1
|
Tao Z, Zhang T, Ge Y, Li L, Ma C, Wang Z, Chen T, Zhang H, Li R, Jiang T, Ren Y. M2 macrophages regulate nucleus pulposus cell extracellular matrix synthesis through the OPN-CD44 axis in intervertebral disc degeneration. Osteoarthritis Cartilage 2025; 33:447-460. [PMID: 39842659 DOI: 10.1016/j.joca.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/15/2024] [Accepted: 12/26/2024] [Indexed: 01/24/2025]
Abstract
OBJECTIVE Macrophages play a crucial role in various physiological processes. In intervertebral disc degeneration (IDD), macrophage infiltration has been observed in human intervertebral disc (IVD) specimens, but how macrophages influence IDD remains unclear. METHODS According to the single-cell transcriptome expression profiles from GSE165722, we verified the infiltration of macrophages in IDD and the possible interaction between infiltrated macrophages and nucleus pulposus cells (NPCs). The expression of macrophage-associated markers was verified in specimens of human nucleus pulposus, lumbar spinal instability mice and annulus fibrosus puncture mice. By treating NPCs cocultured with M2 macrophages with osteopontin (OPN) neutralization antibody and siCD44, we demonstrated that both in vitro and in vivo macrophages regulated IDD through the OPN-CD44 axis. Using transforming growth factor beta 1 and siCD44 treatment, we verified that CD44 regulated the pSMAD2/3 pathway. RESULTS IDD engaged macrophage infiltration, mainly gathered in the endplate, and induced macrophage M2 polarization. Infiltrated macrophages showed high-level expression of OPN, and NPCs showed upregulated CD44. Depletion of macrophages significantly decreased the expression of OPN and CD44 in degenerative IVD, concurrently exacerbating IDD. The co-culture of macrophages and NPCs in vitro demonstrated that the conditioned media from NPCs induced macrophage M2 polarization. Further, M2 macrophages rescued NPCs extracellular matrix (ECM) phenotype through the OPN-CD44 axis, by regulating pSMAD2/3 nuclear translocation. CONCLUSIONS Our findings suggest that macrophages regulate NPC ECM expression in IDD through the OPN-CD44 axis, emphasizing the therapeutic potential of targeting macrophages and the OPN-CD44 axis for IDD prevention and treatment.
Collapse
Affiliation(s)
- Zhiwen Tao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.
| | - Tianyou Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.
| | - Yaning Ge
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.
| | - Lingzhi Li
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.
| | - Cheng Ma
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.
| | - Zhengbo Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.
| | - Tong Chen
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.
| | - Helong Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.
| | - Ruya Li
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.
| | - Tao Jiang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.
| | - Yongxin Ren
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.
| |
Collapse
|
2
|
Din RU, Wang L, Cheng X, Yang H. Assessment of osteoporosis and vertebral fractures with T1- and T2-weighted MRI scans. Arch Osteoporos 2025; 20:32. [PMID: 39992501 DOI: 10.1007/s11657-025-01509-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/29/2025] [Indexed: 02/25/2025]
Abstract
Osteoporosis is related to changes in vertebral bone marrow tissues, which can be detected by MRI. A novel MRI scoring method based on routine T1 and T2 sequences has been developed and demonstrated capabilities in detecting osteoporosis and discriminating vertebral fractures. The scoring method may provide an alternative tool other than BMD measurement for broad, opportunistic use in clinics. PURPOSE As a routinely used radiation-free modality at the spine, magnetic resonance imaging (MRI) is promising to assess osteoporosis because it can detect age- or osteoporosis-related changes in bone marrow tissues. Here, we proposed a new MRI scoring method using the patient's low-back subcutaneous fat and cerebrospinal fluid as reference controls on routine T1 and T2 sequences, respectively, to indicate proton-rich changes in vertebrae for assessing osteoporosis and vertebral fractures. METHODS The study included 60 female patients (64.1 ± 15.9 years) who underwent both MRI and quantitative computed tomography (QCT) at spine. T1-based F-scoresc.fat and T2-based W-scorecs.fluid were defined as the median signal intensity (SI) from L1 to L5 over their reference controls. QCT-measured vertebral BMD was used for defining osteoporosis. Receiver operating characteristic (ROC) analysis was performed to evaluate the diagnostic performances of the new scores for osteoporosis and vertebral fractures, which were also compared with L1-L5 signal-to-noise ratio (SNRL1-L5) or SNR-based vertebral bone quality (VBQ) score. RESULTS The F-scoresc.fat and W-scorecs.fluid increased significantly by 25.3% and 22%, respectively, in patients with osteoporosis compared to non-osteoporosis. Age was also found to be significantly different between non-osteoporosis and osteoporosis (49.92 and 74.03 years, p < .001). ROC analysis indicated that F-scoresc.fat had a greater AUC value (0.85, p < .001) than VBQ score (0.77) and SNRL1-L5 (0.71) when being used to detect osteoporosis. For separating vertebral fractures from non-fractures, F-scoresc.fat resulted in the largest AUC value of 0.81 (p < .001), compared to W-scorecs.fluid (0.74), VBQ (0.72), and SNRL1-L5 (0.75). CONCLUSION A new MRI scoring method based on routine T1 and T2 sequences has been developed and demonstrated improved abilities in detecting osteoporosis and discriminating vertebral fractures over VBQ and SNR.
Collapse
Affiliation(s)
- Rahman Ud Din
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Ling Wang
- Department of Radiology, Jishuitan Hospital, Beijing, China
| | | | - Haisheng Yang
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China.
| |
Collapse
|
3
|
Zhu H, Ren J, Wang X, Qin W, Xie Y. Targeting skeletal interoception: a novel mechanistic insight into intervertebral disc degeneration and pain management. J Orthop Surg Res 2025; 20:159. [PMID: 39940003 PMCID: PMC11823264 DOI: 10.1186/s13018-025-05577-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/05/2025] [Indexed: 02/14/2025] Open
Abstract
Despite being a leading cause of chronic pain and disability, the underlying mechanisms of intervertebral disc (IVD) degeneration (IVDD) remain unclear. Emerging evidence suggests that mechanosensation (the ability of the skeletal system to perceive mechanical and biochemical signals) mediated by abnormal mechanical loading plays a critical role in the regulation of IVD health. This review examines the complex interactions amongIVDs, intraosseous sensory mechanisms, and the central nervous system (CNS), with a particular focus on the roles of pathways such as PGE2/EP4, Wnt/β-catenin, and NF-κB. This review elucidates the manner in which mechanical stress and aberrant signaling disrupt the homeostasis of the nucleus pulposus (NP), cartilaginous endplate (CEP) and annulus fibrosus (AF), thereby driving degeneration and exacerbating pain. Furthermore, targeted therapeutic strategies, including the modulation of skeletal interoception and dynamic mechanical loading, present novel avenues for reversing IVDD progression. By integrating skeletal biology with spinal pathology, this work offers a novel perspective on the pathogenesis of IVDD and identifies promising strategies for clinical intervention. These findings highlight the potential of targeting skeletal interoception to mitigate IVDD and associated pain, paving the way for innovative, mechanism-driven therapies.
