1
|
Strnad Š, Vrkoslav V, Mengr A, Fabián O, Rybáček J, Kubánek M, Melenovský V, Maletínská L, Cvačka J. Thermal evaporation as sample preparation for silver-assisted laser desorption/ionization mass spectrometry imaging of cholesterol in amyloid tissues. Analyst 2024; 149:3152-3160. [PMID: 38630503 DOI: 10.1039/d4an00181h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Cholesterol plays an important biological role in the body, and its disruption in homeostasis and synthesis has been implicated in several diseases. Mapping the locations of cholesterol is crucial for gaining a better understanding of these conditions. Silver deposition has proven to be an effective method for analyzing cholesterol using mass spectrometry imaging (MSI). We optimized and evaluated thermal evaporation as an alternative deposition technique to sputtering for silver deposition in MSI of cholesterol. A silver layer with a thickness of 6 nm provided an optimal combination of cholesterol signal intensity and mass resolution. The deposition of an ultrathin nanofilm of silver enabled high-resolution MSI with a pixel size of 10 μm. We used this optimized method to visualize the distribution of cholesterol in the senile plaques in the brains of APP/PS1 mice, a model that resembles Alzheimer's disease pathology. We found that cholesterol was evenly distributed across the frontal cortex tissue, with no evidence of plaque-like accumulation. Additionally, we investigated the presence and distribution of cholesterol in myocardial sections of a human heart affected by wild-type ATTR amyloidosis. We identified the presence of cholesterol in areas with amyloid deposition, but complete colocalization was not observed.
Collapse
Affiliation(s)
- Štěpán Strnad
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10, Prague, Czech Republic.
| | - Vladimír Vrkoslav
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10, Prague, Czech Republic.
| | - Anna Mengr
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10, Prague, Czech Republic.
| | - Ondřej Fabián
- Institute for Clinical and Experimental Medicine, 140 21, Prague, Czech Republic
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University and Thomayer Hospital, 140 59, Prague, Czech Republic
| | - Jiří Rybáček
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10, Prague, Czech Republic.
| | - Miloš Kubánek
- Institute for Clinical and Experimental Medicine, 140 21, Prague, Czech Republic
| | - Vojtěch Melenovský
- Institute for Clinical and Experimental Medicine, 140 21, Prague, Czech Republic
| | - Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10, Prague, Czech Republic.
| | - Josef Cvačka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10, Prague, Czech Republic.
| |
Collapse
|
2
|
Xu Z, Munyaneza NE, Zhang Q, Sun M, Posada C, Venturo P, Rorrer NA, Miscall J, Sumpter BG, Liu G. Chemical upcycling of polyethylene, polypropylene, and mixtures to high-value surfactants. Science 2023; 381:666-671. [PMID: 37561876 DOI: 10.1126/science.adh0993] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/16/2023] [Indexed: 08/12/2023]
Abstract
Conversion of plastic wastes to fatty acids is an attractive means to supplement the sourcing of these high-value, high-volume chemicals. We report a method for transforming polyethylene (PE) and polypropylene (PP) at ~80% conversion to fatty acids with number-average molar masses of up to ~700 and 670 daltons, respectively. The process is applicable to municipal PE and PP wastes and their mixtures. Temperature-gradient thermolysis is the key to controllably degrading PE and PP into waxes and inhibiting the production of small molecules. The waxes are upcycled to fatty acids by oxidation over manganese stearate and subsequent processing. PP ꞵ-scission produces more olefin wax and yields higher acid-number fatty acids than does PE ꞵ-scission. We further convert the fatty acids to high-value, large-market-volume surfactants. Industrial-scale technoeconomic analysis suggests economic viability without the need for subsidies.
Collapse
Affiliation(s)
- Zhen Xu
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | | | - Qikun Zhang
- Department of Chemistry, Chemical Engineering and Materials Science, Ministry of Education Key Laboratory of Molecular and Nano Probes, Shandong Normal University, Shandong 250014, PR China
| | - Mengqi Sun
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Carlos Posada
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Paul Venturo
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Nicholas A Rorrer
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- BOTTLE Consortium, Golden, CO 80401, USA
| | - Joel Miscall
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- BOTTLE Consortium, Golden, CO 80401, USA
| | - Bobby G Sumpter
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Guoliang Liu
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Chemical Engineering, Department of Materials Science and Engineering, Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
3
|
Ji D, Liu W, Jiang L, Chen T. Cuticles and postharvest life of tomato fruit: A rigid cover for aerial epidermis or a multifaceted guard of freshness? Food Chem 2023; 411:135484. [PMID: 36682164 DOI: 10.1016/j.foodchem.2023.135484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 01/20/2023]
Abstract
Fruit cuticle is a specialized cell wall hydrophobic architecture covering the aerial surfaces of fruit, which forms the interface between the fruit and its environment. As a specialized seed-bearing organ, fruit utilize cuticles as physical barriers, water permeation regulator and resistance to pathogens, thus appealing extensive research interests for its potential values in developing postharvest freshness-keeping strategies. Here, we provide an overview for the composition and functions of fruit cuticles, mainly focusing on its functions in mechanical support, water permeability barrier and protection over pathogens, further introduce key mechanisms implicated in fruit cuticle biosynthesis. Moreover, currently available state-of-art techniques for examining compositional diversity and architecture of fruit are also compared.
