1
|
Lagache L, Zirem Y, Le Rhun É, Fournier I, Salzet M. Predicting Protein Pathways Associated to Tumor Heterogeneity by Correlating Spatial Lipidomics and Proteomics: The Dry Proteomic Concept. Mol Cell Proteomics 2025; 24:100891. [PMID: 39644924 PMCID: PMC11773152 DOI: 10.1016/j.mcpro.2024.100891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 11/20/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024] Open
Abstract
Prediction of proteins and associated biological pathways from lipid analyses via matrix-assisted laser desorption/ionization (MALDI) MSI is a pressing challenge. We introduced "dry proteomics," using MALDI MSI to validate spatial localization of identified optimal clusters in lipid imaging. Consistent cluster appearance across omics images suggests association with specific lipid and protein in distinct biological pathways, forming the basis of dry proteomics. The methodology was refined using rat brain tissue as a model, then applied to human glioblastoma, a highly heterogeneous cancer. Sequential tissue sections underwent omics MALDI MSI and unsupervised clustering. Spatial omics analysis facilitated lipid and protein characterization, leading to a predictive model identifying clusters in any tissue based on unique lipid signatures and predicting associated protein pathways. Application to rat brain slices revealed diverse tissue subpopulations, including successfully predicted cerebellum areas. Similarly, the methodology was applied to a dataset from a cohort of 50 glioblastoma patients, reused from a previous study. However, among the 50 patients, only 13 lipid signatures from MALDI MSI data were available, allowing for the identification of lipid-protein associations that correlated with patient prognosis. For cases lacking lipid imaging data, a classification model based on protein data was developed from dry proteomic results to effectively categorize the remaining cohort.
Collapse
Affiliation(s)
- Laurine Lagache
- Univ.Lille, Inserm, CHU Lille, U1192 - Proteomics Inflammatory Response Mass Spectrometry- PRISM, Lille, France
| | - Yanis Zirem
- Univ.Lille, Inserm, CHU Lille, U1192 - Proteomics Inflammatory Response Mass Spectrometry- PRISM, Lille, France
| | - Émilie Le Rhun
- Univ.Lille, Inserm, CHU Lille, U1192 - Proteomics Inflammatory Response Mass Spectrometry- PRISM, Lille, France; Department of Neurosurgery and Neurology, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Isabelle Fournier
- Univ.Lille, Inserm, CHU Lille, U1192 - Proteomics Inflammatory Response Mass Spectrometry- PRISM, Lille, France; Department Institut Universitaire de France, Ministère de l'Enseignement supérieur, de la Recherche et de l'Innovation, Paris, France.
| | - Michel Salzet
- Univ.Lille, Inserm, CHU Lille, U1192 - Proteomics Inflammatory Response Mass Spectrometry- PRISM, Lille, France; Department Institut Universitaire de France, Ministère de l'Enseignement supérieur, de la Recherche et de l'Innovation, Paris, France.
| |
Collapse
|
2
|
Egbejiogu BC, Donnarumma F, Murray KK. Infrared Laser Ablation and Capture of Formalin-Fixed Paraffin-Embedded Tissue. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024. [PMID: 39494617 DOI: 10.1021/jasms.4c00299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Formalin-fixed paraffin-embedded (FFPE) tissue is a ubiquitous and invaluable resource for biomedical research and clinical applications. However, FFPE tissue proteomics is challenging due to protein cross-linking and chemical modification. Laser ablation sampling allows precise removal of material from tissue sections with high spatial control and reproducibility for offline proteomics by liquid chromatography coupled with tandem mass spectrometry. In this work, we used a pulsed mid-infrared laser for microsampling of rat liver tissue for subsequent identification and quantification of proteins. It was found that more proteins were identified by FFPE tissue laser ablation sampling compared to fresh frozen (FF) tissue laser ablation sampling and that more proteins were identified by laser ablation than by manual dissection of FFPE tissue. In contrast to previous studies, no loss of hydrophilic proteins due to residual cross-linking was observed. The efficient capture of proteins by laser ablation microsampling is attributed to efficient laser breakup of the tissue which facilitates downstream processing of the proteins.