Collapse
Affiliation(s)
- Houcheng Zhu
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610000, China
| | - JianHang Ren
- Affiliated Yongchuan Hospital of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 402160, China
| | - Xiangjin Wang
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610000, China
| | - Wenjing Qin
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610000, China
| | - Yong Xie
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610000, China.
| |
Collapse
|
4
|
Yang H, Chen X, Chen J, Dong Y, Huang Y, Qin L, Tan J, Yi W. The pathogenesis and targeted therapies of intervertebral disc degeneration induced by cartilage endplate inflammation. Front Cell Dev Biol 2024; 12:1492870. [PMID: 39687521 PMCID: PMC11647014 DOI: 10.3389/fcell.2024.1492870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Intervertebral disc degeneration (IVDD) is the leading cause of low back pain, where degeneration and death of nucleus pulposus cells within the intervertebral disc (IVD) can be obviously revealed. This degeneration can result in an imbalance in the extracellular matrix due to the loss of proteoglycans and water content, which can further lead to catabolic and anabolic dysfunction of the IVD. Recently, the dysfunction of cartilage endplate (CEP) during aging has drawn large attention due to its essential functions in contributing nutrient exchange and maintaining IVD homeostasis. Furthermore, the inflammation and disturbed homeostasis of CEP not only accelerate the degradation of nucleus pulposus extracellular matrix, but also exacerbate IVDD by causing nucleus pulposus cell death through other pathological factors. Here in this review, we summarized the possible pathological factors and the underlying mechanisms of the CEP inflammation-induced IVDD, including exosomes degeneration, CEP calcification, ferroptosis, mechanical changes, and cell senescence. Besides, changes of miRNAs, pain-related neural reflex arc and pathways associated with CEP inflammation-induced IVDD are also reviewed. In addition, new strategies specifically designed for CEP inflammation-induced IVDD are also discussed in the last section. We hope this paper can not only offer some new insights for advancing novel strategies for treating IVDD, but also serve as a valuable reference for researchers in this field.
Collapse
Affiliation(s)
- Hantao Yang
- Department of Spine Surgery and Innovative Laboratory of Orthopedics, Shenzhen Nanshan People’s Hospital, Shenzhen, Guangdong, China
| | - Xuandu Chen
- Department of Spine Surgery and Innovative Laboratory of Orthopedics, Shenzhen Nanshan People’s Hospital, Shenzhen, Guangdong, China
| | - Jun Chen
- Orthopedic Laboratory, Orthopedic Department and Hubei Sports Medicine Center, Wuhan Fourth Hospital, Wuhan, China
| | - Yansong Dong
- Department of Spine Surgery and Innovative Laboratory of Orthopedics, Shenzhen Nanshan People’s Hospital, Shenzhen, Guangdong, China
| | - Yafang Huang
- Department of Spine Surgery and Innovative Laboratory of Orthopedics, Shenzhen Nanshan People’s Hospital, Shenzhen, Guangdong, China
- Orthopedic Laboratory, Orthopedic Department and Hubei Sports Medicine Center, Wuhan Fourth Hospital, Wuhan, China
| | - Lei Qin
- Department of Spine Surgery and Innovative Laboratory of Orthopedics, Shenzhen Nanshan People’s Hospital, Shenzhen, Guangdong, China
| | - Jie Tan
- Department of Spine Surgery and Innovative Laboratory of Orthopedics, Shenzhen Nanshan People’s Hospital, Shenzhen, Guangdong, China
- Orthopedic Laboratory, Orthopedic Department and Hubei Sports Medicine Center, Wuhan Fourth Hospital, Wuhan, China
| | - Weihong Yi
- Department of Spine Surgery and Innovative Laboratory of Orthopedics, Shenzhen Nanshan People’s Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
5
|
Sun Y, Li Z, Duan J, Liu E, Yang L, Sun F, Chen L, Yang S. From structure to therapy: the critical influence of cartilaginous endplates and microvascular network on intervertebral disc degeneration. Front Bioeng Biotechnol 2024; 12:1489420. [PMID: 39530056 PMCID: PMC11550963 DOI: 10.3389/fbioe.2024.1489420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
The intervertebral disc (IVD) is the largest avascular structure in the human body. The cartilaginous endplate (CEP) is a layer of translucent cartilage located at the upper and lower edges of the vertebral bodies. On one hand, CEPs endure pressure from within the IVD and the tensile and shear forces of the annulus fibrosus, promoting uniform distribution of compressive loads on the vertebral bodies. On the other hand, microvascular diffusion channels within the CEP serve as the primary routes for nutrient supply to the IVD and the transport of metabolic waste. Degenerated CEP, characterized by increased stiffness, decreased permeability, and reduced water content, impairs substance transport and mechanical response within the IVD, ultimately leading to intervertebral disc degeneration (IDD). Insufficient nutrition of the IVD has long been considered the initiating factor of IDD, with CEP degeneration regarded as an early contributing factor. Additionally, CEP degeneration is frequently accompanied by Modic changes, which are common manifestations in the progression of IDD. Therefore, this paper comprehensively reviews the structure and physiological functions of CEP and its role in the cascade of IDD, exploring the intrinsic relationship between CEP degeneration and Modic changes from various perspectives. Furthermore, we summarize recent potential therapeutic approaches targeting CEP to delay IDD, offering new insights into the pathological mechanisms and regenerative repair strategies for IDD.
Collapse
Affiliation(s)
- Yu Sun
- Graduate School of Hunan University of Chinese Medicine, Changsha, China
| | - Zhaoyong Li
- Graduate School of Hunan University of Chinese Medicine, Changsha, China
| | - Jiahao Duan
- Department of Orthopaedics, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Enxu Liu
- Graduate School of Hunan University of Chinese Medicine, Changsha, China
| | - Lei Yang
- Department of Orthopaedics, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Fei Sun
- Graduate School of Hunan University of Chinese Medicine, Changsha, China
| | - Long Chen
- Department of Orthopaedics, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Shaofeng Yang
- Department of Orthopaedics, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
6
|
Yu Q, Chen K, Guo Z, Han Y, Su L, Lei C, Ma J, Kang H. Effect of Different Injury Morphology of the Endplate on Intervertebral Disc Degeneration: Retrospective Cohort Study. Orthop Surg 2024. [PMID: 39359110 DOI: 10.1111/os.14238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 10/04/2024] Open
Abstract
OBJECTIVES To describe a simplified classification scheme for endplate injury morphology based on 3D CT and to examine possible associations between endplate injury morphology and vertebral space and other variables such as type of fracture and disc degeneration in a group of patients with thoracolumbar fractures. METHODS This study was a retrospective cohort study. We collected patients with thoracolumbar fractures admitted from January 2015 to August 2020 and divided them into three groups based on the morphology of endplate injury (45 cases of mild endplate injury, 54 cases of moderate endplate injury, and 42 cases of severe endplate injury, SEI). Data of vertebral body and intervertebral space height and angle, the Pfirrmann grade, endplate healing morphology were collected during preoperative, postoperative, and long-term follow-up of patients in each group. One-way analysis of variance (ANOVA), chi-squared test, and repeated measurement ANOVA were used to compare and analyze the influence of endplate injury morphology on patient prognosis. RESULTS Most moderate injuries to the endplate (fissure-type injury) and severe injuries (irregular depression-type injury, Schmorl's node-type injury) resulted in significant disc degeneration in the long-term transition. This study also showed significant differences in the height of the anterior margin of the injured spine and the intervertebral space height index during this process. CONCLUSIONS The current study suggests that although the region of injury in endplate fissure-type injury is small preoperatively, it may be a major factor in leading to severe disc degeneration, loss of intervertebral height, and Cobb angle in the long term. The results of our study therefore may allow surgeons to predict the prognosis of patients with thoracolumbar fractures and guide their treatment.