Collapse
Affiliation(s)
- Dongchao Ji
- School of Life Sciences and Medicine, Shandong University of Technology, Xincun West Road 266, Zhangdian District, Zibo, Shandong 255049, China; Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing 100093, China; University of Chinese Academy of Sciences, Yuquan Road 19(A), Shijingshan District, Beijing 100049, China
| | - Wei Liu
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing 100093, China; University of Chinese Academy of Sciences, Yuquan Road 19(A), Shijingshan District, Beijing 100049, China
| | - Libo Jiang
- School of Life Sciences and Medicine, Shandong University of Technology, Xincun West Road 266, Zhangdian District, Zibo, Shandong 255049, China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing 100093, China; University of Chinese Academy of Sciences, Yuquan Road 19(A), Shijingshan District, Beijing 100049, China; Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, Nanxincun 20, Xiangshan, Haidian District, Beijing 100093, China.
| |
Collapse
|
4
|
Gao F, Tom E, Skowronska-Krawczyk D. Dynamic Progress in Technological Advances to Study Lipids in Aging: Challenges and Future Directions. FRONTIERS IN AGING 2022; 3:851073. [PMID: 35821837 PMCID: PMC9261449 DOI: 10.3389/fragi.2022.851073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/23/2022] [Indexed: 11/29/2022]
Abstract
Lipids participate in all cellular processes. Diverse methods have been developed to investigate lipid composition and distribution in biological samples to understand the effect of lipids across an organism’s lifespan. Here, we summarize the advanced techniques for studying lipids, including mass spectrometry-based lipidomics, lipid imaging, chemical-based lipid analysis and lipid engineering and their advantages. We further discuss the limitation of the current methods to gain an in-depth knowledge of the role of lipids in aging, and the possibility of lipid-based therapy in aging-related diseases.
Collapse
Affiliation(s)
- Fangyuan Gao
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, United States
| | - Emily Tom
- Department of Physiology and Biophysics, Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, United States
| | - Dorota Skowronska-Krawczyk
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, United States
- Department of Physiology and Biophysics, Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, United States
- *Correspondence: Dorota Skowronska-Krawczyk,
| |
Collapse
|
5
|
Engel KM, Prabutzki P, Leopold J, Nimptsch A, Lemmnitzer K, Vos DRN, Hopf C, Schiller J. A new update of MALDI-TOF mass spectrometry in lipid research. Prog Lipid Res 2022; 86:101145. [PMID: 34995672 DOI: 10.1016/j.plipres.2021.101145] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/06/2021] [Accepted: 12/29/2021] [Indexed: 01/06/2023]
Abstract
Matrix-assisted laser desorption and ionization (MALDI) mass spectrometry (MS) is an indispensable tool in modern lipid research since it is fast, sensitive, tolerates sample impurities and provides spectra without major analyte fragmentation. We will discuss some methodological aspects, the related ion-forming processes and the MALDI MS characteristics of the different lipid classes (with the focus on glycerophospholipids) and the progress, which was achieved during the last ten years. Particular attention will be given to quantitative aspects of MALDI MS since this is widely considered as the most serious drawback of the method. Although the detailed role of the matrix is not yet completely understood, it will be explicitly shown that the careful choice of the matrix is crucial (besides the careful evaluation of the positive and negative ion mass spectra) in order to be able to detect all lipid classes of interest. Two developments will be highlighted: spatially resolved Imaging MS is nowadays well established and the distribution of lipids in tissues merits increasing interest because lipids are readily detectable and represent ubiquitous compounds. It will also be shown that a combination of MALDI MS with thin-layer chromatography (TLC) enables a fast spatially resolved screening of an entire TLC plate which makes the method competitive with LC/MS.
Collapse
Affiliation(s)
- Kathrin M Engel
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany
| | - Patricia Prabutzki
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany
| | - Jenny Leopold
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany
| | - Ariane Nimptsch
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany
| | - Katharina Lemmnitzer
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany
| | - D R Naomi Vos
- Center for Biomedical Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack-Strasse 10, D-68163 Mannheim, Germany
| | - Carsten Hopf
- Center for Biomedical Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack-Strasse 10, D-68163 Mannheim, Germany
| | - Jürgen Schiller
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstraße 16-18, D-04107, Germany.
| |
Collapse
|
6
|
Expression of Acyl-CoA wax-alcohol acyltransferase 2 (AWAT2) by human and rabbit meibomian glands and meibocytes. Ocul Surf 2021; 23:60-70. [PMID: 34838721 PMCID: PMC10393063 DOI: 10.1016/j.jtos.2021.11.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 11/22/2022]
Abstract
PURPOSE Previously, we showed that Acyl-CoA wax-alcohol acyltransferase 2 (AWAT2), an essential enzyme required for meibum wax ester synthesis, was not expressed by immortalized human meibomian gland epithelial cells (hMGEC) in culture. To begin to understand the mechanisms controlling AWAT2 expression, we have analyzed its expression in human and rabbit meibomian glands and cultured meibocytes. METHODS Rabbit meibocyte progenitor cells (rMPC) were first grown in Cnt-BM.1 basal medium (Cellntec) supplemented with rhEGF, FGF10, and ROCK inhibitor (Y-27632 dihydrochloride), and then passed at 70-80% confluency with Accutase. Differentiation of rMPC to meibocytes (rMC) was induced by removal of Y-27632 and addition of 1 mM calcium with and without PPARγ agonists. RNA from the tissue, primary, passaged rMPC and differentiated rMC were obtained for AWAT2 qPCR analysis. Proteins and cells were evaluated for western blotting and neutral lipid synthesis, respectively. For comparison, human meibomian glands were separated for RNA and protein analysis. hMGEC was cultured to collect RNA and protein. RESULTS Rabbit rMPCs were successfully grown, passaged, and differentiated, showing a significant increase in lipid droplet accumulation. AWAT2 RNA was highly expressed in tissue but showed a -16.9 log2 fold decrease in primary and passaged rMPCs and was not induced by differentiation to rMC. By comparison, human meibomian glands showed high expression of AWAT2, and hMGEC expressed non-detectable levels of AWAT2 transcripts or protein. CONCLUSIONS AWAT2 expression is lost in cultured rMPC and rMC suggesting that cells in culture do not undergo complete meibocyte differentiation and require yet to be identified culture conditions.
