1
|
Palmis S, Easson K, Devenyi G, Gilbert G, Saint-Martin C, Chakravarty MM, Brossard-Racine M. Similarities and differences in cerebellar alterations between youth born preterm and youth born with congenital heart disease. Sci Rep 2025; 15:10420. [PMID: 40140462 PMCID: PMC11947447 DOI: 10.1038/s41598-025-94584-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
Individuals born preterm (PT) or with complex congenital heart disease (CHD) present with comparable prevalence of developmental challenges and patterns of neonatal brain injury. Converging evidence also supports that cerebellar development is altered in PT and in CHD survivors. However, no study compared cerebellar integrity between these two groups. This study aims to assess total and regional cerebellar development between youth born PT or with CHD as compared to controls. Participants aged 16-27 years born before 33 weeks of gestational age or who underwent open-heart surgery for CHD during infancy and a group of healthy term-born controls, underwent a brain MRI. Cerebellums were segmented at the lobular level. Youth born PT or with CHD exhibited a comparable pattern of volume reduction affecting total, regional and lobular cerebellar volumes. After adjusting for total brain volume, no significant differences remained between CHD and controls. Only regions and lobules in the anterior cerebellum remained significantly smaller than controls in the youth born PT. Atypical cerebellar development is present in youth born PT and in youth with CHD. However, our results suggested that premature exposure to the extra-uterine environment alters cerebellar development selectively while the cumulative effect of CHD globally hinders brain development.
Collapse
Affiliation(s)
- Sarah Palmis
- Advances in Brain and Child Development Laboratory, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Kaitlyn Easson
- Advances in Brain and Child Development Laboratory, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Gabriel Devenyi
- Computational Brain Anatomy Laboratory, Cerebral Imaging Centre - Douglas Mental Health University Institute, Verdun, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | | | - Christine Saint-Martin
- Department of Medical Imaging, Division of Pediatric Radiology, Montreal Children's Hospital, Montreal, QC, Canada
| | - Mallar M Chakravarty
- Computational Brain Anatomy Laboratory, Cerebral Imaging Centre - Douglas Mental Health University Institute, Verdun, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Department of Biological and Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Marie Brossard-Racine
- Advances in Brain and Child Development Laboratory, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC, Canada.
- Department of Pediatrics, Division of Neonatology, Montreal Children's Hospital, Montreal, QC, Canada.
| |
Collapse
|
2
|
Wen X, Xue P, Zhu M, Zhong J, Yu W, Ma S, Liu Y, Liu P, Jing B, Yang M, Mo X, Zhang D. Alteration in Cortical Structure Mediating the Impact of Blood Oxygen-Carrying Capacity on Gross Motor Skills in Infants With Complex Congenital Heart Disease. Hum Brain Mapp 2025; 46:e70155. [PMID: 39935311 PMCID: PMC11814484 DOI: 10.1002/hbm.70155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/17/2024] [Accepted: 01/23/2025] [Indexed: 02/13/2025] Open
Abstract
Congenital heart disease (CHD) is the most common congenital anomaly, leading to an increased risk of neurodevelopmental abnormalities in many children with CHD. Understanding the neurological mechanisms behind these neurodevelopmental disorders is crucial for implementing early interventions and treatments. In this study, we recruited 83 infants aged 12-26.5 months with complex CHD, along with 86 healthy controls (HCs). We collected multimodal data to explore the abnormal patterns of cerebral cortex development and explored the complex interactions among blood oxygen-carrying capacity, cortical development, and gross motor skills. We found that, compared to healthy infants, those with complex CHD exhibit significant reductions in cortical surface area development, particularly in the default mode network. Most of these developmentally abnormal brain regions are significantly correlated with the blood oxygen-carrying capacity and gross motor skills of infants with CHD. Additionally, we further discovered that the blood oxygen-carrying capacity of infants with CHD can indirectly predict their gross motor skills through cortical structures, with the left middle temporal area and left inferior temporal area showing the greatest mediation effects. This study identified biomarkers for neurodevelopmental disorders and highlighted blood oxygen-carrying capacity as an indicator of motor development risk, offering new insights for the clinical management CHD.
