor volume, apparent diffusion coefficient, tissue diffusion (Dt ), pseudo-diffusion coefficient (Dp ), perfusion fraction (f), distributed diffusion coefficient, and alpha (α) were extracted, following volumetric sampling of the tumors, at three time-points: pretreatment, post one and three cycles of NACT. STATISTICAL TESTS Mann-Whitney test, receiver operating characteristic (ROC) curve. Statistical significance level was P < 0.05. RESULTS Following NACT, 17 patients were determined to be pathological responders and 20 nonresponders. Tumor volume was significantly larger in nonresponders at each MRI time-point and demonstrated reasonable performance in predicting response (area under the ROC curve [AUC] = 0.83-0.87). No significant differences between groups were found in the diffusion coefficients at each time-point (P = 0.09-1). The parameters α (SEM), f, and f × Dp (IVIM) were able to differentiate between response groups after one cycle of NACT (AUC = 0.73, 0.72, and 0.74, respectively). CONCLUSION Diffusion coefficients derived from the monoexponential, SEM, and IVIM models did not predict pathological response. However, the IVIM-derived parameters f and f × Dp and the SEM-derived parameter α were able to predict response to NACT in breast cancer patients following one cycle of NACT. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Zyad M. Almutlaq
- Biomedical ImagingUniversity of LeedsLeedsUK
- Radiological Sciences Department, College of Applied Medical SciencesKing Saud bin Abdulaziz University for Health SciencesRiyadhSaudi Arabia
| | - Daniel J. Wilson
- Department of Medical Physics & EngineeringLeeds Teaching Hospitals NHS TrustLeedsUK
| | - Sarah E. Bacon
- Department of Medical Physics & EngineeringLeeds Teaching Hospitals NHS TrustLeedsUK
| | - Nisha Sharma
- Department of RadiologyLeeds Teaching Hospitals NHS TrustLeedsUK
| | | | - Tatendashe Dondo
- Clinical and Population Sciences Department, Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | | |
Collapse
|
15
|
Mendez AM, Fang LK, Meriwether CH, Batasin SJ, Loubrie S, Rodríguez-Soto AE, Rakow-Penner RA. Diffusion Breast MRI: Current Standard and Emerging Techniques. Front Oncol 2022; 12:844790. [PMID: 35880168 PMCID: PMC9307963 DOI: 10.3389/fonc.2022.844790] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
The role of diffusion weighted imaging (DWI) as a biomarker has been the subject of active investigation in the field of breast radiology. By quantifying the random motion of water within a voxel of tissue, DWI provides indirect metrics that reveal cellularity and architectural features. Studies show that data obtained from DWI may provide information related to the characterization, prognosis, and treatment response of breast cancer. The incorporation of DWI in breast imaging demonstrates its potential to serve as a non-invasive tool to help guide diagnosis and treatment. In this review, current technical literature of diffusion-weighted breast imaging will be discussed, in addition to clinical applications, advanced techniques, and emerging use in the field of radiomics.