Collapse
|
7
|
Xie XT, Cheong KL. Recent advances in marine algae oligosaccharides: structure, analysis, and potential prebiotic activities. Crit Rev Food Sci Nutr 2021; 62:7703-7717. [PMID: 33939558 DOI: 10.1080/10408398.2021.1916736] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Marine algae contain abundant polysaccharides that support a range of health-promoting activities; however, the high molecular weight, high viscosity, and low solubility of marine algae polysaccharides (MAPs) limit their application in food, agriculture and medicine. Thus, as the degradation products of MAPs, marine algae oligosaccharides (MAOs) have drawn increasing attention. Most MAOs are non-digestible by digestive enzyme in the human gastrointestinal tract, but are fermented by bacteria in the gut and converted into short-chain fatty acids (SCFAs). MAOs can selectively enhance the activities of some populations of beneficial bacteria and stimulate a series of prebiotic effects, such as anti-oxidant, anti-diabetic, anti-tumour. However, the exact structures of MAOs and their prebiotic activities are, to a large extent, unexplored. This review summarizes recent advances in the sources, categories, and structure analysis methods of MAOs, emphasizing their effects on gut microbiota and its metabolite SCFAs as well as the resulting range of probiotic activities.
Collapse
Affiliation(s)
- Xu-Ting Xie
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Institute of Marine Sciences, Shantou University, Shantou, Guangdong, PR China
| | - Kit-Leong Cheong
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Institute of Marine Sciences, Shantou University, Shantou, Guangdong, PR China
| |
Collapse
|
8
|
Yannick Stephane FF, Dawe A, Angelbert Fusi A, Jean Jules BK, Ulrich KKD, Lateef M, Bruno LN, Ali MS, Ngouela SA. Crotoliganfuran, a new clerodane-type furano-diterpenoid from Croton oligandrus Pierre ex Hutch. Nat Prod Res 2019; 35:63-71. [PMID: 31148485 DOI: 10.1080/14786419.2019.1613399] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The phytochemical investigation of the methanol extract of the bark of Croton oligandrus Pierre ex Hutch yielded a new clerodane-type diterpenoid crotoliganfuran (1) along with ten other compounds including 12-epicrotocorylifuran (2), lupeol (3), syringic acid (4), aleuritolic acid acetate (5), aleuritolic acid (6), scopoletin (7), geddic acid (8), β-sitosterol (9), vanilic acid (10) and stigmastane-3,6-dione (11). Their structures were established by spectroscopic means. The extract and all the isolates were screened for their inhibitory properties against butyrylcholinesterase and urease enzymes, respectively. The extract and compounds 1, 4 and 7 displayed the most potent urease inhibitory properties with IC50 values, 22.2, 26.7 and 28.5 µM, respectively. Compound 9 was the most active of all the tested compounds against butyrylcholinesterase enzyme with an IC50 value of 36.3 µM.[Formula: see text].
Collapse
Affiliation(s)
- Fongang Fotsing Yannick Stephane
- Department of Chemistry, Higher Teachers Training College, University of Maroua, Maroua, Cameroon.,H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan.,Department of Organic Chemistry, Faculty of Science, TWAS Research Unit (TRU) of the University of Yaoundé I, Yaoundé, Cameroon
| | - Amadou Dawe
- Department of Chemistry, Higher Teachers Training College, University of Maroua, Maroua, Cameroon
| | - Awantu Angelbert Fusi
- Department of Organic Chemistry, Faculty of Science, TWAS Research Unit (TRU) of the University of Yaoundé I, Yaoundé, Cameroon.,Department of Chemistry, Faculty of Science, University of Bamenda, Bambili, Cameroon
| | | | - Kagho Kenou Donald Ulrich
- Department of Organic Chemistry, Faculty of Science, TWAS Research Unit (TRU) of the University of Yaoundé I, Yaoundé, Cameroon
| | - Mehreen Lateef
- Multi-Disciplinary Research Lab, Bahria University, Medical & Dental College, Karachi, Karachi, Pakistan
| | - Lenta Ndjakou Bruno
- Department of Chemistry, Higher Teachers Training College, University of Yaoundé 1, Yaoundé, Cameroon
| | - Muhammad Shaiq Ali
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Silvère Augustin Ngouela
- Department of Organic Chemistry, Faculty of Science, TWAS Research Unit (TRU) of the University of Yaoundé I, Yaoundé, Cameroon
| |
Collapse
|
9
|
Barbosa EA, Bonfim MF, Bloch C, Engler G, Rocha T, de Almeida Engler J. Imaging Mass Spectrometry of Endogenous Polypeptides and Secondary Metabolites from Galls Induced by Root-Knot Nematodes in Tomato Roots. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:1048-1059. [PMID: 29663868 DOI: 10.1094/mpmi-02-18-0049-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nematodes are devastating pests that infect most cultivated plant species and cause considerable agricultural losses worldwide. The understanding of metabolic adjustments induced during plant-nematode interaction is crucial to generate resistant plants or to select more efficient molecules to fight against this pest. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) has been used herein for in situ detection and mapping endogenous polypeptides and secondary metabolites from nematode-induced gall tissue. One of the major critical features of this technique is sample preparation; mainly, the generation of intact sections of plant cells with their rigid cell walls and vacuolated cytoplasm. Our experimental settings allowed us to obtain sections without contamination of exogenous ions or diffusion of molecules and to map the differential presence of low and high molecular weight ions in uninfected roots compared with nematode-induced galls. We predict the presence of lipids in both uninfected roots and galls, which was validated by MALDI time-of-flight tandem mass spectrometry and high-resolution mass spectrometry analysis of lipid extracts. Based on the isotopic ion distribution profile, both esters and glycerophospholipids were predicted compounds and may be playing an important role in gall development. Our results indicate that the MALDI-MSI technology is a promising tool to identify secondary metabolites as well as peptides and proteins in complex plant tissues like galls to decipher molecular processes responsible for infection and maintenance of these feeding sites during nematode parasitism.