Collapse
Affiliation(s)
- Xuyun Wen
- College of Artificial IntelligenceNanjing University of Aeronautics and AstronauticsNanjingJiangsuChina
- Key Laboratory of Brain‐Machine Intelligence TechnologyMinistry of EducationNanjingJiangsuChina
| | - Pengcheng Xue
- College of Artificial IntelligenceNanjing University of Aeronautics and AstronauticsNanjingJiangsuChina
- Key Laboratory of Brain‐Machine Intelligence TechnologyMinistry of EducationNanjingJiangsuChina
| | - Meijiao Zhu
- Department of RadiologyChildren's Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Jingjing Zhong
- Department of RadiologyChildren's Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Wei Yu
- Department of RadiologyChildren's Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Siyu Ma
- Department of Cardiothoracic SurgeryChildren's Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Yuting Liu
- Department of RadiologyChildren's Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Peng Liu
- Department of RadiologyChildren's Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Bin Jing
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical ApplicationCapital Medical UniversityBeijingChina
| | - Ming Yang
- Department of RadiologyChildren's Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Xuming Mo
- Department of Cardiothoracic SurgeryChildren's Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Daoqiang Zhang
- College of Artificial IntelligenceNanjing University of Aeronautics and AstronauticsNanjingJiangsuChina
- Key Laboratory of Brain‐Machine Intelligence TechnologyMinistry of EducationNanjingJiangsuChina
| |
Collapse
|
3
|
Govindan RB, Pezzato S, Ngwa J, Krishnan A, Panagopoulos E, Chirumamilla VC, du Plessis A. Preoperative autonomic failure in neonates with critical congenital heart disease. Early Hum Dev 2025; 200:106165. [PMID: 39613503 PMCID: PMC11804807 DOI: 10.1016/j.earlhumdev.2024.106165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Neonates with critical congenital heart disease (cCHD) undergo a complicated transition to ex-utero life. However, continuous monitoring of autonomic tone using heart rate variability is currently lacking. MATERIALS AND METHODS We retrieved continuous electrocardiograms from the time of admission or from 10 days prior to surgery for neonates with dextro-transposition of the great arteries (d-TGA) and hypoplastic left heart syndrome (HLHS). Beat-to-beat intervals (RRi) were calculated and divided into 10-min epochs. Spectral metrics, including low-frequency (LF) and high-frequency (HF) powers, as well as detrended fluctuation analysis metrics (αS, αL, RMSS, and RMSL), were computed for RRi within each epoch and averaged over 24 h. The relationship between RRi metrics and time to surgery was analyzed using linear mixed-effects models, adjusting for prenatal and postnatal factors. RESULTS The study included 10 neonates with HLHS and 23 with d-TGA. RRi metrics were available for 110 days. In the unadjusted models, LF power (Estimate: -4.4×10-3, P = 0.02), HF power (-4.1 x 10-2, 5 x 10-5), RMSS(-3.7 x 10-4, 8.7 x 10-3), and RMSL(-1.4× 10-3, 0.02) were all negatively associated with time to surgery, with HF power showing the strongest association. After adjusting for covariates, HF power retained its significant negative association with time (-0.04, P = 0.03). The cCHD diagnosis did not significantly influence RRi metrics. CONCLUSIONS In neonates with cCHD, there is a progressive decline in autonomic function leading up to surgery. RRi metrics may serve as valuable indicators of deteriorating physiology in these patients.
Collapse
Affiliation(s)
- R B Govindan
- The Zickler Family Prenatal Pediatrics Institute, Children's National Hospital, Washington, DC, USA; The Developing Brain Institute, Children's National Hospital, Washington, DC, USA; Department of Pediatrics, The George Washington University School of Medicine, Washington, DC, USA
| | - Stefano Pezzato
- Neonatal and Pediatric Intensive Care Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy; Division of Cardiac Surgery, Children's National Hospital, Washington, DC, USA
| | - Julius Ngwa
- The Developing Brain Institute, Children's National Hospital, Washington, DC, USA
| | - Anita Krishnan
- Department of Pediatrics, The George Washington University School of Medicine, Washington, DC, USA; Division of Cardiology, Children's National Hospital, Washington, DC, USA
| | - Eleni Panagopoulos
- The Developing Brain Institute, Children's National Hospital, Washington, DC, USA
| | - Venkata Chaitanya Chirumamilla
- The Zickler Family Prenatal Pediatrics Institute, Children's National Hospital, Washington, DC, USA; The Developing Brain Institute, Children's National Hospital, Washington, DC, USA
| | - Adre du Plessis
- The Zickler Family Prenatal Pediatrics Institute, Children's National Hospital, Washington, DC, USA; The Developing Brain Institute, Children's National Hospital, Washington, DC, USA; Department of Pediatrics, The George Washington University School of Medicine, Washington, DC, USA.
| |
Collapse
|
4
|
Ren JY, Chen CA, Zhu M, Liu K, Chen LJ, Dong SZ. Prenatal MR Diagnosis of Total Anomalous Pulmonary Venous Connection and Related Brain Growth Changes. J Magn Reson Imaging 2024. [PMID: 39630603 DOI: 10.1002/jmri.29671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Prenatal diagnosis of total anomalous pulmonary venous connection (TAPVC) is challenging, and little is known about how it affects brain development. PURPOSE To evaluate the utility of fetal MRI to diagnose TAPVC and related brain growth changes. STUDY TYPE Retrospective case-control study. POPULATION Twenty-one fetuses (23.0 to 30.8 weeks, mean 26.4 weeks) with pre-natal MRI diagnosis of TAPVC. Post-natal images and surgery were available in 18 fetuses. Brain volumes in TAPVC fetuses were compared with age and sex matched 100 cases of normal controls and 38 fetuses with tetralogy of Fallot (TOF). SEQUENCE Single shot turbo spin echo sequence for evaluating fetal brain, and steady-state free precession (SSFP) sequence for evaluating fetal cardiovascular structures at 1.5 T. ASSESSMENT TAPVC type was determined by visualizing