Collapse
Affiliation(s)
- Qiuyu Yu
- Department of Traumatic Orthopedics, Suizhou Hospital, Hubei University of Medicine, Suizhou, Hubei, China
| | - Kang Chen
- Department of Traumatic Orthopedics, Suizhou Hospital, Hubei University of Medicine, Suizhou, Hubei, China
| | - Zhongyi Guo
- Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Yaozheng Han
- Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Lintao Su
- Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Changyu Lei
- Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Jun Ma
- General Hospital of Central Theater Command, Wuhan, Hubei, China
| | - Hui Kang
- General Hospital of Central Theater Command, Wuhan, Hubei, China
| |
Collapse
|
7
|
Liu H, Zhang L, Zhang Y, Tao Y. Percutaneous cement vertebral-disc plasty for osteoporotic vertebral compression fracture with superior disc-endplate complex injury: A case report. Asian J Surg 2024:S1015-9584(24)01964-X. [PMID: 39271344 DOI: 10.1016/j.asjsur.2024.08.224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Affiliation(s)
- Hansheng Liu
- Department of Orthopedics, Xuzhou Medical University, Xuzhou, Jiangsu, 221000, China; Department of Orthopedics, Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Liang Zhang
- Department of Orthopedics, Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Yongbo Zhang
- Department of Orthopedics, Dalian Medical University, Dalian, Liaoning, 116000, China
| | - Yuping Tao
- Department of Orthopedics, Northern Jiangsu People's Hospital, Yangzhou, 225001, China.
| |
Collapse
|
8
|
Berkarda Z, Wiedemann S, Wilpert C, Strecker R, Koerzdoerfer G, Nickel D, Bamberg F, Benndorf M, Mayrhofer T, Russe MF, Weiss J, Diallo TD. Deep learning reconstructed T2-weighted Dixon imaging of the spine: Impact on acquisition time and image quality. Eur J Radiol 2024; 178:111633. [PMID: 39067266 DOI: 10.1016/j.ejrad.2024.111633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/30/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
PURPOSE To assess the image quality and impact on acquisition time of a novel deep learning based T2 Dixon sequence (T2DL) of the spine. METHODS This prospective, single center study included n = 44 consecutive patients with a clinical indication for lumbar MRI at our university radiology department between September 2022 and March 2023. MRI examinations were performed on 1.5-T and 3-T scanners (MAGNETOM Aera and Vida; Siemens Healthineers, Erlangen, Germany) using dedicated spine coils. The MR study protocol consisted of our standard clinical protocol, including a T2 weighted standard Dixon sequence (T2std) and an additional T2DL acquisition. The latter used a conventional sampling pattern with a higher parallel acceleration factor. The individual contrasts acquired for Dixon water-fat separation were then reconstructed using a dedicated research application. After reconstruction of the contrast images from k-space data, a conventional water-fat separation was performed to provide derived water images. Two readers with 6 and 4 years of experience in interpreting MSK imaging, respectively, analyzed the images in a randomized fashion. Regarding overall image quality, banding artifacts, artifacts, sharpness, noise, and diagnostic confidence were analyzed using a 5-point Likert scale (from 1 = non-diagnostic to 5 = excellent image quality). Statistical analyses included the Wilcoxon signed-rank test and weighted Cohen's kappa statistics. RESULTS Forty-four patients (mean age 53 years (±18), male sex: 39 %) were prospectively included. Thirty-one examinations were performed on 1.5 T and 13 examinations on 3 T scanners. A sequence was successfully acquired in all patients. The total acquisition time of T2DL was 93 s at 1.5-T and 86 s at 3-T, compared to 235 s, and 257 s, respectively for T2std (reduction of acquisition time: 60.4 % at 1.5-T, and 66.5 % at 3-T; p < 0.01). Overall image quality was rated equal for both sequences (median T2DL: 5[3 -5], and median T2std: 5 [2 -5]; p = 0.57). T2DL showed significantly reduced noise levels compared to T2std (5 [4 -5] versus 4 [3 -4]; p < 0.001). In addition, sharpness was rated to be significantly higher in T2DL (5 [4 -5] versus 4 [3 -5]; p < 0.001). Although T2DL displayed significantly more banding artifacts (5 [2 -5] versus 5 [4 -5]; p < 0.001), no significant impact on readers diagnostic confidence between sequences was noted (T2std: 5 [2 -5], and T2DL: 5 [3 -5]; p = 0.61). Substantial inter-reader and intrareader agreement was observed for T2DL overall image quality (κ: 0.77, and κ: 0.8, respectively). CONCLUSION T2DL is feasible, yields an image quality comparable to the reference standard while substantially reducing the acquisition time.
Collapse
Affiliation(s)
- Zeynep Berkarda
- Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Simon Wiedemann
- Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Caroline Wilpert
- Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Ralph Strecker
- EMEA Scientific Partnerships, Siemens Healthcare GmbH, Erlangen, Germany
| | | | - Dominik Nickel
- MR Application Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Fabian Bamberg
- Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Matthias Benndorf
- Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Thomas Mayrhofer
- School of Business Studies, Stralsund University of Applied Sciences, Stralsund, Germany; Cardiovascular Imaging Research Center, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Maximilian Frederik Russe
- Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Jakob Weiss
- Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Thierno D Diallo
- Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Germany.
| |
Collapse
|
9
|
Elmounedi N, Jedli O, Bahloul W, Keskes K, Sahnoun N, Abdelhedi O, Ellouz Z, Keskes H. Intervertebral Disc Degeneration Induced by Vertebral Body Fracture Associated with Microcirculation Disruption of the Subendplate. World Neurosurg 2024; 189:e912-e920. [PMID: 38986949 DOI: 10.1016/j.wneu.2024.07.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Among the causes of the progression of intervertebral disc (IVD) degeneration (IDD) is the loss of nutrient intake to the IVD through the microcirculation disruption of the subendplate. Also, the vertebral body fracture intervenes in the degeneration the adjacent IVD. This research aimed to create an animal model of IDD using these 2 strategies. METHODS Thirty male Sprague-Dawley rats were split into 3 groups: a control group, a middle vertebral body injury (MI) associated with ethanol injection (MI + EtOH) group, and an MI associated with phosphate-buffered saline injection group. A vertebral body fracture with or without endplate injection of ethanol was generated by either drilling a hole in the center of a caudal rat vertebral body to form a fracture with an unabated endplate or drilling a hole in the center of a rat coccygeal vertebral body with endplate injection of ethanol to establish a vertebral body fracture with endplate damage. X-ray, macroscopic, histologic, and biochemical evaluations were utilized to assess IDD at weeks 3 and 6. RESULTS According to X-ray findings, the MI + EtOH group demonstrated a significant decrease in intervertebral space height over time in comparison to the 2 other groups. The water content also was significantly decreased. Macroscopic and histological analysis demonstrated progressive degenerative changes in the IVD of the MI + EtOH group. CONCLUSIONS The caudal vertebra fracture with ethanol injection is more likely to induce degeneration of adjacent IVD. This model effectively reproduced IDD, which may serve as a theoretical basis for future clinical intervention for IDD.