Collapse
Affiliation(s)
- Eder Alves Barbosa
- 1 Laboratório de espectrometria de massa, Embrapa Recursos Genéticos e Biotecnologia, PqEB, 70770-900, Brasília-DF, Brazil
- 2 Laboratório de Síntese e Análise de Biomoléculas, Instituto de Química, Universidade de Brasília, 70910-900, Brasília-DF, Brazil
| | - Mauro Ferreira Bonfim
- 2 Laboratório de Síntese e Análise de Biomoléculas, Instituto de Química, Universidade de Brasília, 70910-900, Brasília-DF, Brazil
- 3 Laboratório de Interação Molecular Planta-Praga, Embrapa Recursos Genéticos e Biotecnologia, PqEB; and
| | - Carlos Bloch
- 1 Laboratório de espectrometria de massa, Embrapa Recursos Genéticos e Biotecnologia, PqEB, 70770-900, Brasília-DF, Brazil
| | - Gilbert Engler
- 4 INRA, Université Côte d'Azur, CNRS, ISA, 06903, Sophia Antipolis, France
| | - Thales Rocha
- 3 Laboratório de Interação Molecular Planta-Praga, Embrapa Recursos Genéticos e Biotecnologia, PqEB; and
| | | |
Collapse
|
10
|
Rossiter H, Stübiger G, Gröger M, König U, Gruber F, Sukseree S, Mlitz V, Buchberger M, Oskolkova O, Bochkov V, Eckhart L, Tschachler E. Inactivation of autophagy leads to changes in sebaceous gland morphology and function. Exp Dermatol 2018; 27:1142-1151. [PMID: 30033522 DOI: 10.1111/exd.13752] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/18/2018] [Indexed: 12/12/2022]
Abstract
We have reported recently that inactivation of the essential autophagy-related gene 7 (Atg7) in keratinocytes has little or no impact on morphology and function of the epidermal barrier in experimental animals. When these mice aged, mutant males, (Atg7 ΔKC), developed an oily coat. As the keratin 14 promoter driven cre/LoxP system inactivates floxed Atg7 in all keratin 14 (K14) expressing cells, including sebocytes, we investigated whether the oily hair phenotype was the consequence of changes in function of the skin sebaceous glands. Using an antibody to the GFP-LC3 fusion protein, autophagosomes were detected at the border of sebocyte disintegration in control but not in mutant animals, suggesting that autophagy was (a) active in normal sebaceous glands and (b) was inactivated in the mutant mice. Detailed analysis established that dorsal sebaceous glands were about twice as large in all Atg7 ΔKC mice compared to those of controls (Atg7 F/F), and their rate of sebocyte proliferation was increased. In addition, male mutant mice yielded twice as much lipid per unit hair as age-matched controls. Analysis of sebum lipids by thin layer chromatography revealed a 40% reduction in the proportion of free fatty acids (FFA) and cholesterol, and a 5-fold increase in the proportion of fatty acid methyl esters (FAME). In addition, the most common diester wax species (58-60 carbon atoms) were increased, while shorter species (54-55 carbon atoms) were under-represented in mutant sebum. Our data show that autophagy contributes to sebaceous gland function and to the control of sebum composition.
Collapse
Affiliation(s)
- Heidemarie Rossiter
- Research Division of Biology and Pathobiolgy of the Skin, Medical University of Vienna, Vienna, Austria
| | - Gerald Stübiger
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Marion Gröger
- Core Facility Imaging, Medical University of Vienna, Vienna, Austria
| | - Ulrich König
- Research Division of Biology and Pathobiolgy of the Skin, Medical University of Vienna, Vienna, Austria
| | - Florian Gruber
- Research Division of Biology and Pathobiolgy of the Skin, Medical University of Vienna, Vienna, Austria
| | - Supawadee Sukseree
- Research Division of Biology and Pathobiolgy of the Skin, Medical University of Vienna, Vienna, Austria
| | - Veronika Mlitz
- Research Division of Biology and Pathobiolgy of the Skin, Medical University of Vienna, Vienna, Austria
| | - Maria Buchberger
- Research Division of Biology and Pathobiolgy of the Skin, Medical University of Vienna, Vienna, Austria
| | - Olga Oskolkova
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Valery Bochkov
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Leopold Eckhart
- Research Division of Biology and Pathobiolgy of the Skin, Medical University of Vienna, Vienna, Austria
| | - Erwin Tschachler
- Research Division of Biology and Pathobiolgy of the Skin, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
11
|
Popkova Y, Schiller J. Addition of CsCl reduces ion suppression effects in the matrix-assisted laser desorption/ionization mass spectra of triacylglycerol/phosphatidylcholine mixtures and adipose tissue extracts. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2017; 31:411-418. [PMID: 27958640 DOI: 10.1002/rcm.7806] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 11/27/2016] [Accepted: 12/08/2016] [Indexed: 06/06/2023]
Abstract