Collapse
Affiliation(s)
- Ashley M. Mendez
- Department of Radiology, University of California San Diego, La Jolla, CA, United States
| | - Lauren K. Fang
- Department of Radiology, University of California San Diego, La Jolla, CA, United States
| | - Claire H. Meriwether
- Department of Radiology, University of California San Diego, La Jolla, CA, United States
| | - Summer J. Batasin
- Department of Radiology, University of California San Diego, La Jolla, CA, United States
| | - Stéphane Loubrie
- Department of Radiology, University of California San Diego, La Jolla, CA, United States
| | - Ana E. Rodríguez-Soto
- Department of Radiology, University of California San Diego, La Jolla, CA, United States
| | - Rebecca A. Rakow-Penner
- Department of Radiology, University of California San Diego, La Jolla, CA, United States,Department of Bioengineering, University of California San Diego, La Jolla, CA, United States,*Correspondence: Rebecca A. Rakow-Penner,
| |
Collapse
|
16
|
Differentiation of Prostate Cancer and Stromal Hyperplasia in the Transition Zone With Monoexponential, Stretched-Exponential Diffusion-Weighted Imaging and Diffusion Kurtosis Imaging in a Reduced Number of b Values: Correlation With Whole-Mount Pathology. J Comput Assist Tomogr 2022; 46:545-550. [PMID: 35405685 DOI: 10.1097/rct.0000000000001314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES The aims of the study were to explore the feasibility of generating a monoexponential model (MEM), stretched-exponential model (SEM) based diffusion-weighted imaging (DWI), and diffusion kurtosis imaging (DKI) by applying the same set of reduced b values and to compare their effectiveness in distinguishing prostate cancer from stromal hyperplasia (SH) in the transition zone (TZ) area. METHODS An analysis of 75 patients who underwent preoperative DWI (b values of 0, 700, 1400, 2000 s/mm2) was performed. All lesions were localized on magnetic resonance images according to whole-mount histopathological correlations. The apparent diffusion coefficient (ADC), water molecular diffusion heterogeneity index (α), distributed diffusion coefficient (DDC), mean diffusivity (MD), and mean kurtosis (MK) values were calculated and compared between the TZ cancer and SH groups. Receiver operating characteristic analysis and areas under the receiver operating characteristic curve (AUCs) were carried out for all parameters. RESULTS Compared with the SH group, the ADC, DDC, α, and MD values of the TZ cancer group were significantly reduced, while the MK value was significantly increased (all P < 0.05). The AUCs of the ADC, DDC, α, MD, and MK were 0.828, 0.801, 0.813, 0.822, and 0.882, respectively. The AUC of MK was significantly higher than that of the other parameters (all P < 0.05). CONCLUSIONS When using the reduced b-value set, all parameters from MEM, SEM, based DWI, and DKI can effectively distinguish TZ cancer from SH. Among them, DKI demonstrated potential clinical superiority over the others in TZ cancer diagnosis.
Collapse
|
17
|
Zhu CR, Chen KY, Li P, Xia ZY, Wang B. Accuracy of multiparametric MRI in distinguishing the breast malignant lesions from benign lesions: a meta-analysis. Acta Radiol 2021; 62:1290-1297. [PMID: 33059458 DOI: 10.1177/0284185120963900] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND The sensitivity of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for detecting breast cancer was high and the specificity was relatively low. However, diffusion-weighted imaging (DWI) has a high specificity in the diagnosis of malignant lesions. PURPOSE To evaluate the accuracy of the multiparametric MRI (mp-MRI) in distinguishing the breast malignant lesions from the benign lesions. MATERIAL AND METHODS A comprehensive search of the PubMed, Embase, and Cochrane Library electronic databases was conducted up to March 2020. Data were analyzed for the following indexes: pooled sensitivity and specificity; positive likelihood ratio; negative likelihood ratio; diagnostic odds ratio; and the area under the curve. RESULTS A total of 2356 patients with 1604 malignant and 967 benign breast lesions were included from 22 studies. The pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio, and area under the curve for mp-MRI were 0.93, 0.85, 6.3, 0.08, 81, and 0.96, respectively. The pooled sensitivity, specificity, and area under the curve for DCE-MRI alone were 0.95, 0.71, and 0.92, respectively. The pooled sensitivity, specificity, and area under the curve for DWI alone were 0.88, 0.84, and 0.93, respectively. CONCLUSION The mp-MRI did not improve the sensitivity but increased the specificity for the diagnosis of breast malignant lesions.