the drainage of the common pulmonary vein and dilated coronary sinus: supracardiac, intracardiac and infracardiac. The fetal pulmonary edema was evaluated, and fetal brain volumes were measured using automatic segmentation. STATISTICAL TESTS One-way analysis of variance and post hoc least square difference tests to evaluate differences in variables between TAPVC, TOF and control groups. A P value <0.05 was considered significant. RESULTS Of the 21 cases of TAPVC, 10 (47.6%) were identified as supracardiac, 8 (38.1%) as intracardiac, and 3 (14.3%) as infracardiac. Eighteen cases were confirmed by postnatal imaging and surgery; the remaining three cases had no confirmation. Six cases were associated with other cardiovascular abnormalities. Key MRI features of fetal TAPVC included a dilated coronary sinus and vertical vein. Fetal pulmonary edema was seen in six cases. Compared to controls, TAPVC fetuses had lower cerebellum and brainstem volumes and higher e-CSF, while had larger subcortical brain tissue, cerebellum, brainstem, e-CSF, and intracranial cavity volumes than those of TOF cases. DATA CONCLUSION Fetal MRI may be a useful modality for evaluating fetal TAPVC and altered brain development. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Jing-Ya Ren
- Department of Radiology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chang-An Chen
- Department of Radiology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Zhu
- Department of Radiology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ke Liu
- Department of Radiology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-Jun Chen
- Department of Cardiology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Su-Zhen Dong
- Department of Radiology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Krogh E, Ringgaard S, Kelly B, Rungsiprakarn P, Rychik J, Gaynor JW, Biko DM, Hjortdal V, Lauridsen MH. Lung volumes are increased in fetuses with transposition of the great arteries on intrauterine MRI. Cardiol Young 2024; 34:2650-2655. [PMID: 39422107 DOI: 10.1017/s1047951124026398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Fetal brain size is decreased in some children with complex CHDs, and the distribution of blood and accompanying oxygen and nutrients is regionally skewed from early fetal life dependent on the CHD. In transposition of the great arteries, deoxygenated blood preferentially runs to the brain, whereas the more oxygenated blood is directed towards the lungs and the abdomen. Knowledge of whether this impacts intrauterine organ development is limited. We investigated lung, liver, and total intracranial volume in fetuses with transposition of the great arteries using MRI.Eight fetuses with dextro-transposition and without concomitant disease or chromosomal abnormalities and 42 fetuses without CHD or other known diseases were scanned once or twice at gestational age 30 through 39 weeks. The MRI scans were conducted on a 1.5T system, using a 2D balanced steady-state free precession sequence. Slices acquired covered the entire fetus, slice thickness was 10 mm, pixel size 1.5 × 1.5 mm, and scan duration was 30 sec.The mean lung z score was significantly larger in fetuses with transposition compared with those without a CHD; mean difference is 1.24, 95% CI:(0.59;1.89), p < 0.001. The lung size, corrected for estimated fetal weight, was larger than in the fetuses without transposition; mean difference is 8.1 cm3/kg, 95% CI:(2.5;13.7 cm3/kg), p = 0.004.In summary, fetuses with dextro-transposition of the great arteries had both absolute and relatively larger lung volumes than those without CHD. No differences were seen in liver and total intracranial volume. Despite the small number of cases, the results are interesting and warrant further investigation.
Collapse
Affiliation(s)
- Emil Krogh
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Cardiothoracic Surgery, Rigshospitalet, Copenhagen University, Copenhagen, Denmark
- Department of Clinical Medicine, Copenhagen University, Copenhagen, Denmark
| | - Steffen Ringgaard
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
- MR Research Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Benjamin Kelly
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Cardiothoracic and Vascular Surgery T, Aarhus University Hospital, Aarhus, Denmark
| | | | - Jack Rychik
- Cardiac Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - J William Gaynor
- Cardiac Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - David M Biko
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vibeke Hjortdal
- Department of Cardiothoracic Surgery, Rigshospitalet, Copenhagen University, Copenhagen, Denmark
- Department of Clinical Medicine, Copenhagen University, Copenhagen, Denmark
| | - Mette Høj Lauridsen
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
6
|
刘 玉, 刘 天, 农 绍, 周 晓. [Research progress on neurodevelopmental disorders associated with congenital heart disease]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2024; 26:1231-1237. [PMID: 39587754 PMCID: PMC11601115 DOI: 10.7499/j.issn.1008-8830.2406063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/08/2024] [Indexed: 11/27/2024]
Abstract
The incidence and disability rate of neurodevelopmental disorders in children are high, making it a significant public health issue affecting children's health globally. Neurodevelopmental disorders are particularly common in children with congenital heart disease (CHD), with clinical characteristics varying by type of CHD, surgical approach, age stage, and the presence of different complications or comorbidities. In recent years, based on the intervention model of "early diagnosis and early treatment," foreign studies have begun to explore new techniques for preventive early intervention in high-risk children with neurodevelopmental disorders, achieving promising results. This paper reviews the clinical characteristics of neurodevelopmental disorders associated with CHD, aiming to provide a theoretical basis for implementing new preventive early intervention techniques for children with CHD, thereby further reducing the incidence of neurodevelopmental disorders associated with CHD.