Collapse
Affiliation(s)
- Najah Elmounedi
- Cell therapy and experimental surgery of musculoskeletal system LR18SP11 Lab, Faculty of Medicine, University of Sfax, Sfax, Tunisia.
| | - Olfa Jedli
- Histo-Physiology of Induced and Developmental Diseases (12ES15) at the Faculty of Medicine of Sfax, Sfax, Tunisia
| | - Walid Bahloul
- Department of Orthopedics and Traumatology, CHU Habib Bourguiba, Sfax, Tunisia
| | - Khaled Keskes
- Department of Orthopedics and Traumatology, CHU Habib Bourguiba, Sfax, Tunisia
| | - Nizar Sahnoun
- Cell therapy and experimental surgery of musculoskeletal system LR18SP11 Lab, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Oussema Abdelhedi
- Cell therapy and experimental surgery of musculoskeletal system LR18SP11 Lab, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Zoubaier Ellouz
- Cell therapy and experimental surgery of musculoskeletal system LR18SP11 Lab, Faculty of Medicine, University of Sfax, Sfax, Tunisia; Department of Orthopedics and Traumatology, CHU Habib Bourguiba, Sfax, Tunisia
| | - Hassib Keskes
- Cell therapy and experimental surgery of musculoskeletal system LR18SP11 Lab, Faculty of Medicine, University of Sfax, Sfax, Tunisia; Department of Orthopedics and Traumatology, CHU Habib Bourguiba, Sfax, Tunisia
| |
Collapse
|
10
|
Chen H, Zhou Q, Pu X, Wang N, Wang S, Feng Z, Wang B, Zhu Z, Qiu Y, Sun X. Association between vertebral endplate defects and patient-reported symptoms: an immunohistochemical study investigating the COX-2/PGE-2/EP-4 axis. Spine J 2024; 24:1407-1415. [PMID: 38631491 DOI: 10.1016/j.spinee.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 04/07/2024] [Accepted: 04/07/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND CONTEXT Vertebral endplate defects are often implicated in degenerative disc disorders, yet their connection to patient-reported symptoms remains unclear. COX-2 and PGE-2 are known for their roles in inflammation and pain, with EP-4 receptor involvement in pain signaling. Examining their expression in vertebral endplate tissues may provide insights into pathomechanism of low back pain. PURPOSE To investigate the association between endplate defects and patient-reported symptoms and to further clarify the role of the COX-2/PGE-2/EP-4 axis in the pathogenesis of chronic low back pain. STUDY DESIGN/SETTING Retrospective study. PATIENT SAMPLE A total of 71 patients who had undergone single-level L4/5 or L5/S1 modified laminectomy decompression preserving proximal upper laminae and transforaminal lumbar interbody fusion surgery were included in this study, including 18 patients diagnosed with lumbar disc herniation, 19 with lumbar disc herniation accompanied by degenerative lumbar spinal stenosis, and 34 with degenerative spondylolisthesis. OUTCOME MEASURES Demographic data, Pfirrmann grade, Modic changes, endplate defect score, visual analog scale (VAS) for back and leg pain, and Oswestry Disability Index (ODI) before surgery, 3-month and 6-month follow-up, and the percentage of immune-positive cells (COX-2, PGE-2, and EP-4) in endplate tissue sections. METHODS Patients were divided into defect and nondefect groups according to endplate morphology on lumbar MR. All intraoperative endplate specimens were immediately fixed in 10% formaldehyde, and then embedded in paraffin 3 days later for tissue sections. The outcome measures were compared between the defect group and nondefect group. Data were analyzed using independent t-tests and χ² tests. Pearson's rank correlation test was used to assess correlations between patient-reported symptoms and the percentage of immune-positive cells in the groups. Multivariable logistic regression models using the forward stepwise likelihood ratio method were used to identify the factors that were independently associated with endplate defects. RESULTS The age of Defect group was significantly higher than that of nondefect group (52.5±7.7 vs 57.2±9.1. p=.024). There were no significant differences in gender, diagnosis, BMI, comorbidities, or surgical level between the two groups. Modic changes (Type Ⅱ/Type Ⅲ) were more common in patients of Defect group than nondefect group (38.5% vs 11.1%, p<.001), and so was disc degeneration (Pfirrmann grade Ⅳ/Ⅴ) (69.2% vs 33.3%, p<.001). Defect group had significantly higher VAS-Back (6.5±2.0 vs 4.9±1.6, p<.001) and ODI scores (62.9±10.7 vs 45.2±14.8, p<.001) than nondefect group, while there was no significant differences between the two groups during the 3 and 6-month follow-up after surgery. Histologically, Defect group was characterized by upregulation of COX-2, PGE-2, and EP-4 in endplate tissue sections. Both in defect and nondefect groups, VAS-Back showed moderate positive correlations with the expressions of COX-2 (r=0.643; r=0.558, p both<.001), PGE-2 (r=0.611; r=0.640, p both<.001), and EP-4 (r=0.643; r=0.563, p both<.001). Multivariate regression analyses reveled that percentage of COX-2-positive cells was associated with endplate defects (OR=1.509, 95%CI [1.048-2.171], p=.027), as well as percentage of PGE-2-positive (OR=1.291, 95%CI [1.106-1.508], p=.001) and EP-4-positive cells (OR=1.284, 95%CI [1.048∼2.171], p=.003). CONCLUSIONS Patients with endplate defects had worse quality of life, more severe disc degeneration and Modic changes, and up-regulated COX-2/PGE-2/EP-4 axis expression in cartilage endplates in patients with defected endplates. Inflammatory factors may significantly contribute to the onset and progression of chronic low back pain in patients with endplate defects, consequently impacting patient-reported symptoms.
Collapse
Affiliation(s)
- Haojie Chen
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qingshuang Zhou
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, China
| | - Xiaojiang Pu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Nannan Wang
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, China
| | - Sinian Wang
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhenhua Feng
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Bin Wang
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zezhang Zhu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yong Qiu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xu Sun
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
11
|
Din RU, Nishtar T, Cheng X, Yang H. Magnetic resonance imaging phantom-based S1 vertebral scores are indicators of fat-water-like osteoporotic changes in postmenopausal women: a pilot study. Asian Spine J 2024; 18:560-569. [PMID: 39165061 PMCID: PMC11366554 DOI: 10.31616/asj.2024.0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/17/2024] [Accepted: 06/04/2024] [Indexed: 08/23/2024] Open
Abstract
STUDY DESIGN A prospective study. PURPOSE To assess fat-water-like tissue changes on the 1st sacral vertebra using novel magnetic resonance imaging (MRI) phantombased F- and W-scores and evaluate their diagnostic performances in osteoporosis detection. OVERVIEW OF LITERATURE Using an uncommonly advanced MRI technique, previous studies have found that fat-water changes were consistent with osteoporosis. The role of routine MRI sequences can be extended in this regard. The S1 vertebra is considered a crucial anatomical site in spine surgeries because it seldom suffers from fractures. Thus, S1 could indicate osteoporotic fat-water changes. METHODS Forty-two female volunteers (aged 62.3±6.3 years) underwent spine examination with both MRI (including a phantom) and dual-energy X-ray absorptiometry (DXA) following ethical approval. MRI phantom-based F- and W-scoreS1 were defined by normalizing S1 vertebral signal intensities (SIs) by coconut oil and water SIs of the phantom on T1- and T2-weighted imaging, respectively. Using receiver operating characteristic analysis, the diagnostic performances of the new scores for evaluating osteoporosis and vertebral fractures were investigated against standard areal bone mineral density measured with DXA (DXA-aBMD). RESULTS The F-scoreS1 and W-scoreS1 were greater (4.11 and 2.43, respectively) in patients with osteoporosis than those without osteoporosis (3.25 and 1.92, respectively) and achieved areas under the curve (AUCs) of 0.82 and 0.76 (p<0.05), respectively, for osteoporosis detection. Similarly, the mean F-scoreS1 and W-scoreS1 were higher (4.11 and 2.63, respectively) in patients with vertebral fractures than in those without fractures (3.30 and 1.82, respectively) and had greater AUCs (0.90 for W-scoreS1 and 0.74 for F-scoreS1) than DXA-aBMD (AUC, 0.26; p<0.03). In addition, the F- and W-scoreS1 demonstrated a strong correlation (r=0.65, p<0.001). CONCLUSIONS The new S1 vertebral-based MRI scores were developed to detect osteoporotic changes and demonstrated improvements over DXA-aBMD in differentiating patients with vertebral fractures.