Collapse
Affiliation(s)
- Chun-Rong Zhu
- North Sichuan Medical College, Nanchong, Sichuan, PR China
| | - Ke-Yu Chen
- North Sichuan Medical College, Nanchong, Sichuan, PR China
| | - Pan Li
- North Sichuan Medical College, Nanchong, Sichuan, PR China
| | - Zhi-Yang Xia
- North Sichuan Medical College, Nanchong, Sichuan, PR China
| | - Bin Wang
- Department of Breast and Thyroid Surgery, The Third People’s Hospital of Chengdu, Chengdu, Sichuan, PR China
| |
Collapse
|
18
|
Whole Volume Apparent Diffusion Coefficient (ADC) Histogram as a Quantitative Imaging Biomarker to Differentiate Breast Lesions: Correlation with the Ki-67 Proliferation Index. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4970265. [PMID: 34258262 PMCID: PMC8249125 DOI: 10.1155/2021/4970265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/09/2021] [Indexed: 11/18/2022]
Abstract
Objectives To evaluate the value of the whole volume apparent diffusion coefficient (ADC) histogram in distinguishing between benign and malignant breast lesions and differentiating different molecular subtypes of breast cancers and to assess the correlation between ADC histogram parameters and Ki-67 expression in breast cancers. Methods The institutional review board approved this retrospective study. Between September 2016 and February 2019, 189 patients with 84 benign lesions and 105 breast cancers underwent magnetic resonance imaging (MRI). Volumetric ADC histograms were created by placing regions of interest (ROIs) on the whole lesion. The relationships between the ADC parameters and Ki-67 were analysed using Spearman's correlation analysis. Results Of the 189 breast lesions included, there were significant differences in patient age (P < 0.001) and lesion size (P = 0.006) between the benign and malignant lesions. The results also demonstrated significant differences in all ADC histogram parameters between benign and malignant lesions (all P < 0.001). The median and mean ADC histogram parameters performed better than the other ADC histogram parameters (AUCs were 0.943 and 0.930, respectively). The receiver operating characteristic (ROC) analysis revealed that the 10th percentile ADC value and entropy could determine the human epidermal growth factor receptor 2 (HER-2) status (both P = 0.001) and estrogen receptor (ER)/progesterone receptor (PR) status (P = 0.020 and P = 0.041, respectively). Among all breast cancer lesions, 35 tumours in the low-proliferation group (Ki − 67 < 14%) and 70 tumours in the high-proliferation group (Ki − 67 ≥ 14) were analysed with ROC curves and correlation analyses. The ROC analysis revealed that entropy and skewness could determine the Ki-67 status (P = 0.007 and P < 0.001, respectively), and there were weak correlations between ADC entropy (r = 0.383) and skewness (r = 0.209) and the Ki-67 index. Conclusion The volumetric ADC histogram could serve as an imaging marker to determine breast lesion characteristics and may be a supplemental method in predicting tumour proliferation in breast cancer.
Collapse
|
19
|
Andreassen MMS, Rodríguez-Soto AE, Conlin CC, Vidić I, Seibert TM, Wallace AM, Zare S, Kuperman J, Abudu B, Ahn GS, Hahn M, Jerome NP, Østlie A, Bathen TF, Ojeda-Fournier H, Goa PE, Rakow-Penner R, Dale AM. Discrimination of Breast Cancer from Healthy Breast Tissue Using a Three-component Diffusion-weighted MRI Model. Clin Cancer Res 2021; 27:1094-1104. [PMID: 33148675 PMCID: PMC8174004 DOI: 10.1158/1078-0432.ccr-20-2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/29/2020] [Accepted: 10/29/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Diffusion-weighted