Collapse
Affiliation(s)
- Blessing C Egbejiogu
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Fabrizio Donnarumma
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Kermit K Murray
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
3
|
Trimpin S, Inutan ED, Pagnotti VS, Karki S, Marshall DD, Hoang K, Wang B, Lietz CB, Richards AL, Yenchick FS, Lee C, Lu IC, Fenner M, Madarshahian S, Saylor S, Chubatyi ND, Zimmerman T, Moreno-Pedraza A, Wang T, Adeniji-Adele A, Meher AK, Madagedara H, Owczarzak Z, Musavi A, Hendrickson TL, Peacock PM, Tomsho JW, Larsen BS, Prokai L, Shulaev V, Pophristic M, McEwen CN. Direct sub-atmospheric pressure ionization mass spectrometry: Evaporation/sublimation-driven ionization is amazing, fundamentally, and practically. JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e5018. [PMID: 38736378 DOI: 10.1002/jms.5018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/08/2023] [Accepted: 03/04/2024] [Indexed: 05/14/2024]
Abstract
This paper covers direct sub-atmospheric pressure ionization mass spectrometry (MS). The discovery, applications, and mechanistic aspects of novel ionization processes for use in MS that are not based on the high-energy input from voltage, laser, and/or high temperature but on sublimation/evaporation within a region linking a higher to lower pressure and modulated by heat and collisions, are discussed, including how this new reality has guided a series of discoveries, instrument developments, and commercialization. A research focus, inter alia, is on how best to understand, improve, and use these novel ionization processes, which convert volatile and nonvolatile compounds from solids (sublimation) or liquids (evaporation) into gas-phase ions for analysis by MS providing reproducible, accurate, sensitive, and prompt results. Our perception on how these unprecedented versus traditional ionization processes/methods relate to each other, how they can be made to coexist on the same mass spectrometer, and an outlook on new and expanded applications (e.g., clinical, portable, fast, safe, and autonomous) is presented, and is based on ST's Opening lecture presentation at the Nordic Mass spectrometry Conference, Geilo, Norway, January 2023. Focus will be on matrix-assisted ionization (MAI) and solvent-assisted ionization (SAI) MS covering the period from 2010 to 2023; a potential paradigm shift in the making.
Collapse
Affiliation(s)
- Sarah Trimpin
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
- MSTM, LLC, Newark, Delaware, USA
| | - Ellen D Inutan
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
- MSTM, LLC, Newark, Delaware, USA
- Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines
| | - Vincent S Pagnotti
- Department of Chemistry & Biochemistry, Saint Joseph's University, Philadelphia, Pennsylvania, USA
| | - Santosh Karki
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
- MSTM, LLC, Newark, Delaware, USA
| | - Darrell D Marshall
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
- MSTM, LLC, Newark, Delaware, USA
| | - Khoa Hoang
- MSTM, LLC, Newark, Delaware, USA
- Department of Chemistry & Biochemistry, Saint Joseph's University, Philadelphia, Pennsylvania, USA
| | - Beixi Wang
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
| | | | - Alicia L Richards
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
| | - Frank S Yenchick
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
| | - Chuping Lee
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
| | - I-Chung Lu
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan
| | - Madeleine Fenner
- Department of Chemistry & Biochemistry, Saint Joseph's University, Philadelphia, Pennsylvania, USA
| | - Sara Madarshahian
- Department of Chemistry & Biochemistry, Saint Joseph's University, Philadelphia, Pennsylvania, USA
| | - Sarah Saylor
- Department of Chemistry & Biochemistry, Saint Joseph's University, Philadelphia, Pennsylvania, USA
| | - Nicolas D Chubatyi
- Department of Chemistry & Biochemistry, Saint Joseph's University, Philadelphia, Pennsylvania, USA
| | - Teresa Zimmerman
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
| | | | - Tongwen Wang
- Department of Chemistry & Biochemistry, Saint Joseph's University, Philadelphia, Pennsylvania, USA