RATIONALE Ion suppression is a known disadvantage in mixture analysis. Matrix-assisted laser desorption/ionization (MALDI) mass spectra of crude adipose tissue extracts are dominated by triacylglycerol (TAG) signals while less abundant phospholipids such as phosphatidylcholines (PC) and particularly phosphatidylethanolamines (PE) are suppressed. It is suggested that addition of an excess of cesium (Cs) ions helps to overcome this problem. METHODS Selected lipid mixtures of known compositions and organic adipose tissue extracts were investigated by positive ion MALDI-time-of-flight mass spectrometry (TOF MS). 2,5-Dihydroxybenzoic acid (DHB) in methanol was used as the matrix. In selected cases the methanolic DHB solution was saturated by the addition of different solid alkali chlorides (such as NaCl, KCl, RbCl and CsCl). Studies on the solubilities of these salts in methanol and the interaction with DHB (by 13 C NMR) were also performed. RESULTS Saturation of the DHB matrix with solid CsCl leads to tremendous intensity differences, i.e. the intensities of the TAG signals (which otherwise dominate the mass spectra) are significantly reduced. In contrast, the intensity of small signals of phospholipids increases considerably. Decrease in the TAG signal intensity is particularly caused by the considerable size of the Cs+ ion which prevents successful analyte ionization. CONCLUSIONS The addition of CsCl improves the detectability of otherwise invisible or weak phospholipid ions. This is a simple approach to detect small amounts of phospholipids in the presence of an excess of TAG. No laborious and time-consuming separation of the total lipid extract into the individual lipid classes is required. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yulia Popkova
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstr. 16-18, D-04107, Leipzig, Germany
| | - Jürgen Schiller
- Leipzig University, Faculty of Medicine, Institute for Medical Physics and Biophysics, Härtelstr. 16-18, D-04107, Leipzig, Germany
| |
Collapse
|
12
|
Liang M, Shu J, Zhang P, Li Y, Sun W. Online Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry with In situMixing. ANAL LETT 2015. [DOI: 10.1080/00032719.2015.1043666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Mono-Estolide Synthesis from trans-8-Hydroxy-Fatty Acids by Lipases in Solvent-Free Media and Their Physical Properties. J AM OIL CHEM SOC 2015. [DOI: 10.1007/s11746-015-2687-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Veličković D, Herdier H, Philippe G, Marion D, Rogniaux H, Bakan B. Matrix-assisted laser desorption/ionization mass spectrometry imaging: a powerful tool for probing the molecular topology of plant cutin polymer. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:926-35. [PMID: 25280021 DOI: 10.1111/tpj.12689] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/19/2014] [Accepted: 09/25/2014] [Indexed: 05/19/2023]
Abstract
The cutin polymers of different fruit cuticles (tomato, apple, nectarine) were examined using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) after in situ release of the lipid monomers by alkaline hydrolysis. The mass spectra were acquired from each coordinate with a lateral spatial resolution of approximately 100 μm. Specific monomers were released at their original location in the tissue, suggesting that post-hydrolysis diffusion can be neglected. Relative quantification of the species was achieved by introducing an internal standard, and the collection of data was subjected to non-supervised and supervised statistical treatments. The molecular images obtained showed a specific distribution of ions that could unambiguously be ascribed to cutinized and suberized regions observed at the surface of fruit cuticles, thus demonstrating that the method is able to probe some structural changes that affect hydrophobic cuticle polymers. Subsequent chemical assignment of the differentiating ions was performed, and all of these ions could be matched to cutin and suberin molecular markers. Therefore, this MALDI-MSI procedure provides a powerful tool for probing the surface heterogeneity of plant lipid polymers. This method should facilitate rapid investigation of the relationships between cuticle phenotypes and the structure of cutin within a large population of mutants.
Collapse
Affiliation(s)
- Dušan Veličković
- INRA, UR1268 Biopolymers Interactions Assemblies, F-44316, Nantes, France
| | | | | | | | | | | |
Collapse
|
15
|
Horká P, Vrkoslav V, Hanus R, Pecková K, Cvačka J. New MALDI matrices based on lithium salts for the analysis of hydrocarbons and wax esters. JOURNAL OF MASS SPECTROMETRY : JMS 2014; 49:628-638. [PMID: 25044848 DOI: 10.1002/jms.3384] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 04/18/2014] [Accepted: 04/24/2014] [Indexed: 06/03/2023]
Abstract
Lithium salts of organic aromatic acids (lithium benzoate, lithium salicylate, lithium vanillate, lithium 2,5-dimethoxybenzoate, lithium 2,5-dihydroxyterephthalate, lithium α-cyano-4-hydroxycinnamate and lithium sinapate) were synthesized and tested as potential matrices for the matrix-assisted laser desorption/ionization (MALDI)-mass spectrometry analysis of hydrocarbons and wax esters. The analytes were desorbed using nitrogen laser (337.1 nm) and ionized via the attachment of a lithium cation, yielding [M + Li](+) adducts. The sample preparation and the experimental conditions were optimized for each matrix using stearyl behenate and n-triacontane standards. The performance of the new matrices in terms of signal intensity and reproducibility, the mass range occupied by matrix ions and the laser power threshold were studied and compared with a previously recommended lithium 2,5-dihydroxybenzoate matrix (LiDHB) (Cvačka and Svatoš, Rapid Commun. Mass Spectrom. 2003, 17, 2203). Several of the new matrices performed better than LiDHB. Lithium vanillate offered a 2-3 times and 7-9 times higher signal for wax esters and hydrocarbons, respectively. Also, the signal reproducibility improved substantially, making this matrix a suitable candidate for imaging applications. In addition, the diffuse reflectance spectra and solubility of the synthesized compounds were investigated and discussed with respect to the compound's ability to serve as MALDI matrices. The applicability of selected matrices was tested on natural samples of wax esters and hydrocarbons.