Collapse
Affiliation(s)
| | - 天钰 刘
- 中山大学附属第八医院新生儿科,广东深圳518033
| | | | - 晓光 周
- 中山大学附属第八医院新生儿科,广东深圳518033
| |
Collapse
|
7
|
Wilson S, Cromb D, Bonthrone AF, Uus A, Price A, Egloff A, Van Poppel MPM, Steinweg JK, Pushparajah K, Simpson J, Lloyd DFA, Razavi R, O'Muircheartaigh J, Edwards AD, Hajnal JV, Rutherford M, Counsell SJ. Structural Covariance Networks in the Fetal Brain Reveal Altered Neurodevelopment for Specific Subtypes of Congenital Heart Disease. J Am Heart Assoc 2024; 13:e035880. [PMID: 39450739 PMCID: PMC11935691 DOI: 10.1161/jaha.124.035880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Altered structural brain development has been identified in fetuses with congenital heart disease (CHD), suggesting that the neurodevelopmental impairment observed later in life might originate in utero. There are many interacting factors that may perturb neurodevelopment during the fetal period and manifest as structural brain alterations, such as altered cerebral substrate delivery and aberrant fetal hemodynamics. METHODS AND RESULTS We extracted structural covariance networks from the log Jacobian determinants of 435 in utero T2 weighted image magnetic resonance imaging scans, (n=67 controls, 368 with CHD) acquired during the third trimester. We fit general linear models to test whether age, sex, expected cerebral substrate delivery, and CHD diagnosis were significant predictors of structural covariance. We identified significant effects of age, sex, cerebral substrate delivery, and specific CHD diagnosis across a variety of structural covariance networks, including primary motor and sensory cortices, cerebellar regions, frontal cortex, extra-axial cerebrospinal fluid, thalamus, brainstem, and insula, consistent with widespread coordinated aberrant maturation of specific brain regions over the third trimester. CONCLUSIONS Structural covariance networks offer a sensitive, data-driven approach to explore whole-brain structural changes without anatomical priors. We used them to stratify a heterogenous patient cohort with CHD, highlighting similarities and differences between diagnoses during fetal neurodevelopment. Although there was a clear effect of abnormal fetal hemodynamics on structural brain maturation, our results suggest that this alone does not explain all the variation in brain development between individuals with CHD.
Collapse
Affiliation(s)
- Siân Wilson
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUnited Kingdom
- Fetal‐Neonatal Neuroimaging & Developmental Science CenterBoston Children’s HospitalBostonMAUSA
- Division of Newborn MedicineBoston Children’s HospitalBostonMAUSA
- Department of Pediatrics, Harvard Medical SchoolBostonMAUSA
| | - Daniel Cromb
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUnited Kingdom
| | - Alexandra F. Bonthrone
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUnited Kingdom
| | - Alena Uus
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUnited Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUnited Kingdom
| | - Anthony Price
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUnited Kingdom
| | - Alexia Egloff
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUnited Kingdom
| | - Milou P. M. Van Poppel
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUnited Kingdom
- Department of Congenital Heart DiseaseEvelina London Children’s HospitalLondonUnited Kingdom
| | - Johannes K. Steinweg
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUnited Kingdom
- Department of Congenital Heart DiseaseEvelina London Children’s HospitalLondonUnited Kingdom
| | - Kuberan Pushparajah
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUnited Kingdom
- Department of Congenital Heart DiseaseEvelina London Children’s HospitalLondonUnited Kingdom
| | - John Simpson
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUnited Kingdom
- Department of Congenital Heart DiseaseEvelina London Children’s HospitalLondonUnited Kingdom
| | - David F. A. Lloyd
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUnited Kingdom
- Department of Congenital Heart DiseaseEvelina London Children’s HospitalLondonUnited Kingdom
| | - Reza Razavi
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUnited Kingdom
- Department of Congenital Heart DiseaseEvelina London Children’s HospitalLondonUnited Kingdom
| | - Jonathan O'Muircheartaigh
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUnited Kingdom
- Centre for Neurodevelopmental DisordersKing’s College LondonLondonUnited Kingdom
- Department of Forensic and Neurodevelopmental SciencesKing’s College LondonLondonUnited Kingdom
| | - A. David Edwards
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUnited Kingdom
- Centre for Neurodevelopmental DisordersKing’s College LondonLondonUnited Kingdom
| | - Joseph V. Hajnal
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUnited Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUnited Kingdom
| | - Mary Rutherford
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUnited Kingdom
| | - Serena J. Counsell
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUnited Kingdom
| |
Collapse
|
8
|
Hou X, Yu M, Liu Y, Yan L. MRI in the prenatal genetic diagnosis and intrauterine treatment of fetal congenital cystic adenoma of the lung. J Cardiothorac Surg 2024; 19:502. [PMID: 39198908 PMCID: PMC11351084 DOI: 10.1186/s13019-024-02868-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/14/2024] [Indexed: 09/01/2024] Open
Abstract
OBJECTIVE To investigate the value of magnetic resonance examination technique for prenatal genetic diagnosis and clinical intrauterine treatment of fetal congenital cystic adenoma (CCAM) of the lung. METHODS A retrospective analysis was conducted on 108 pregnant women admitted to a certain hospital from January 2016 to January 2022 for pre natal examination and consultation on eugenics. The selected pregnant women were aged 20-40 and had a gestational age of 17-36 weeks. Ultrasound and MRI examinations were performed on 108 pregnant women who met the inclusion criteria. Follow-up and investigation were conducted on the fetus after being diagnosed with CCAM. To analyze the results of prenatal genetic diagnosis, chromosome microarray analysis (CMA) was used to analyze samples with pathogenic Copy Number Variants (CNV) and identify pathogenic genes. Finally, the imaging diagnosis results obtained through statistical software were analyzed, and the correlation between pathogenic genes and CCAM, as well as the clinical application value of MRI in fetal intrauterine treatment was explored. RESULTS Among all cases, 68 fetuses were diagnosed with CCAM through ultrasound examination; 71 fetuses were diagnosed with CCAM through MRI examination. A total of 74 samples were confirmed as CCAM by autopsy and neonatal CT. The sensitivity, specificity, and accuracy of MRI in diagnosing fetal congenital CCAM were higher than those of ultrasound examination. The expression of CCAM was positively correlated with DUSP22, PRSS1, and SHOX, with all R values greater than 0.8. The clinical decision curve showed that when the probability of fetal CCAM was less than 0.03, the prenatal genetic diagnostic model of MRI was not applicable; But when the probability of fetal CCAM was higher than 0.05, the auxiliary intrauterine treatment effect that MRI diagnostic methods achieved was significantly better than conventional diagnosis. CONCLUSION MRI is significantly better than ultrasound in the diagnosis of CCAM, which can effectively improve the sensitivity of diagnosis and provide accurate information for the eugenics of pregnant women, and has high clinical application value.