Collapse
Affiliation(s)
- Rahman Ud Din
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing,
China
| | - Tahira Nishtar
- Department of Imaging and Interventional Radiology, Lady Reading Hospital (LRH-MTI), Peshawar,
Pakistan
| | - Xiaoguang Cheng
- Department of Radiology, Beijing Jishuitan Hospital, Beijing,
China
| | - Haisheng Yang
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing,
China
| |
Collapse
|
12
|
Wang S, Shi J. Three Stages on Magnetic Resonance Imaging of Lumbar Degenerative Spine. World Neurosurg 2024; 187:e598-e609. [PMID: 38679375 DOI: 10.1016/j.wneu.2024.04.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 04/21/2024] [Indexed: 05/01/2024]
Abstract
PURPOSES To propose a new lumbar degenerative staging system using the current radiological classification system. METHODS A cross-sectional analysis of retrospective databases between January 2018 and December 2022 was performed. Total of 410 patients for Modic changes, paravertebral muscle fat infiltration, disc degeneration, articular process degeneration, vertebral endplate degeneration and other structures, and disc displacement, Spondylolisthesis, and stenosis, and grouped patients according to stage were assessed. Visual analog scale, Japanese Orthopaedic Association, and Oswestry Disability Index scores were used to assess low back pain strength, neurological function, and quality of life, respectively. RESULTS The lumbar degeneration staging system consists of 8 variables, which can be divided into 3 steps: early, middle and late, and the correlation between each variable is strong (P < 0.05). The later the staging, the worse the Japanese Orthopaedic Association, visual analog scale, and Oswestry Disability Index scores. CONCLUSIONS Patients with later stages have worse clinical scores. This staging system recommends a uniform classification to assess lumbar degeneration.
Collapse
Affiliation(s)
- Shunmin Wang
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Naval Medical University, Shanghai, People's Republic of China; 910 Hospital of China Joint Logistics Support Force, Quanzhou City, People's Republic of China
| | - Jiangang Shi
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Naval Medical University, Shanghai, People's Republic of China.
| |
Collapse
|
13
|
Din RU, Nishtar T, Cheng X, Yang H. Assessing osteoporosis in postmenopausal women: preliminary results using a novel lumbar spine phantom-based MRI scoring method. LA RADIOLOGIA MEDICA 2024; 129:912-924. [PMID: 38625420 DOI: 10.1007/s11547-024-01814-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 04/02/2024] [Indexed: 04/17/2024]
Abstract
OBJECTIVE To develop a novel magnetic resonance imaging (MRI) phantom for producing F-score (for fat) and W-score (for water) and to evaluate the performance of these scores in assessing osteoporosis and related vertebral fractures. MATERIALS AND METHODS First, a real-time phantom consisting of oil and water tubes was manufactured. Then, 30 female volunteers (age: 62.3 ± 6.3 years) underwent lumbar spine examination with MRI (using a novel phantom) and dual-energy X-ray absorptiometry (DXA), following ethical approval. MRI phantom-based F-score and W-score were defined by normalizing the vertebral signal intensities (SIs) by the oil and water SIs of the phantom on T1- and T2-weighted images, respectively. The diagnostic performances of the new scores for assessing osteoporosis and vertebral fractures were examined using receiver operating characteristic analysis and compared with DXA-measured areal bone mineral density (DXA-aBMD). RESULTS The F-score and W-score were greater in the osteoporotic patients (3.93 and 2.29) than the non-osteoporotic subjects (3.05 and 1.79) and achieved AUC values of 0.85 and 0.74 (p < 0.05), respectively, when detecting osteoporosis. Similarly, F-score and W-score had greater values for the fracture patients (3.94 and 2.53) than the non-fracture subjects (3.14 and 1.69) and produced better AUC values (0.90 for W-score and 0.79 for F-score) compared to DXA-aBMD (AUC: 0.27, p < 0.05). In addition, the F-score and W-score had a strong correlation (r = 0.77; p < 0.001). CONCLUSION A novel real-time lumber spine MRI phantom was developed, based upon which newly defined F-score and W-score were able to detect osteoporosis and demonstrated an improved ability over DXA-aBMD in differentiating patients with vertebral fractures.
Collapse
Affiliation(s)
- Rahman Ud Din
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Tahira Nishtar
- Department of Imaging and Interventional Radiology, Lady Reading Hospital (LRH-MTI), Peshawar, Pakistan
| | - Xiaoguang Cheng
- Department of Radiology, Beijing Jishuitan Hospital, National Centre for Orthopaedics, Capital Medical University, Beijing, China
| | - Haisheng Yang
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China.
| |
Collapse
|
14
|
Ekşi MŞ, Özcan-Ekşi EE. Fatty infiltration of the erector spinae at the upper lumbar spine could be a landmark for low back pain. Pain Pract 2024; 24:278-287. [PMID: 37830410 DOI: 10.1111/papr.13302] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/03/2023] [Accepted: 10/01/2023] [Indexed: 10/14/2023]
Abstract
PURPOSE Intervertebral disc degeneration (IVDD), Modic changes, and fatty infiltration in the paraspinal muscles are possible causes of low back pain (LBP). Multifidus has been the most commonly blamed paraspinal muscle in the etiology of LBP. However, it contributes to 20% of the extensor moment on the lumbar spine. In the present study, we aimed to identify whether patients with LBP and asymptomatic subjects differed in terms of intervertebral discs, end-plates, and fatty infiltration in their paraspinal muscles. METHODS Consecutive women and men, who visited the spine outpatient clinics with chronic LBP and had lumbar spine MRI for their LBP without leg pain were included. Asymptomatic subjects without LBP/leg pain for the last year were recruited. Modic changes, IVDD, and fatty infiltration in the paraspinal muscles were evaluated on lumbar spine magnetic resonance imagings of the patients with LBP and age-, gender- and BMI-matched asymptomatic controls. RESULTS Low back pain was closely associated with fatty infiltration in the paraspinal muscles at all lumbar levels whereas it had association with severe IVDD and Modic changes at lower lumbar levels. Multifidus at the lower lumbar levels was the fattiest paraspinal muscle in both asymptomatic subjects and patients with LBP. Patients with LBP had severe fatty infiltration in the erector spinae at the upper lumbar levels. CONCLUSION Severe IVDD and Modic changes were more common at lower lumbar levels in patients with LBP. Both asymptomatic subjects and those with LBP had fatty multifidus at lower lumbar levels, whereas those with LBP had fatty infiltration in the erector spinae at upper lumbar levels. We suggest that fatty infiltration could have started in the multifidus. The erector spinae had greater contribution to the lumbar extension compared to the multifidus. Thus, LBP could develop when the quality of the erector spinae at the upper lumbar levels impairs due to fatty infiltration.