Collapse
Affiliation(s)
- Petra Horká
- Department of Analytical Chemistry, University Centre of Excellence 'Supramolecular Chemistry', Faculty of Science, Charles University in Prague, Hlavova 2030/8, CZ-128 43, Prague 2, Czech Republic; Institute of Organic Chemistry and Biochemistry, v.v.i., Academy of Sciences of the Czech Republic, Flemingovo nám. 2, CZ-166 10, Prague 6, Czech Republic
| | | | | | | | | |
Collapse
|
16
|
Newborn boys and girls differ in the lipid composition of vernix caseosa. PLoS One 2014; 9:e99173. [PMID: 24911066 PMCID: PMC4049714 DOI: 10.1371/journal.pone.0099173] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 05/12/2014] [Indexed: 11/24/2022] Open
Abstract
Vernix caseosa protects the skin of a human fetus during the last trimester of pregnancy and of a newborn after the delivery. Besides its cellular and proteinaceous components, an important constituent and functional agent is a complex lipid fraction, implicated in a multitude of salubrious effects of vernix caseosa. Little is known about how the chemical composition of vernix caseosa lipids is affected by various biological characteristics of the baby, such as the gestational age, birth weight, and, last but not least, the gender of the newborn. This study reports on the chemical variability of lipids contained in the vernix caseosa of twenty newborn girls and boys and shows that the quantitative patterns of the lipids are sex-specific. The specificity of lipids was investigated at the level of fatty acids in the total lipid extracts and intact lipids of several neutral lipid classes. Hydrocarbons, wax esters, cholesteryl esters, diol diesters and triacylglycerols were isolated using optimized semipreparative thin-layer chromatography, and the molecular species within each class were characterized using matrix-assisted laser desorption/ionization mass spectrometry. Statistical evaluation revealed significant quantitative sex-related differences in the lipid composition of vernix caseosa among the newborns, pronounced in the two lipid classes associated with the activity of sebaceous glands. Higher proportions of wax esters and triacylglycerols with longer hydrocarbon chains were observed in newborn girls.
Collapse
|
17
|
Babaev VM, Musin RZ, Korochkina MG. Investigation of diterpenoid isosteviol ammonium derivatives by matrix-assisted laser desorption/ionization mass spectrometry. JOURNAL OF ANALYTICAL CHEMISTRY 2013. [DOI: 10.1134/s1061934813130029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Analysis of wax esters by silver-ion high-performance liquid chromatography–tandem mass spectrometry. J Chromatogr A 2013; 1302:105-10. [DOI: 10.1016/j.chroma.2013.06.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 04/17/2013] [Accepted: 06/12/2013] [Indexed: 01/19/2023]
|
19
|
Bourguignon T, Šobotník J, Hanus R, Krasulová J, Vrkoslav V, Cvačka J, Roisin Y. Delineating species boundaries using an iterative taxonomic approach: the case of soldierless termites (Isoptera, Termitidae, Apicotermitinae). Mol Phylogenet Evol 2013; 69:694-703. [PMID: 23891950 DOI: 10.1016/j.ympev.2013.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 07/01/2013] [Accepted: 07/09/2013] [Indexed: 10/26/2022]
Abstract
Species boundaries are traditionally inferred using morphological characters, although morphology sometimes fails to correctly delineate species. To overcome this limitation, researchers have widely taken advantage of alternative methods such as DNA barcoding or analysis of cuticular hydrocarbons (CHs) profiles, but rarely use them simultaneously in an iterative taxonomic approach. Here, we follow such an approach using morphology, DNA barcoding and CHs profiles to precisely discriminate species of soldierless termites, a diversified clade constituting about one-third of the Neotropical termite species richness, but poorly resolved taxonomically due to the paucity of useful characters. We sampled soldierless termites in various forest types of the Nouragues Nature Reserve, French Guiana. Our results show that morphological species determination generally matches DNA barcoding, which only suggests the existence of three cryptic species in the 31 morphological species. Among them, Longustitermes manni is the only species whose splitting is corroborated by ecological data, other widely distributed species being supported by DNA barcoding. On the contrary, although CHs profiles provide a certain taxonomic signal, they often suggest inconsistent groupings which are not supported by other methods. Overall, our data support DNA barcoding and morphology as two efficient methods to distinguish soldierless termite species.
Collapse
Affiliation(s)
- Thomas Bourguignon
- Evolutionary Biology and Ecology, CP 160/12, Université Libre de Bruxelles, Avenue F.D. Roosevelt 50, 1050 Brussels, Belgium; Department of Biological Sciences, National University of Singapore, 117543 Singapore, Singapore
| | | | | | | | | | | | | |
Collapse
|
20
|
Martin-Arjol I, Busquets M, Isbell TA, Manresa A. Production of 10(S)-hydroxy-8(E)-octadecenoic and 7,10(S,S)-hydroxy-8(E)-octadecenoic ethyl esters by Novozym 435 in solvent-free media. Appl Microbiol Biotechnol 2013; 97:8041-8. [PMID: 23812280 DOI: 10.1007/s00253-013-5059-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 06/12/2013] [Accepted: 06/13/2013] [Indexed: 11/28/2022]
Abstract
Novozym 435, lipase B from Candida antarctica, was used in this study for the production of ethyl esters. For the first time, trans-hydroxy-fatty acid ethyl esters were synthesized in vitro in solvent-free media. We studied the effects of the substrate-ethanol molar ratio and enzyme synthetic stability of the biocatalyst. To determine the structure of the formed compounds, Fourier transformed infrared spectroscopy, nuclear magnetic resonance, and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry were used, three less time-consuming structural techniques. trans-Hydroxy-fatty acid ethyl esters were synthesized with a reaction yield of 90 % or higher with optimal reaction conditions.
Collapse
Affiliation(s)
- Ignacio Martin-Arjol
- Departament de Microbiologia i Parasitologia Sanitàries, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII s/n, 08028, Barcelona, Spain
| | | | | | | |
Collapse
|
21
|
Sutton PA, Wilde MJ, Martin SJ, Cvačka J, Vrkoslav V, Rowland SJ. Studies of long chain lipids in insects by high temperature gas chromatography and high temperature gas chromatography–mass spectrometry. J Chromatogr A 2013; 1297:236-40. [DOI: 10.1016/j.chroma.2013.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 04/29/2013] [Accepted: 05/01/2013] [Indexed: 11/25/2022]
|
22
|
Abstract
Human meibomian gland secretions (MGS, or meibum) are formed from a complex mixture of lipids of different classes such as wax esters, cholesteryl esters, (O-acyl)-ω-hydroxy fatty acids (OAHFA) and their esters, acylglycerols, diacylated diols, free fatty acids, cholesterol, and a smaller amount of other polar and nonpolar lipids, whose chemical nature and the very presence in MGS have been a matter of intense debates. The purpose of this review is to discuss recent results that were obtained using different experimental techniques, estimate limitations of their usability, and discuss their biochemical, biophysical, and physiological implications. To create a lipid map of MGS and tears, the results obtained in the author's laboratory were integrated with available information on chemical composition of MGS and tears. The most informative approaches that are available today to researchers, such as HPLC-MS, GC-MS, and proton NMR, are discussed in details. A map of the meibomian lipidome (as it is seen in reverse phase liquid chromatography/mass spectrometry experiments) is presented. Directions of future efforts in the area are outlined.