Collapse
Affiliation(s)
- Xiaolin Hou
- Prenatal Diagnosis Center, The Fourth Hospital of Shijiazhuang (The Obstetrics and Gynecology Hospital of Hebei Medical University), Shijiazhuang, Hebei, China
| | - Mei Yu
- Prenatal Diagnosis Center, The Fourth Hospital of Shijiazhuang (The Obstetrics and Gynecology Hospital of Hebei Medical University), Shijiazhuang, Hebei, China
| | - Ying Liu
- Obstetrical Department VIII, The Fourth Hospital of Shijiazhaung (The Obstetrics and Gynecology Hospital of Hebei Medical University), Shijiazhuang, Hebei, China.
| | - Liwei Yan
- Neonatal Surgery, The Fourth Hospital of Shijiazhuang (The Obstetrics and Gynecology Hospital of Hebei Medical University), Shijiazhuang, Hebei, China
| |
Collapse
|
9
|
Cromb D, Uus A, Van Poppel MP, Steinweg JK, Bonthrone AF, Maggioni A, Cawley P, Egloff A, Kyriakopolous V, Matthew J, Price A, Pushparajah K, Simpson J, Razavi R, DePrez M, Edwards D, Hajnal J, Rutherford M, Lloyd DF, Counsell SJ. Total and Regional Brain Volumes in Fetuses With Congenital Heart Disease. J Magn Reson Imaging 2024; 60:497-509. [PMID: 37846811 PMCID: PMC7616254 DOI: 10.1002/jmri.29078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Congenital heart disease (CHD) is common and is associated with impaired early brain development and neurodevelopmental outcomes, yet the exact mechanisms underlying these associations are unclear. PURPOSE To utilize MRI data from a cohort of fetuses with CHD as well as typically developing fetuses to test the hypothesis that expected cerebral substrate delivery is associated with total and regional fetal brain volumes. STUDY TYPE Retrospective case-control study. POPULATION Three hundred eighty fetuses (188 male), comprising 45 healthy controls and 335 with isolated CHD, scanned between 29 and 37 weeks gestation. Fetuses with CHD were assigned into one of four groups based on expected cerebral substrate delivery. FIELD STRENGTH/SEQUENCE T2-weighted single-shot fast-spin-echo sequences and a balanced steady-state free precession gradient echo sequence were obtained on a 1.5 T scanner. ASSESSMENT Images were motion-corrected and reconstructed using an automated slice-to-volume registration reconstruction technique, before undergoing segmentation using an automated pipeline and convolutional neural network that had undergone semi-supervised training. Differences in total, regional brain (cortical gray matter, white matter, deep gray matter, cerebellum, and brainstem) and brain:body volumes were compared between groups. STATISTICAL TESTS ANOVA was used to test for differences in brain volumes between groups, after accounting for sex and gestational age at scan. PFDR-values <0.05 were considered statistically significant. RESULTS Total and regional brain volumes were smaller in fetuses where cerebral substrate delivery is reduced. No significant differences were observed in total or regional brain volumes between control fetuses and fetuses with CHD but normal cerebral substrate delivery (all PFDR > 0.12). Severely reduced cerebral substrate delivery is associated with lower brain:body volume ratios. DATA CONCLUSION Total and regional brain volumes are smaller in fetuses with CHD where there is a reduction in cerebral substrate delivery, but not in those where cerebral substrate delivery is expected to be normal. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Daniel Cromb
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Alena Uus
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Milou P.M. Van Poppel
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Department of Cardiovascular Imaging, School of Biomedical Engineering and Imaging Science, King’s College London, London, UK
- Paediatric and Fetal Cardiology Department, Evelina London Children’s Hospital, London, UK
| | - Johannes K. Steinweg
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Department of Cardiovascular Imaging, School of Biomedical Engineering and Imaging Science, King’s College London, London, UK
- Paediatric and Fetal Cardiology Department, Evelina London Children’s Hospital, London, UK
| | - Alexandra F. Bonthrone
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Alessandra Maggioni
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Paul Cawley
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| | - Alexia Egloff
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Vanessa Kyriakopolous
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Jacqueline Matthew
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Anthony Price
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Kuberan Pushparajah
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Department of Cardiovascular Imaging, School of Biomedical Engineering and Imaging Science, King’s College London, London, UK
- Paediatric and Fetal Cardiology Department, Evelina London Children’s Hospital, London, UK
| | - John Simpson
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Department of Cardiovascular Imaging, School of Biomedical Engineering and Imaging Science, King’s College London, London, UK