Collapse
Affiliation(s)
- Murat Şakir Ekşi
- Neurosurgery Clinic, FSM Training and Research Hospital, Istanbul, Turkey
| | - Emel Ece Özcan-Ekşi
- Department of Physical Medicine and Rehabilitation, School of Medicine, Bahçeşehir University, Istanbul, Turkey
| |
Collapse
|
15
|
Harrison DE, Oakley PA, Moustafa IM. Don't Throw the 'Bio' out of the Bio-Psycho-Social Model: Editorial for Spine Rehabilitation in 2022 and Beyond. J Clin Med 2023; 12:5602. [PMID: 37685669 PMCID: PMC10488157 DOI: 10.3390/jcm12175602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Spinal injuries, disorders and disabilities are among the leading causes for work loss, suffering, and health care expenditures throughout the industrialized world [...].
Collapse
Affiliation(s)
- Deed E. Harrison
- CBP Nonprofit (a Spine Research Foundation), Eagle, ID 83616, USA
| | - Paul A. Oakley
- Independent Researcher, Newmarket, ON L3Y 8Y8, Canada;
- Kinesiology and Health Science, York University, Toronto, ON M3J 1P3, Canada
| | - Ibrahim M. Moustafa
- Neuromusculoskeletal Rehabilitation Research Group, RIMHS–Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Department of Physiotherapy, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
16
|
Bassani T, Cina A, Galbusera F, Sconfienza LM, Albano D, Barcellona F, Colombini A, Luca A, Brayda-Bruno M. Automatic classification of the vertebral endplate lesions in magnetic resonance imaging by deep learning model. Front Surg 2023; 10:1172313. [PMID: 37425349 PMCID: PMC10324976 DOI: 10.3389/fsurg.2023.1172313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction A novel classification scheme for endplate lesions, based on T2-weighted images from magnetic resonance imaging (MRI) scan, has been recently introduced and validated. The scheme categorizes intervertebral spaces as "normal," "wavy/irregular," "notched," and "Schmorl's node." These lesions have been associated with spinal pathologies, including disc degeneration and low back pain. The exploitation of an automatic tool for the detection of the lesions would facilitate clinical practice by reducing the workload and the diagnosis time. The present work exploits a deep learning application based on convolutional neural networks to automatically classify the type of lesion. Methods T2-weighted MRI scans of the sagittal lumbosacral spine of consecutive patients were retrospectively collected. The middle slice of each scan was manually processed to identify the intervertebral spaces from L1L2 to L5S1, and the corresponding lesion type was labeled. A total of 1,559 gradable discs were obtained, with the following types of distribution: "normal" (567 discs), "wavy/irregular" (485), "notched" (362), and "Schmorl's node" (145). The dataset was divided randomly into a training set and a validation set while preserving the original distribution of lesion types in each set. A pretrained network for image classification was utilized, and fine-tuning was performed using the training set. The retrained net was then applied to the validation set to evaluate the overall accuracy and accuracy for each specific lesion type. Results The overall rate of accuracy was found equal to 88%. The accuracy for the specific lesion type was found as follows: 91% (normal), 82% (wavy/irregular), 93% (notched), and 83% (Schmorl's node). Discussion The results indicate that the deep learning approach achieved high accuracy for both overall classification and individual lesion types. In clinical applications, this implementation could be employed as part of an automatic detection tool for pathological conditions characterized by the presence of endplate lesions, such as spinal osteochondrosis.
Collapse
Affiliation(s)
- Tito Bassani
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Andrea Cina
- Spine Center, Schulthess Clinic, Zurich, Switzerland
- Department of Health Sciences and Technologies, ETH Zurich, Zurich, Switzerland
| | | | - Luca Maria Sconfienza
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Dipartimento di Scienze Biomediche per la Salute, Università Degli Studi di Milano, Milan, Italy
| | | | - Federica Barcellona
- Complex Unit of Radiology, Department of Diagnostic and Interventional Radiology, Azienda Socio Sanitaria Territoriale (ASST) Lodi, Lodi, Italy
| | | | - Andrea Luca
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | | |
Collapse
|
17
|
Lambrechts MJ, Issa TZ, Toci GR, Schilken M, Canseco JA, Hilibrand AS, Schroeder GD, Vaccaro AR, Kepler CK. Modic Changes of the Cervical and Lumbar Spine and Their Effect on Neck and Back Pain: A Systematic Review and Meta-Analysis. Global Spine J 2023; 13:1405-1417. [PMID: 36448648 PMCID: PMC10416594 DOI: 10.1177/21925682221143332] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
STUDY DESIGN Systematic Review. OBJECTIVES To systematically review the current literature and perform a meta-analysis on patients with cervical or lumbar spine Modic changes to determine if their baseline axial back pain and disability are comparable to patients without Modic changes. METHODS A systematic review of the PubMed database was conducted in accordance with PRISMA guidelines. A meta-analysis was performed to compare the mean differences in back pain, leg pain, and disability based on the presence of cervical or lumbar spine Modic changes. A subgroup analysis of the different types of Modic changes was conducted to determine if Modic type affected back pain or disability. RESULTS - After review of 259 articles, 17 studies were included for meta-analysis and ten studies were included for qualitative synthesis. In the lumbar spine, 10 high-quality studies analyzed Visual Analog Scale (VAS) back pain, 10 evaluated VAS leg pain, and 8 analyzed Oswestry Disability Index. VAS back pain (mean difference (MD), -.38; 95% CI, -.61 - .16) and Oswestry disability index (MD -2.52; 95% CI, -3.93 - -1.12) were significantly lower in patients without Modic changes. Modic change subtype was not associated with differences in patient-reported outcomes. Patients with cervical spine Modic changes did not experience more severe pain than those without MC. CONCLUSIONS Modic changes in the lumbar spine are not associated with clinically significant axial low back pain severity or patient disability. Similar to the lumbar spine, Modic changes in the cervical spine are not associated with symptom severity, but they are associated with pain duration.