MRI (DW-MRI) is a contrast-free modality that has demonstrated ability to discriminate between predefined benign and malignant breast lesions. However, how well DW-MRI discriminates cancer from all other breast tissue voxels in a clinical setting is unknown. Here we explore the voxelwise ability to distinguish cancer from healthy breast tissue using signal contributions from the newly developed three-component multi-b-value DW-MRI model. EXPERIMENTAL DESIGN Patients with pathology-proven breast cancer from two datasets (n = 81 and n = 25) underwent multi-b-value DW-MRI. The three-component signal contributions C 1 and C 2 and their product, C 1 C 2, and signal fractions F 1, F 2, and F 1 F 2 were compared with the image defined on maximum b-value (DWI max), conventional apparent diffusion coefficient (ADC), and apparent diffusion kurtosis (K app). The ability to discriminate between cancer and healthy breast tissue was assessed by the false-positive rate given a sensitivity of 80% (FPR80) and ROC AUC. RESULTS Mean FPR80 for both datasets was 0.016 [95% confidence interval (CI), 0.008-0.024] for C 1 C 2, 0.136 (95% CI, 0.092-0.180) for C 1, 0.068 (95% CI, 0.049-0.087) for C 2, 0.462 (95% CI, 0.425-0.499) for F 1 F 2, 0.832 (95% CI, 0.797-0.868) for F 1, 0.176 (95% CI, 0.150-0.203) for F 2, 0.159 (95% CI, 0.114-0.204) for DWI max, 0.731 (95% CI, 0.692-0.770) for ADC, and 0.684 (95% CI, 0.660-0.709) for K app. Mean ROC AUC for C 1 C 2 was 0.984 (95% CI, 0.977-0.991). CONCLUSIONS The C 1 C 2 parameter of the three-component model yields a clinically useful discrimination between cancer and healthy breast tissue, superior to other DW-MRI methods and obliviating predefining lesions. This novel DW-MRI method may serve as noncontrast alternative to standard-of-care dynamic contrast-enhanced MRI.
Collapse
Affiliation(s)
- Maren M Sjaastad Andreassen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ana E Rodríguez-Soto
- Department of Radiology, University of California San Diego, La Jolla, California
| | - Christopher C Conlin
- Department of Radiology, University of California San Diego, La Jolla, California
| | - Igor Vidić
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tyler M Seibert
- Department of Radiology, University of California San Diego, La Jolla, California
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
- Department of Bioengineering, University of California San Diego, La Jolla, California
| | - Anne M Wallace
- Department of Surgery, University of California San Diego, La Jolla, California
| | - Somaye Zare
- Department of Pathology, University of California San Diego, La Jolla, California
| | - Joshua Kuperman
- Department of Radiology, University of California San Diego, La Jolla, California
| | - Boya Abudu
- School of Medicine, University of California San Diego, La Jolla, California
| | - Grace S Ahn
- School of Medicine, University of California San Diego, La Jolla, California
| | - Michael Hahn
- Department of Radiology, University of California San Diego, La Jolla, California
| | - Neil P Jerome
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Agnes Østlie
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tone F Bathen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Radiology and Nuclear Medicine, St. Olav's University Hospital, Trondheim, Norway
| | | | - Pål Erik Goa
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Radiology and Nuclear Medicine, St. Olav's University Hospital, Trondheim, Norway
| | - Rebecca Rakow-Penner
- Department of Radiology, University of California San Diego, La Jolla, California.