- Paediatric and Fetal Cardiology Department, Evelina London Children’s Hospital, London, UK
| | - Reza Razavi
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Maria DePrez
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - David Edwards
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Jo Hajnal
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Mary Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| | - David F.A. Lloyd
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Department of Cardiovascular Imaging, School of Biomedical Engineering and Imaging Science, King’s College London, London, UK
- Paediatric and Fetal Cardiology Department, Evelina London Children’s Hospital, London, UK
| | - Serena J. Counsell
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| |
Collapse
|
10
|
Kitano R, Madan N, Mikami T, Madankumar R, Skotko BG, Santoro S, Ralston SJ, Bianchi DW, Tarui T. Biometric magnetic resonance imaging analysis of fetal brain development in Down syndrome. Prenat Diagn 2023; 43:1450-1458. [PMID: 37698481 PMCID: PMC11742279 DOI: 10.1002/pd.6436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/06/2023] [Accepted: 08/27/2023] [Indexed: 09/13/2023]
Abstract
OBJECTIVES To assess brain development in living fetuses with Down syndrome (DS) by biometric measurements on fetal brain magnetic resonance images (MRI). METHODS We scanned 10 MRIs of fetuses with confirmed trisomy 21 at birth and 12 control fetal MRIs without any detected anomalies. Fetal brain MRIs were analyzed using 14 fetal brain and skull biometric parameters. We compared measures between DS and controls in both raw MRIs and motion-corrected and anterior-posterior commissure-aligned images. RESULTS In the reconstructed images, the measured values of the height of the cerebellar vermis (HV) and anteroposterior diameter of the cerebellar vermis (APDV) were significantly smaller, and the anteroposterior diameter of the fourth ventricle (APDF) was significantly larger in fetuses with DS than controls. In the raw MRIs, the measured values of the right lateral ventricle were significantly larger in fetuses with DS than in controls. Logistic regression analyses revealed that a new parameter, the cerebellar-to-fourth-ventricle ratio (i.e., (APDV * Height of the vermis)/APDF), was significantly smaller in fetuses with DS than controls and was the most predictive to distinguish between fetuses with DS and controls. CONCLUSIONS The study revealed that fetuses with DS have smaller cerebellums and larger fourth ventricles compared to the controls.
Collapse
Affiliation(s)
- Rie Kitano
- Obstetrics and Gynecology, Tsuchiura Kyodo General Hospital, Tsuchiura, Japan
| | - Neel Madan
- Radiology, Tufts Medical Center, Boston, Massachusetts, USA
| | - Takahisa Mikami
- Department of Neurology, Tufts Medical Center, Boston, Massachusetts, USA
| | - Rajeevi Madankumar
- Obstetrics and Gynecology, Long Island Jewish Medical Center, New Hyde Park, New York, USA
| | - Brian G. Skotko
- Down Syndrome Program, Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Stephanie Santoro
- Down Syndrome Program, Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Steven J. Ralston
- Obstetrics and Gynecology, The University of Maryland, Baltimore, Maryland, USA
| | - Diana W. Bianchi
- Section on Prenatal Genomics and Fetal Therapy, Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Tomo Tarui
- Mother Infant Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
- Pediatric Neurology, Hasbro Children's Hospital, Providence, Rhode Island, USA
| |
Collapse
|
11
|
Moerdijk AS, Claessens NH, van Ooijen IM, van Ooij P, Alderliesten T, Grotenhuis HB, Benders MJNL, Bohte AE, Breur JMPJ, Charisopoulou D, Clur SA, Cornette JMJ, Fejzic Z, Franssen MTM, Frerich S, Geerdink LM, Go ATJI, Gommers S, Helbing WA, Hirsch A, Holtackers RJ, Klein WM, Krings GJ, Lamb HJ, Nijman M, Pajkrt E, Planken RN, Schrauben EM, Steenhuis TJ, ter Heide H, Vanagt WYR, van Beynum IM, van Gaalen MD, van Iperen GG, van Schuppen J, Willems TP, Witters I. Fetal MRI of the heart and brain in congenital heart disease. THE LANCET. CHILD & ADOLESCENT HEALTH 2023; 7:59-68. [PMID: 36343660 DOI: 10.1016/s2352-4642(22)00249-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/12/2022] [Accepted: 08/22/2022] [Indexed: 11/06/2022]
Abstract
Antenatal assessment of congenital heart disease and associated anomalies by ultrasound has improved perinatal care. Fetal cardiovascular MRI and fetal brain MRI are rapidly evolving for fetal diagnostic testing of congenital heart disease. We give an overview on the use of fetal cardiovascular MRI and fetal brain MRI in congenital heart disease, focusing on the current applications and diagnostic yield of structural and functional imaging during pregnancy. Fetal cardiovascular MRI in congenital heart disease is a promising supplementary imaging method to echocardiography for the diagnosis of antenatal congenital heart disease in weeks 30-40 of pregnancy. Concomitant fetal brain MRI is superior to brain ultrasound to show the complex relationship between fetal haemodynamics in congenital heart disease and brain development.