| | - Adetoun Adeniji-Adele
- Department of Chemistry & Biochemistry, Saint Joseph's University, Philadelphia, Pennsylvania, USA
| | - Anil K Meher
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
- MSTM, LLC, Newark, Delaware, USA
| | - Hasini Madagedara
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
| | - Zachary Owczarzak
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
| | - Ahmed Musavi
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
| | | | | | - John W Tomsho
- Department of Chemistry & Biochemistry, Saint Joseph's University, Philadelphia, Pennsylvania, USA
| | | | - Laszlo Prokai
- Department of Pharmacology and Neuroscience, The University of North Texas Health Science Center at Forth Worth, Fort Worth, Texas, USA
| | - Vladimir Shulaev
- Department of Biological Sciences, The University of North Texas, Denton, Texas, USA
| | - Milan Pophristic
- MSTM, LLC, Newark, Delaware, USA
- Department of Chemistry & Biochemistry, Saint Joseph's University, Philadelphia, Pennsylvania, USA
| | - Charles N McEwen
- MSTM, LLC, Newark, Delaware, USA
- Department of Chemistry & Biochemistry, Saint Joseph's University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Egbejiogu BC, Donnarumma F, Dong C, Murray KK. Infrared Laser Ablation and Capture of Biological Tissue. Methods Mol Biol 2024; 2817:9-18. [PMID: 38907143 DOI: 10.1007/978-1-0716-3934-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Sampling thin tissue sections with cellular precision can be accomplished using laser ablation microsampling for mass spectrometry analysis. In this work, the use of a pulsed mid-infrared (IR) laser for selecting small regions of interest (ROI) in tissue sections for offline liquid chromatography-tandem mass spectrometry (LC-MS/MS) is described. The laser is focused onto the tissue section, which is rastered as the laser is fired. The ablated tissue is captured in a microwell array and processed in situ through reduction, alkylation, and digestion with a low liquid volume workflow. The resulting peptides from areas as small as 0.01 mm2 containing 5 ng of protein are analyzed for protein identification and quantification using offline LC-MS/MS.
Collapse
Affiliation(s)
| | | | - Chao Dong
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, USA
| | - Kermit K Murray
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
5
|
Stadlhofer R, Moritz M, Fuh MM, Heeren J, Zech H, Clauditz TS, Schlüter H, Betz CS, Eggert D, Böttcher A, Hahn J. Lipidome Analysis of Oropharyngeal Tumor Tissues Using Nanosecond Infrared Laser (NIRL) Tissue Sampling and Subsequent Mass Spectrometry. Int J Mol Sci 2023; 24:ijms24097820. [PMID: 37175533 PMCID: PMC10178251 DOI: 10.3390/ijms24097820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/16/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Ultrashort pulse infrared lasers can simultaneously sample and homogenize biological tissue using desorption by impulsive vibrational excitation (DIVE). With growing attention on alterations in lipid metabolism in malignant disease, mass spectrometry (MS)-based lipidomic analysis has become an emerging topic in cancer research. In this pilot study, we investigated the feasibility of tissue sampling with a nanosecond infrared laser (NIRL) for the subsequent lipidomic analysis of oropharyngeal tissues, and its potential to discriminate oropharyngeal squamous cell carcinoma (OPSCC) from non-tumorous oropharyngeal tissue. Eleven fresh frozen oropharyngeal tissue samples were ablated. The produced aerosols were collected by a glass fiber filter, and the lipidomes were analyzed with mass spectrometry. Data was evaluated by principal component analysis and Welch's t-tests. Lipid profiles comprised 13 lipid classes and up to 755 lipid species. We found significant inter- and intrapatient alterations in lipid profiles for tumor and non-tumor samples (p-value < 0.05, two-fold difference). Thus, NIRL tissue sampling with consecutive MS lipidomic analysis is a feasible and promising approach for the differentiation of OPSCC and non-tumorous oropharyngeal tissue and may provide new insights into lipid composition alterations in OPSCC.