| | - Anders M Dale
- Department of Radiology, University of California San Diego, La Jolla, California
- Department of Neuroscience, University of California San Diego, La Jolla, California
| |
Collapse
|
20
|
Liang J, Zeng S, Li Z, Kong Y, Meng T, Zhou C, Chen J, Wu Y, He N. Intravoxel Incoherent Motion Diffusion-Weighted Imaging for Quantitative Differentiation of Breast Tumors: A Meta-Analysis. Front Oncol 2020; 10:585486. [PMID: 33194733 PMCID: PMC7606934 DOI: 10.3389/fonc.2020.585486] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/14/2020] [Indexed: 01/12/2023] Open
Abstract
Objectives: The diagnostic performance of intravoxel incoherent motion diffusion–weighted imaging (IVIM-DWI) in the differential diagnosis of breast tumors remains debatable among published studies. Therefore, this meta-analysis aimed to pool relevant evidence regarding the diagnostic performance of IVIM-DWI in the differential diagnosis of breast tumors. Methods: Studies on the differential diagnosis of breast lesions using IVIM-DWI were systemically searched in the PubMed, Embase and Web of Science databases in recent 10 years. The standardized mean difference (SMD) and 95% confidence intervals of the apparent diffusion coefficient (ADC), tissue diffusivity (D), pseudodiffusivity (D*), and perfusion fraction (f) were calculated using Review Manager 5.3, and Stata 12.0 was used to pool the sensitivity, specificity, and area under the curve (AUC), as well as assess publication bias and heterogeneity. Fagan's nomogram was used to predict the posttest probabilities. Results: Sixteen studies comprising 1,355 malignant and 362 benign breast lesions were included. Most of these studies showed a low to unclear risk of bias and low concerns regarding applicability. Breast cancer had significant lower ADC (SMD = −1.38, P < 0.001) and D values (SMD = −1.50, P < 0.001), and higher f value (SMD = 0.89, P = 0.001) than benign lesions, except D* value (SMD = −0.30, P = 0.20). Invasive ductal carcinoma showed lower ADC (SMD = 1.34, P = 0.01) and D values (SMD = 1.04, P = 0.001) than ductal carcinoma in situ. D value demonstrated the best diagnostic performance (sensitivity = 86%, specificity = 86%, AUC = 0.91) and highest post-test probability (61, 48, 46, and 34% for D, ADC, f, and D* values) in the differential diagnosis of breast tumors, followed by ADC (sensitivity = 76%, specificity = 79%, AUC = 0.85), f (sensitivity = 80%, specificity = 76%, AUC = 0.85) and D* values (sensitivity = 84%, specificity = 59%, AUC = 0.71). Conclusion: IVIM-DWI parameters are adequate and superior to the ADC in the differentiation of breast tumors. ADC and D values can further differentiate invasive ductal carcinoma from ductal carcinoma in situ. IVIM-DWI is also superior in identifying lymph node metastasis, histologic grade, and hormone receptors, and HER2 and Ki-67 status.
Collapse
Affiliation(s)
- Jianye Liang
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Sihui Zeng
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zhipeng Li
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yanan Kong
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Tiebao Meng
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Chunyan Zhou
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jieting Chen
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - YaoPan Wu
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ni He
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
21
|
Multiple b-value diffusion-weighted imaging in differentiating benign from malignant breast lesions: comparison of conventional mono-, bi- and stretched exponential models. Clin Radiol 2020; 75:642.e1-642.e8. [PMID: 32389372 DOI: 10.1016/j.crad.2020.03.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 03/31/2020] [Indexed: 01/03/2023]
Abstract
AIM To prospectively evaluate multiple b-value diffusion-weighted imaging (DWI) in differentiating malignant from benign breast lesions. MATERIALS AND METHODS The study cohort included 103 patients who underwent 3 T magnetic resonance imaging (MRI). The conventional sequences included T1-weighted dynamic contrast-enhanced, T1-weighted and T2-weighted fat-suppressed sequences, single b-value (b=0, 1000 s/mm2) DWI, and multiple b-values (12 values, from 0 to 3,000 s/mm2) DWI. Pathological diagnosis of breast lesions was based on the latest World Health Organization (WHO) guide on the pathology and immunohistochemistry of the breast. SPSS Statistics V19.0 was used for the statistics analysis. RESULTS The following parameters were calculated: apparent diffusion coefficient (ADC), tissue diffusivity (D), perfusion fraction (f), pseudo-diffusion coefficient (D∗), distributed diffusion coefficient (DDC), and alpha (α) by the same radiologist twice (interval time of 3 months). There was good inter/intra-observer agreement for each of the parameters. The D, D∗, f, DDC, and α values were significantly different among malignant tumours, benign lesions, and normal breast tissue (p<0.05). CONCLUSION D, f, DDC, α, and ADC values have good sensitivity and specificity, respectively. In addition, the combined use of D and f or DDC and α has good diagnostic performance. Thus, the applications of the new multi-b DWI variables or combined variables are promising.
Collapse
|