Collapse
Affiliation(s)
- Anouk S Moerdijk
- Department of Pediatric Cardiology, Division of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Nathalie Hp Claessens
- Department of Pediatric Cardiology, Division of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands; Department of Neonatology, Division of Woman and Baby, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Inge M van Ooijen
- Department of Neonatology, Division of Woman and Baby, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Pim van Ooij
- Department of Pediatric Cardiology, Division of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Thomas Alderliesten
- Department of Pediatric Cardiology, Division of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands; Department of Neonatology, Division of Woman and Baby, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Heynric B Grotenhuis
- Department of Pediatric Cardiology, Division of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
De Asis-Cruz J, Limperopoulos C. Harnessing the Power of Advanced Fetal Neuroimaging to Understand In Utero Footprints for Later Neuropsychiatric Disorders. Biol Psychiatry 2022; 93:867-879. [PMID: 36804195 DOI: 10.1016/j.biopsych.2022.11.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/03/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
Adverse intrauterine events may profoundly impact fetal risk for future adult diseases. The mechanisms underlying this increased vulnerability are complex and remain poorly understood. Contemporary advances in fetal magnetic resonance imaging (MRI) have provided clinicians and scientists with unprecedented access to in vivo human fetal brain development to begin to identify emerging endophenotypes of neuropsychiatric disorders such as autism spectrum disorder, attention-deficit/hyperactivity disorder, and schizophrenia. In this review, we discuss salient findings of normal fetal neurodevelopment from studies using advanced, multimodal MRI that have provided unparalleled characterization of in utero prenatal brain morphology, metabolism, microstructure, and functional connectivity. We appraise the clinical utility of these normative data in identifying high-risk fetuses before birth. We highlight available studies that have investigated the predictive validity of advanced prenatal brain MRI findings and long-term neurodevelopmental outcomes. We then discuss how ex utero quantitative MRI findings can inform in utero investigations toward the pursuit of early biomarkers of risk. Lastly, we explore future opportunities to advance our understanding of the prenatal origins of neuropsychiatric disorders using precision fetal imaging.
Collapse
|
13
|
Dovjak GO, Hausmaninger G, Zalewski T, Schmidbauer V, Weber M, Worda C, Seidl-Mlczoch E, Berger-Kulemann V, Prayer D, Kasprian GJ, Ulm B. Brainstem and cerebellar volumes at magnetic resonance imaging are smaller in fetuses with congenital heart disease. Am J Obstet Gynecol 2022; 227:282.e1-282.e15. [PMID: 35305961 DOI: 10.1016/j.ajog.2022.03.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND Congenital heart disease is associated with an increased risk of smaller brain volumes and structural brain damage, and impaired growth of supratentorial brain structures in utero has been linked to poor neurodevelopmental outcomes. However, little is known on brainstem and cerebellar volumes in fetuses with congenital heart disease. Moreover, it is not clear whether impaired infratentorial growth, if present, is associated with only certain types of fetal cardiac defects or with supratentorial brain growth, and whether altered biometry is already present before the third trimester. OBJECTIVE This study aimed to investigate brainstem and cerebellar volumes in fetuses with congenital heart disease and to compare them to infratentorial brain volumes in fetuses with normal hearts. Secondarily, the study aimed to identify associations between infratentorial brain biometry and the type of cardiac defects, supratentorial brain volumes, and gestational age. STUDY DESIGN In this retrospective case-control study, 141 magnetic resonance imaging studies of 135 fetuses with congenital heart disease and 141 magnetic resonance imaging studies of 125 controls with normal hearts at 20 to 37 gestational weeks (median, 25 weeks) were evaluated. All cases and controls had normal birthweight and no evidence of structural brain disease or genetic syndrome. Six types of congenital heart disease were included: tetralogy of Fallot (n=32); double-outlet right ventricle (n=22); transposition of the great arteries (n=27); aortic obstruction (n=24); hypoplastic left heart syndrome (n=22); and hypoplastic right heart syndrome (n=14). First, brainstem and cerebellar volumes of each fetus were segmented and compared between cases and controls. In addition, transverse cerebellar diameters, vermian areas, and supratentorial brain and cerebrospinal fluid volumes were quantified and differences assessed between cases and controls. Volumetric differences were further analyzed according to types of cardiac defects and supratentorial brain volumes. Finally, volume ratios were created for each brain structure ([volume in fetus with congenital heart disease/respective volume in control fetus] × 100) and correlated to gestational age. RESULTS Brainstem (cases, 2.1 cm3 vs controls, 2.4 cm3; P<.001) and cerebellar (cases, 3.2 cm3 vs controls, 3.4 cm3; P<.001) volumes were smaller in fetuses with congenital heart disease than in controls, whereas transverse cerebellar diameters (P=.681) and vermian areas (P=.947) did not differ between groups. Brainstem and cerebellar volumes differed between types of cardiac defects. Overall, the volume ratio of cases to controls was 80.8% for the brainstem, 90.5% for the cerebellum, and 90.1% for the supratentorial brain. Fetuses with tetralogy of Fallot and transposition of the great arteries were most severely affected by total brain volume reduction. Gestational age had no effect on volume ratios. CONCLUSION The volume of the infratentorial brain, which contains structures considered crucial to brain function, is significantly smaller in fetuses with congenital heart disease than in controls from midgestation onward. These findings suggest that impaired growth of both supra- and infratentorial brain structures in fetuses with congenital heart disease occurs in the second trimester. Further research is needed to elucidate associations between fetal brain volumes and neurodevelopmental outcomes in congenital heart disease.