Collapse
Affiliation(s)
- Mark J. Lambrechts
- Department of Orthopaedic Surgery, Rothman Orthopaedic Institute at Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Tariq Z. Issa
- Department of Orthopaedic Surgery, Rothman Orthopaedic Institute at Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Gregory R. Toci
- Department of Orthopaedic Surgery, Rothman Orthopaedic Institute at Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Meghan Schilken
- College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Jose A. Canseco
- Department of Orthopaedic Surgery, Rothman Orthopaedic Institute at Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Alan S. Hilibrand
- Department of Orthopaedic Surgery, Rothman Orthopaedic Institute at Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Gregory D. Schroeder
- Department of Orthopaedic Surgery, Rothman Orthopaedic Institute at Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Alexander R. Vaccaro
- Department of Orthopaedic Surgery, Rothman Orthopaedic Institute at Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Christopher K. Kepler
- Department of Orthopaedic Surgery, Rothman Orthopaedic Institute at Thomas Jefferson University Hospital, Philadelphia, PA, USA
| |
Collapse
|
18
|
Gao X, Din RU, Cheng X, Yang H. Biomechanical MRI detects reduced bone strength in subjects with vertebral fractures. Bone 2023; 173:116810. [PMID: 37207989 DOI: 10.1016/j.bone.2023.116810] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
Vertebral fracture is one of the most serious consequences of osteoporosis. Estimation of vertebral strength from magnetic resonance imaging (MRI) scans may provide a new approach for the prediction of vertebral fractures. To that end, we sought to establish a biomechanical MRI (BMRI) method to compute vertebral strength and test its ability to distinguish fracture from non-fracture subjects. This case-control study included 30 subjects without vertebral fractures and 15 subjects with vertebral fractures. All subjects underwent MRI with a mDIXON-Quant sequence and quantitative computed tomography (QCT), from which proton fat fraction-based bone marrow adipose tissue (BMAT) content and volumetric bone mineral density (vBMD) were measured, respectively. Nonlinear finite element analysis was applied to MRI and QCT scans of L2 vertebrae to compute vertebral strength (BMRI- and BCT-strength). The differences in BMAT content, vBMD, BMRI-strength and BCT-strength between the two groups were examined by t-tests. Receiver operating characteristic (ROC) analysis was performed to assess the ability of each measured parameter to distinguish fracture from non-fracture subjects. Results showed that the fracture group had 23 % lower BMRI-strength (P < .001) and 19 % higher BMAT content (P < .001) than the non-fracture group, whereas no significant difference in vBMD was detected between the two groups. A poor correlation was found between vBMD and BMRI-strength (R2 = 0.33). Compared to vBMD and BMAT content, BMRI- and BCT-strength had the larger area under the curve (0.82 and 0.84, respectively) and provided better sensitivity and specificity in separating fracture from non-fracture subjects. In conclusion, BMRI is capable of detecting reduced bone strength in patients with vertebral fracture, and may serve as a new approach for risk assessment of vertebral fracture.
Collapse
Affiliation(s)
- Xing Gao
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Rahman Ud Din
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Xiaoguang Cheng
- Department of Radiology, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Haisheng Yang
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
19
|
Zhou Q, Deng W, Wang S, Cai J, Feng J, Chen Q, Yin Y. K-line tilt as a novel potential risk factor for cervical Modic change: a retrospective study. J Orthop Surg Res 2023; 18:293. [PMID: 37041547 PMCID: PMC10088110 DOI: 10.1186/s13018-023-03780-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/04/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND Cervical sagittal parameters are important parameters that reflect the mechanical stress in the sagittal plane of the cervical spine and are an important basis for predicting the clinical status and prognosis of patients. Although it has been confirmed that there is a significant correlation between cervical Modic changes and some sagittal parameters. However, as a newly discovered sagittal parameter, there is no report on the relationship between the K-line tilt and the Modic changes of cervical spine. METHODS A retrospective analysis was performed for 240 patients who underwent cervical magnetic resonance imaging scan for neck and shoulder pain. Among them, 120 patients with Modic changes, namely the MC(+) group, were evenly divided into three subgroups of 40 patients in each group according to different subtypes, namely MCI subgroup, MCII subgroup and MCIII subgroup. One hundred twenty patients without Modic changes were included in MC(-) group. We measured and compared the sagittal parameters of cervical spine among different groups, including K-line tilt, C2-C7 sagittal axial vertical distance (C2-C7 SVA), T1 slope and C2-7 lordosis. Logistic regression was used to analyse the risk factors of cervical Modic changes. RESULTS The K-line tilt and C2-7 lordosis were significantly different between MC(+) group and MC(-) group (P < 0.05). The K-line tilt greater than 6.72° is a risk factor for Modic changes in cervical spine (P < 0.05). At the same time, the receiver operating characteristic curve showed that this change had moderate diagnostic value when the area under the curve was 0.77. CONCLUSION This study shows that the K-line tilt greater than 6.72° is a potential risk factor for Modic changes in cervical spine. When the K-line tilt is greater than 6.72°, we should be alert to the occurrence of Modic changes. TRIAL REGISTRATION NUMBER 2022ER023-1.
Collapse
Affiliation(s)
- Qingsong Zhou
- Department of Orthopedics, Pidu District People's Hospital, The Third Affiliated Hospital of Chengdu Medical College, Chengdu, 611730, China
| | - Wei Deng
- Department of Orthopedics, Pidu District People's Hospital, The Third Affiliated Hospital of Chengdu Medical College, Chengdu, 611730, China
| | - Shengtao Wang
- Department of Orthopedics, Pidu District People's Hospital, The Third Affiliated Hospital of Chengdu Medical College, Chengdu, 611730, China
| | - Jieyong Cai
- Department of Orthopedics, Pidu District People's Hospital, The Third Affiliated Hospital of Chengdu Medical College, Chengdu, 611730, China
| | - Junfei Feng
- Department of Orthopedics and Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Qian Chen
- Department of Orthopedics and Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China.
| | - Yong Yin
- Department of Orthopedics, Pidu District People's Hospital, The Third Affiliated Hospital of Chengdu Medical College, Chengdu, 611730, China.
| |
Collapse
|
20
|
Issa TZ, Lambrechts MJ, Toci GR, Brush PL, Schilken MM, Torregrossa F, Grasso G, Vaccaro AR, Canseco JA. Evaluating Nonoperative Treatment for Low Back Pain in the Presence of Modic Changes: A Systematic Review. World Neurosurg 2023; 171:e108-e119. [PMID: 36442780 DOI: 10.1016/j.wneu.2022.11.096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The objective of this study was to summarize and assess the current literature evaluating nonoperative treatments for patients with Modic changes (MCs) and low back pain (LBP). METHODS A systematic review was conducted in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The PubMed database was searched from its inception until May 1, 2022 for studies evaluating MC and clinical outcomes. Key findings, treatment details, and patient information were extracted from included studies. Study quality was assessed using the Newcastle-Ottawa Scale. RESULTS Eighteen studies were included in this review, encompassing a total of 2452 patients, 1713 of whom displayed baseline MC. Seventy-eight percent of studies were high quality. Of included studies, 2 evaluated antibiotics, 5 evaluated steroid injections, 6 evaluated conservative therapies, and 5 evaluated other treatment modalities. Antibiotics and bisphosphonates improved treatment in patients with MC. Patients with MC without disc herniation benefited from conservative therapy, while those with Type I Modic changes and disc herniation experienced poorer improvement. Significant variability exists in reported outcomes following steroid injections. CONCLUSIONS Nonoperative therapy may provide patients with MC with significant benefits. Patients may benefit from therapies not traditionally utilized for LBP such as antibiotics or bisphosphonates, but conservative therapy is not recommended for patients with concomitant MC and disc herniation. The large variation in follow-up times and outcome measures contributes to significant heterogeneity in studies and inability to predict long-term patient outcomes. More long-term studies are needed to assess nonoperative treatments for LBP in patients with MC.