Collapse
Affiliation(s)
- Rupert Stadlhofer
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Manuela Moritz
- Section/Core Facility Mass Spectrometric Proteomics, Diagnostic Center, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Marceline M Fuh
- Department of Biochemistry and Molecular Cell Biology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Jörg Heeren
- Department of Biochemistry and Molecular Cell Biology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Henrike Zech
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Till S Clauditz
- Department of Pathology, Diagnostic Center, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Hartmut Schlüter
- Section/Core Facility Mass Spectrometric Proteomics, Diagnostic Center, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Christian S Betz
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Dennis Eggert
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Arne Böttcher
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Jan Hahn
- Section/Core Facility Mass Spectrometric Proteomics, Diagnostic Center, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| |
Collapse
|
6
|
Villacob RA, Egbejiogu BC, Feizi N, Hogan C, Murray KK, Solouki T. Native Mass Spectrometry and Collision-Induced Unfolding of Laser-Ablated Proteins. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:2215-2225. [PMID: 36346890 DOI: 10.1021/jasms.2c00184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Infrared laser ablation sample transfer (LAST) was used to collect samples from solid surfaces for mass spectrometry under native spray conditions. Native mass spectrometry was utilized to probe the charge states and collision-induced unfolding (CIU) characteristics of bovine serum albumin (BSA), bovine hemoglobin (BHb), and jack-bean concanavalin A (ConA) via direct injection electrospray, after liquid extraction surface sampling, and after LAST. Each protein was deposited from solution on solid surfaces and laser-ablated for off-line analysis or sampled for online analysis. It was found that the protein ion gas-phase charge-state distributions were comparable for direct infusion, liquid extraction, and laser ablation experiments. Moreover, calculated average collision cross section (CCS) values from direct injection, liquid extraction, and laser ablation experiments were consistent with previously reported literature values. Additionally, an equivalent number of mobility features and conformational turnovers were identified from unfolding pathways from all three methods for all charge states of each protein analyzed in this work. The presented work suggests that laser ablation yields intact proteins (BSA, BHb, and ConA), is compatible with native mass spectrometry, and could be suitable for spatially resolved interrogation of unfolding pathways of proteins.
Collapse
Affiliation(s)
| | | | - Neda Feizi
- Baylor University, Waco, Texas 76706, United States
| | - Cole Hogan
- Baylor University, Waco, Texas 76706, United States
| | - Kermit K Murray
- Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | | |
Collapse
|
7
|
Dong C, Donnarumma F, Murray KK. Infrared Laser Ablation Microsampling for Small Volume Proteomics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1003-1010. [PMID: 35536596 DOI: 10.1021/jasms.2c00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Infrared (IR) laser ablation was used to remove localized tissue regions from which proteins were extracted and processed with a low volume sample preparation workflow for bottom-up proteomics by liquid chromatography tandem mass spectrometry (LC-MS/MS). A polytetrafluoroethylene (PTFE) coated glass slide with 2 mm diameter microwells was used to capture ablated rat brain tissue for in situ protein digestion with submicroliter solution volumes. The resulting peptides were analyzed with LC-MS/MS for protein identification and label-free quantification. The method was used to identify an average of 600, 1350, and 1900 proteins from ablation areas of 0.01, 0.04, and 0.1 mm2, respectively, from a 50 μm thick rat brain tissue section. Differential proteomics of 0.01 mm2 regions captured from cerebral cortex and corpus callosum was accomplished to demonstrate the capabilities of the approach.