Collapse
|
14
|
Xia F, Guo Y, He H, Chen P, Shao J, Xia W. Reference biometry of foetal brain by prenatal MRI and the distribution of measurements in foetuses with ventricular septal defect. Ann Med 2021; 53:1428-1437. [PMID: 34414830 PMCID: PMC8381939 DOI: 10.1080/07853890.2021.1969590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/12/2021] [Indexed: 10/26/2022] Open
Abstract
OBJECTIVE To provide the reference biometric measurements of the normal foetal brain by prenatal MRI and describe the distribution of measurements in the foetuses with ventricular septal defect (VSD). METHODS This retrospective study analysed the biometric measurements of 218 foetuses between 18 - 37 gestational weeks with normal MRI findings from July 2014 to August 2019, as well as 18 foetuses with VSD. The measurements included fronto-occipital diameter (FOD), biparietal diameter (BPD), and transverse cerebellar diameter (TCD). All the prenatal MRI examinations have been taken on the same 1.5 T MR unit with a standard protocol of the foetal brain. All the linear measurements of the foetal brain were obtained on the T2-weighted imaging. The distribution of measurements in 18 foetuses with VSD was plotted on centile curves. RESULTS The reference data were presented in mean, standard deviation, 95% predicted confidence intervals, and the 3rd, 10th, 25th, 50th, 75th, 90th, 97th centiles at each gestational age. The value of TCD in 56% (10/18 cases) foetuses with VSD was lower than the 3rd centile, and the rate for FOD and BPD was 33% (6/18 cases) and 22% (4/18 cases) separately. On the curves, most VSD cases with measurements lower than the 3rd centile were in relatively early gestational stage (≤28 weeks). CONCLUSIONS We have presented reference linear biometry of the foetal brain by prenatal MRI from 18 to 37 gestational weeks, which could help us to interpret and monitor the brain development for foetuses with VSD and other congenital heart diseases.Key messages:We have presented reference linear biometry of the foetal brain by prenatal MRI from 18 to 37 gestational weeks in multiple statistical methods: mean and standard deviation; 95% predicted confidence intervals and the 3rd, 10th, 25th, 50th, 75th, 90th, 97th centiles.Our data showed that the involvement of the brain in VSD may be not globally, but regionally, and the cerebellum may be more possible to be involved.We speculated that the earlier the VSD diagnosed the worse the brain involved, which might suggest a poor outcome and necessary follow-up.
Collapse
Affiliation(s)
- Feng Xia
- Department of Radiology, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Yu Guo
- Department of Imaging Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua He
- Department of Obstetrics, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Peiwen Chen
- Department of Ultrasound, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Jianbo Shao
- Department of Imaging Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Xia
- Department of Imaging Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Song J, Zhang Z. Magnetic Resonance Imaging Segmentation via Weighted Level Set Model Based on Local Kernel Metric and Spatial Constraint. ENTROPY 2021; 23:e23091196. [PMID: 34573821 PMCID: PMC8465562 DOI: 10.3390/e23091196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/30/2022]
Abstract
Magnetic resonance imaging (MRI) segmentation is a fundamental and significant task since it can guide subsequent clinic diagnosis and treatment. However, images are often corrupted by defects such as low-contrast, noise, intensity inhomogeneity, and so on. Therefore, a weighted level set model (WLSM) is proposed in this study to segment inhomogeneous intensity MRI destroyed by noise and weak boundaries. First, in order to segment the intertwined regions of brain tissue accurately, a weighted neighborhood information measure scheme based on local multi information and kernel function is designed. Then, the membership function of fuzzy c-means clustering is used as the spatial constraint of level set model to overcome the sensitivity of level set to initialization, and the evolution of level set function can be adaptively changed according to different tissue information. Finally, the distance regularization term in level set function is replaced by a double potential function to ensure the stability of the energy function in the evolution process. Both real and synthetic MRI images can show the effectiveness and performance of WLSM. In addition, compared with several state-of-the-art models, segmentation accuracy and Jaccard similarity coefficient obtained by WLSM are increased by 0.0586, 0.0362 and 0.1087, 0.0703, respectively.
Collapse
Affiliation(s)
- Jianhua Song
- College of Physics and Information Engineering, Minnan Normal University, Zhangzhou 363000, China
- Correspondence:
| | - Zhe Zhang
- Electronic Engineering College, Heilongjiang University, Harbin 150080, China;
| |
Collapse
|
16
|
Bekiesinska-Figatowska M. Editorial for "3D Volumetric MRI Detects Early Alterations of the Brain Growth in Fetuses with Congenital Heart Disease". J Magn Reson Imaging 2021; 54:273-274. [PMID: 33543806 DOI: 10.1002/jmri.27522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 11/10/2022] Open
|