Collapse
Affiliation(s)
- Tariq Z Issa
- Rothman Orthopaedics at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Mark J Lambrechts
- Rothman Orthopaedics at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Gregory R Toci
- Rothman Orthopaedics at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Parker L Brush
- Rothman Orthopaedics at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Meghan M Schilken
- Rothman Orthopaedics at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Fabio Torregrossa
- Department of Biomedicine, Neurosurgical Unit, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| | - Giovanni Grasso
- Department of Biomedicine, Neurosurgical Unit, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy.
| | - Alexander R Vaccaro
- Rothman Orthopaedics at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jose A Canseco
- Rothman Orthopaedics at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
21
|
Velnar T, Gradisnik L. Endplate role in the degenerative disc disease: A brief review. World J Clin Cases 2023; 11:17-29. [PMID: 36687189 PMCID: PMC9846967 DOI: 10.12998/wjcc.v11.i1.17] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/19/2022] [Accepted: 12/16/2022] [Indexed: 01/04/2023] Open
Abstract
The degenerative disease of the intervertebral disc is nowadays an important health problem, which has still not been understood and solved adequately. The vertebral endplate is regarded as one of the vital elements in the structure of the intervertebral disc. Its constituent cells, the chondrocytes in the endplate, may also be involved in the process of the intervertebral disc degeneration and their role is central both under physiological and pathological conditions. They main functions include a role in homeostasis of the extracellular environment of the intervertebral disc, metabolic support and nutrition of the discal nucleus and annulus beneath and the preservation of the extracellular matrix. Therefore, it is understandable that the cells in the endplate have been in the centre of research from several viewpoints, such as development, degeneration and growth, reparation and remodelling, as well as treatment strategies. In this article, we briefly review the importance of vertebral endplate, which are often overlooked, in the intervertebral disc degeneration.
Collapse
Affiliation(s)
- Tomaz Velnar
- Department of Neurosurgery, University Medical Centre Ljubljana, Ljubljana 1000, Slovenia
- Alma Mater Europaea Maribor, Maribor 2000, Slovenia
| | - Lidija Gradisnik
- Alma Mater Europaea Maribor, Maribor 2000, Slovenia
- Institute of Biomedical Sciences, University of Maribor, University of Maribor, Maribor 2000, Slovenia
| |
Collapse
|
22
|
It Would be Unsound for Readers to Draw Any Clinically Significant Conclusions From This Study. Spine (Phila Pa 1976) 2022; 47:E606. [PMID: 35867622 DOI: 10.1097/brs.0000000000004425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
23
|
Gao KT, Tibrewala R, Hess M, Bharadwaj UU, Inamdar G, Link TM, Chin CT, Pedoia V, Majumdar S. Automatic detection and voxel-wise mapping of lumbar spine Modic changes with deep learning. JOR Spine 2022; 5:e1204. [PMID: 35783915 PMCID: PMC9238279 DOI: 10.1002/jsp2.1204] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/01/2022] [Accepted: 05/05/2022] [Indexed: 11/14/2022] Open
Abstract
Background Modic changes (MCs) are the most prevalent classification system for describing magnetic resonance imaging (MRI) signal intensity changes in the vertebrae. However, there is a growing need for novel quantitative and standardized methods of characterizing these anomalies, particularly for lesions of transitional or mixed nature, due to the lack of conclusive evidence of their associations with low back pain. This retrospective imaging study aims to develop an interpretable deep learning-based detection tool for voxel-wise mapping of MCs. Methods Seventy-five lumbar spine MRI exams that presented with acute-to-chronic low back pain, radiculopathy, and other symptoms of the lumbar spine were enrolled. The pipeline consists of two deep convolutional neural networks to generate an interpretable voxel-wise Modic map. First, an autoencoder was trained to segment vertebral bodies from T1-weighted sagittal lumbar spine images. Next, two radiologists segmented and labeled MCs from a combined T1- and T2-weighted assessment to serve as ground truth for training a second autoencoder that performs segmentation of MCs. The voxels in the detected regions were then categorized to the appropriate Modic type using a rule-based signal intensity algorithm. Post hoc, three radiologists independently graded a second dataset with the aid of the model predictions in an artificial (AI)-assisted experiment. Results The model successfully identified the presence of changes in 85.7% of samples in the unseen test set with a sensitivity of 0.71 (±0.072), specificity of 0.95 (±0.022), and Cohen's kappa score of 0.63. In the AI-assisted experiment, the agreement between the junior radiologist and the senior neuroradiologist significantly improved from Cohen's kappa score of 0.52 to 0.58 (p < 0.05). Conclusions This deep learning-based approach demonstrates substantial agreement with radiologists and may serve as a tool to improve inter-rater reliability in the assessment of MCs.
Collapse
Affiliation(s)
- Kenneth T. Gao
- Department of Radiology and Biomedical ImagingUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Department of BioengineeringUniversity of California Berkeley–University of California San Francisco Graduate Program in BioengineeringBerkeleyCaliforniaUSA
| | - Radhika Tibrewala
- Department of Radiology and Biomedical ImagingUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Madeline Hess
- Department of Radiology and Biomedical ImagingUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Upasana U. Bharadwaj
- Department of Radiology and Biomedical ImagingUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Gaurav Inamdar
- Department of Radiology and Biomedical ImagingUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Thomas M. Link
- Department of Radiology and Biomedical ImagingUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Cynthia T. Chin
- Department of Radiology and Biomedical ImagingUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Valentina Pedoia
- Department of Radiology and Biomedical ImagingUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Sharmila Majumdar
- Department of Radiology and Biomedical ImagingUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
24
|
Lorenc T, Gołębiowski M, Syganiec D, Glinkowski WM. Associations between Patient Report of Pain and Intervertebral Foramina Changes Visible on Axial-Loaded Lumbar Magnetic Resonance Imaging. Diagnostics (Basel) 2022; 12:diagnostics12030563. [PMID: 35328116 PMCID: PMC8947043 DOI: 10.3390/diagnostics12030563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 11/16/2022] Open
Abstract
The intervertebral foramen may influence spinal nerve roots and, therefore, be related to the corresponding dermatomal pain. In vivo evaluation of the intervertebral foramen–dermatome relationship is essential for understanding low back pain (LBP) pathophysiology. The study aimed to correlate the lumbar MRI unloaded-loaded foraminal area changes with dermatomal pain in the patient’s pain drawings. Dynamic changes of the dermatomal pain distribution related to the intervertebral foramen area changes between quantitative conventional supine MRI (unloaded MRI) and axial-loading MRI (alMRI) were analyzed. The MRI axial-loading intervertebral foramen area changes were observed, and the most significant effect of reducing the foraminal area (−6.9%) was reported at levels of L2–L3. The incidence of pain in the dermatomes increases linearly with the spine level, from 15.6% at L1 to 63.3% at L5 on the right and from 18.9% at L1 to 76.7% at L5 on the left. No statistically significant effect of changes in the intervertebral foramen area on the odds of pain along the respective dermatomes was confirmed. Changes in the foraminal area were observed between the unloaded and loaded phases, but differences in area changes between foramen assigned to painful dermatomes and foramen assigned to non-painful dermatomes were not significant.
Collapse
Affiliation(s)
- Tomasz Lorenc
- Ist Department of Clinical Radiology, Medical University of Warsaw, 02-091 Warsaw, Poland; (T.L.); (M.G.); (D.S.)
| | - Marek Gołębiowski
- Ist Department of Clinical Radiology, Medical University of Warsaw, 02-091 Warsaw, Poland; (T.L.); (M.G.); (D.S.)
| | - Dariusz Syganiec
- Ist Department of Clinical Radiology, Medical University of Warsaw, 02-091 Warsaw, Poland; (T.L.); (M.G.); (D.S.)
| | - Wojciech M. Glinkowski
- Department of Medical Informatics and Telemedicine, Center of Excellence “TeleOrto” for Telediagnostics and Treatment of Disorders and Injuries of the Locomotor System, Medical University of Warsaw, 00-581 Warsaw, Poland
- Correspondence:
| |
Collapse
|