Collapse
Affiliation(s)
- Igor A Butovich
- Department of Ophthalmology and the Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390-9057, USA.
| |
Collapse
|
23
|
Martin-Arjol I, Busquets M, Manresa A. Production of 10(S)-hydroxy-8(E)-octadecenoic acid mono-estolides by lipases in non-aqueous media. Process Biochem 2013. [DOI: 10.1016/j.procbio.2012.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Park E, Yang H, Kim Y, Kim J. Analysis of oligosaccharides in beer using MALDI-TOF-MS. Food Chem 2012; 134:1658-64. [DOI: 10.1016/j.foodchem.2012.03.069] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2010] [Revised: 11/16/2011] [Accepted: 03/19/2012] [Indexed: 11/29/2022]
|
25
|
Sutton P, Rowland S. High temperature gas chromatography–time-of-flight-mass spectrometry (HTGC–ToF-MS) for high-boiling compounds. J Chromatogr A 2012; 1243:69-80. [DOI: 10.1016/j.chroma.2012.04.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 04/10/2012] [Accepted: 04/15/2012] [Indexed: 10/28/2022]
|
26
|
Urbanová K, Vrkoslav V, Valterová I, Háková M, Cvacka J. Structural characterization of wax esters by electron ionization mass spectrometry. J Lipid Res 2011; 53:204-13. [PMID: 22058425 DOI: 10.1194/jlr.d020834] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The interpretation of the electron ionization mass spectra of straight-chain and methyl-branched saturated and unsaturated wax esters (WEs) is discussed in this study based on the spectra of 154 standards. The most important fragments indicative of the structure of the acid and alcohol chains are identified and summarized for WEs with various number of double bonds in the chains. Briefly, most WEs provide acylium ions allowing structural characterization of the acid part, whereas the alcohol part gives corresponding alkyl radical cations. The elemental composition of selected important fragments is established from a high-resolution accurate mass analysis. The ion abundances are discussed with respect to the length and unsaturation of the aliphatic chains. The interpretation of the spectra of branched or unsaturated WEs requires the recognition of small but important peaks that are difficult to discern among the other fragments. We demonstrate that such fragments are easily detected in differential mass spectra. This approach requires spectra of WE standards (e.g., straight-chain analogs in the case of branched WEs) recorded under the same experimental conditions. The WEs mass spectral database provided in the supplemental data can be used as a reference for the analysis of the GC/EI-MS data.
Collapse
Affiliation(s)
- Klára Urbanová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , CZ-166 10 Prague 6, Czech Republic
| | | | | | | | | |
Collapse
|
27
|
Fuchs B, Süss R, Schiller J. An update of MALDI-TOF mass spectrometry in lipid research. Prog Lipid Res 2010; 49:450-75. [PMID: 20643161 DOI: 10.1016/j.plipres.2010.07.001] [Citation(s) in RCA: 212] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2010] [Revised: 06/29/2010] [Accepted: 07/01/2010] [Indexed: 10/19/2022]
Abstract
Although matrix-assisted laser desorption and ionization (MALDI) mass spectrometry (MS)--often but not exclusively coupled with a time-of-flight (TOF) mass analyzer--is primarily established in the protein field, there is increasing evidence that MALDI MS is also very useful in lipid research: MALDI MS is fast, sensitive, tolerates sample impurities to a relatively high extent and provides very simple mass spectra without major fragmentation of the analyte. Additionally, MALDI MS devices originally purchased for "proteomics" can be used also for lipids without the need of major system alterations. After a short introduction into the method and the related ion-forming process, the MALDI mass spectrometric characteristics of the individual lipid (ranging from completely apolar hydrocarbons to complex glycolipids with the focus on glycerophospholipids) classes will be discussed and the progress achieved in the last years emphasized. Special attention will be paid to quantitative aspects of MALDI MS because this is normally considered to be the "weak" point of the method, particularly if complex lipid mixtures are to be analyzed. Although the detailed role of the matrix is not yet completely clear, it will be also explicitly shown that the careful choice of the matrix is crucial in order to be able to detect all compounds of interest. Two rather recent developments will be highlighted: "Imaging" MS is nowadays widely established and significant interest is paid in this context to the analysis of lipids because lipids ionize particularly well and are, thus, more sensitively detectable in tissue slices than other biomolecules such as proteins. It will also be shown that MALDI MS can be very easily combined with thin-layer chromatography (TLC) allowing the spatially-resolved screening of the entire TLC plate and the detection of lipids with a higher sensitivity than common staining protocols.