Collapse
Affiliation(s)
- Chao Dong
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Fabrizio Donnarumma
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Kermit K Murray
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
8
|
Voß H, Moritz M, Pelczar P, Gagliani N, Huber S, Nippert V, Schlüter H, Hahn J. Tissue Sampling and Homogenization with NIRL Enables Spatially Resolved Cell Layer Specific Proteomic Analysis of the Murine Intestine. Int J Mol Sci 2022; 23:ijms23116132. [PMID: 35682811 PMCID: PMC9181169 DOI: 10.3390/ijms23116132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/18/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
For investigating the molecular physiology and pathophysiology in organs, the most exact data should be obtained; if not, organ-specific cell lines are analyzed, or the whole organ is homogenized, followed by the analysis of its biomolecules. However, if the morphological organization of the organ can be addressed, then, in the best case, the composition of molecules in single cells of the target organ can be analyzed. Laser capture microdissection (LCM) is a technique which enables the selection of specific cells of a tissue for further analysis of their molecules. However, LCM is a time-consuming two-dimensional technique, and optimal results are only obtained if the tissue is fixed, e.g., by formalin. Especially for proteome analysis, formalin fixation reduced the number of identifiable proteins, and this is an additional drawback. Recently, it was demonstrated that sampling of fresh-frozen (non-fixed) tissue with an infrared-laser is giving higher yields with respect to the absolute protein amount and number of identifiable proteins than conventional mechanical homogenization of tissues. In this study, the applicability of the infrared laser tissue sampling for the proteome analysis of different cell layers of murine intestine was investigated, using LC–MS/MS-based differential quantitative bottom-up proteomics. By laser ablation, eight consecutive layers of colon tissue were obtained and analyzed. However, a clear distinguishability of protein profiles between ascending, descending, and transversal colon was made, and we identified the different intestinal-cell-layer proteins, which are cell-specific, as confirmed by data from the Human Protein Atlas. Thus, for the first time, sampling directly from intact fresh-frozen tissue with three-dimensional resolution is giving access to the different proteomes of different cell layers of colon tissue.
Collapse
Affiliation(s)
- Hannah Voß
- Section/Core Facility Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20246 Hamburg, Germany; (H.V.); (M.M.); (V.N.)
| | - Manuela Moritz
- Section/Core Facility Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20246 Hamburg, Germany; (H.V.); (M.M.); (V.N.)
| | - Penelope Pelczar
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20246 Hamburg, Germany; (P.P.); (N.G.); (S.H.)
| | - Nicola Gagliani
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20246 Hamburg, Germany; (P.P.); (N.G.); (S.H.)
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20246 Hamburg, Germany
| | - Samuel Huber
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20246 Hamburg, Germany; (P.P.); (N.G.); (S.H.)
| | - Vivien Nippert
- Section/Core Facility Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20246 Hamburg, Germany; (H.V.); (M.M.); (V.N.)
| | - Hartmut Schlüter
- Section/Core Facility Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20246 Hamburg, Germany; (H.V.); (M.M.); (V.N.)
- Correspondence: (H.S.); (J.H.); Tel.: +49-1575-6085997 (H.S.); +49-1522-2827168 (J.H.)
| | - Jan Hahn
- Section/Core Facility Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20246 Hamburg, Germany; (H.V.); (M.M.); (V.N.)
- Correspondence: (H.S.); (J.H.); Tel.: +49-1575-6085997 (H.S.); +49-1522-2827168 (J.H.)
| |
Collapse
|
9
|
Dong C, Richardson LT, Solouki T, Murray KK. Infrared Laser Ablation Microsampling with a Reflective Objective. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:463-470. [PMID: 35104132 PMCID: PMC8895455 DOI: 10.1021/jasms.1c00306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
A Schwarzschild reflective objective with a numerical aperture of 0.3 and working distance of 10 cm was used for laser ablation sampling of tissue for off-line mass spectrometry. The objective focused the laser to a diameter of 5 μm and produced 10 μm ablation spots on thin ink films and tissue sections. Rat brain tissue sections 50 μm thick were ablated in transmission geometry, and the ablated material was captured in a microcentrifuge tube containing solvent. Proteins from ablated tissue sections were quantified with a Bradford assay, which indicated that approximately 300 ng of protein was captured from a 1 mm2 area of ablated tissue. Areas of tissue ranging from 0.01 to 1 mm2 were ablated and captured for bottom-up proteomics. Proteins were extracted from the captured tissue and digested for liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis for peptide and protein identification.