Collapse
Affiliation(s)
- Beate Fuchs
- University of Leipzig, Medical Department, Institute of Medical Physics and Biophysics, Härtelstrasse 16-18, Germany
| | | | | |
Collapse
|
28
|
Picariello G, Romano R, Addeo F. Nitrocellulose Film Substrate Minimizes Fragmentation in Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry Analysis of Triacylglycerols. Anal Chem 2010; 82:5783-91. [DOI: 10.1021/ac100848w] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gianluca Picariello
- Istituto di Scienze dell’Alimentazione, Consiglio Nazionale delle Ricerche (CNR), Via Roma 64, 83100 Avellino, and Dipartimento di Scienza degli Alimenti, Università di Napoli “Federico II”, Parco Gussone, 80055 Portici (Napoli), Italy
| | - Raffaele Romano
- Istituto di Scienze dell’Alimentazione, Consiglio Nazionale delle Ricerche (CNR), Via Roma 64, 83100 Avellino, and Dipartimento di Scienza degli Alimenti, Università di Napoli “Federico II”, Parco Gussone, 80055 Portici (Napoli), Italy
| | - Francesco Addeo
- Istituto di Scienze dell’Alimentazione, Consiglio Nazionale delle Ricerche (CNR), Via Roma 64, 83100 Avellino, and Dipartimento di Scienza degli Alimenti, Università di Napoli “Federico II”, Parco Gussone, 80055 Portici (Napoli), Italy
| |
Collapse
|
29
|
Vrkoslav V, Muck A, Cvacka J, Svatos A. MALDI imaging of neutral cuticular lipids in insects and plants. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:220-31. [PMID: 19910210 DOI: 10.1016/j.jasms.2009.10.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 10/02/2009] [Accepted: 10/05/2009] [Indexed: 05/24/2023]
Abstract
The spatial distribution of neutral lipids and hydrocarbons has been imaged using MALDI-TOF mass spectrometry on intact plant and insect surfaces, namely wings and legs of the gray flesh fly (Neobellieria bullata), wings of common fruit fly (Drosophila melanogaster), leaves of thale cress (Arabidopsis thaliana), and leaves of date palm tree (Phoenix sp.). The distribution of wax esters (WEs) and saturated and unsaturated hydrocarbons (HCs) was visualized. The samples were attached on a target and multiply sprayed with lithium or sodium 2,5-dihydroxybenzoate. The deposits were homogenous, consisting of small islands (50-150 microm) of matrix crystals separated by small areas (10 microm) of uncovered cuticle. Samples of N. bullata wings were found to contain HCs and WEs distributed close to their basal parts. The distribution of sodium and potassium ions was visualized on samples prepared by sublimation of 2,5-dihydroxybenzoic acid. Pheromonal dienes were detected on D. melanogaster female wings. A homogenous distribution of saturated WEs was observed on A. thaliana and Phoenix sp. leaf samples. The optimum number of laser shots per pixel was found to be higher than for polar compounds imaging.
Collapse
Affiliation(s)
- Vladimír Vrkoslav
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | |
Collapse
|
30
|
Vrkoslav V, Urbanová K, Cvacka J. Analysis of wax ester molecular species by high performance liquid chromatography/atmospheric pressure chemical ionisation mass spectrometry. J Chromatogr A 2010; 1217:4184-94. [PMID: 20079497 DOI: 10.1016/j.chroma.2009.12.048] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 11/14/2009] [Accepted: 12/22/2009] [Indexed: 12/01/2022]
Abstract
High chromatographic resolution of wax esters (WEs) was achieved by non-aqueous reversed-phase liquid chromatography on a Nova-Pak C18 column by optimising the acetonitrile/ethyl acetate mobile phase gradient. The retention behaviour of WEs was studied in this chromatographic system. The WEs eluted according to their equivalent carbon number (ECN) values; within the group of WEs with the identical ECN, the most unsaturated species tended to elute first. The isobaric WEs with different positions of the ester moiety were separated from each other whenever the lengths of the chains were sufficiently different. The methyl-branched esters eluted at shorter retention times than the straight-chained analogues, and the resolution among methyl-branched WEs depended on the position of the branching. The analytes were detected by atmospheric pressure chemical ionisation mass spectrometry (APCI-MS) using data-dependent scanning. WEs provided simple full-scan spectra with abundant protonated molecules and low-intensity fragments. Collision-induced dissociation (CID) promoted identification of the WE molecular species. The responses of WEs were found to be dependent on the number of double bonds and on the alkyl-chain length; the limits of the detection ranged from 20micromol/L to 200nmol/L. The HPLC/APCI-MS was applied for the analysis of the WEs isolated from honeycomb beeswax, jojoba oil and human hair. Good agreement between reported results and the literature data was achieved, with several novel polyunsaturated WEs also being found.
Collapse
Affiliation(s)
- Vladimír Vrkoslav
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 16610 Prague 6, Czech Republic
| | | | | |
Collapse
|
31
|
Blanksby SJ, Mitchell TW. Advances in mass spectrometry for lipidomics. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2010; 3:433-65. [PMID: 20636050 DOI: 10.1146/annurev.anchem.111808.073705] [Citation(s) in RCA: 259] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Recent expansion in research in the field of lipidomics has been driven by the development of new mass spectrometric tools and protocols for the identification and quantification of molecular lipids in complex matrices. Although there are similarities between the field of lipidomics and the allied field of mass spectrometry (e.g., proteomics), lipids present some unique advantages and challenges for mass spectrometric analysis. The application of electrospray ionization to crude lipid extracts without prior fractionation-the so-called shotgun approach-is one such example, as it has perhaps been more successfully applied in lipidomics than in any other discipline. Conversely, the diverse molecular structure of lipids means that collision-induced dissociation alone may be limited in providing unique descriptions of complex lipid structures, and the development of additional, complementary tools for ion activation and analysis is required to overcome these challenges. In this article, we discuss the state of the art in lipid mass spectrometry and highlight several areas in which current approaches are deficient and further innovation is required.
Collapse
|
32
|
Kofroňová E, Cvačka J, Vrkoslav V, Hanus R, Jiroš P, Kindl J, Hovorka O, Valterová I. A comparison of HPLC/APCI-MS and MALDI-MS for characterising triacylglycerols in insects: Species-specific composition of lipids in the fat bodies of bumblebee males. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:3878-84. [PMID: 19819198 DOI: 10.1016/j.jchromb.2009.09.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 09/11/2009] [Accepted: 09/22/2009] [Indexed: 11/27/2022]
|