Collapse
Affiliation(s)
- Chao Dong
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Luke T. Richardson
- Department
of Chemistry and Biochemistry, Baylor University, Waco, Texas 76706, United States
| | - Touradj Solouki
- Department
of Chemistry and Biochemistry, Baylor University, Waco, Texas 76706, United States
| | - Kermit K. Murray
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
10
|
Lawal RO, Richardson LT, Dong C, Donnarumma F, Solouki T, Murray KK. Deep-ultraviolet laser ablation sampling for proteomic analysis of tissue. Anal Chim Acta 2021; 1184:339021. [PMID: 34625253 DOI: 10.1016/j.aca.2021.339021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/29/2021] [Accepted: 08/30/2021] [Indexed: 01/22/2023]
Abstract
Deep-ultraviolet laser ablation with a pulsed 193 nm ArF excimer laser was used to remove localized regions from tissue sections from which proteins were extracted for spatially resolved proteomic analysis by liquid chromatography tandem mass spectrometry (LC-MS/MS). The ability to capture intact proteins by ablation at 193 nm wavelength was verified by matrix-assisted laser desorption ionization (MALDI) of the protein standard bovine serum albumin (BSA), which showed that BSA was ablated and captured without fragmentation. A Bradford assay of the ablated and captured proteins indicated 90% efficiency for transfer of the intact protein at a laser fluence of 3 kJ/m2. Rat brain tissue sections mounted on quartz microscope slides and ablated in transmission mode yielded 2 μg protein per mm2 as quantified by the Bradford assay. Tissue areas ranging from 0.06 mm2 to 1 mm2 were ablated and the ejected material was collected for proteomic analysis. Extracted proteins were digested and the resulting peptides were analyzed by LC-MS/MS. The proteins extracted from the ablated areas were identified and the average number of identified proteins ranged from 85 in the 0.06 mm2 area to 2400 in the 1 mm2 area of a 50 μm thick tissue. In comparison to infrared laser ablation of equivalent sampled areas, both the protein mass and number of proteins identified using DUV laser ablation sampling were approximately four times larger.
Collapse
Affiliation(s)
- Remilekun O Lawal
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Luke T Richardson
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76706, USA
| | - Chao Dong
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Fabrizio Donnarumma
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Touradj Solouki
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76706, USA
| | - Kermit K Murray
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
11
|
Hahn J, Moritz M, Voß H, Pelczar P, Huber S, Schlüter H. Tissue Sampling and Homogenization in the Sub-Microliter Scale with a Nanosecond Infrared Laser (NIRL) for Mass Spectrometric Proteomics. Int J Mol Sci 2021; 22:ijms221910833. [PMID: 34639174 PMCID: PMC8509473 DOI: 10.3390/ijms221910833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 12/12/2022] Open
Abstract
It was recently shown that ultrashort pulse infrared (IR) lasers, operating at the wavelength of the OH vibration stretching band of water, are highly efficient for sampling and homogenizing biological tissue. In this study we utilized a tunable nanosecond infrared laser (NIRL) for tissue sampling and homogenization with subsequent liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis for mass spectrometric proteomics. For the first time, laser sampling was performed with murine spleen and colon tissue. An ablation volume of 1.1 × 1.1 × 0.4 mm³ (approximately 0.5 µL) was determined with optical coherence tomography (OCT). The results of bottom-up proteomics revealed proteins with significant abundance differences for both tissue types, which are in accordance with the corresponding data of the Human Protein Atlas. The results demonstrate that tissue sampling and homogenization of small tissue volumes less than 1 µL for subsequent mass spectrometric proteomics is feasible with a NIRL.
Collapse
Affiliation(s)
- Jan Hahn
- Section/Core Facility Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf (UKE), Martinistr. 52, 20246 Hamburg, Germany; (M.M.); (H.V.); (H.S.)
- Correspondence: ; Tel.: +49-1522-2827-168
| | - Manuela Moritz
- Section/Core Facility Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf (UKE), Martinistr. 52, 20246 Hamburg, Germany; (M.M.); (H.V.); (H.S.)
| | - Hannah Voß
- Section/Core Facility Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf (UKE), Martinistr. 52, 20246 Hamburg, Germany; (M.M.); (H.V.); (H.S.)
| | - Penelope Pelczar
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Martinistr. 52, 20246 Hamburg, Germany; (P.P.); (S.H.)
| | - Samuel Huber
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Martinistr. 52, 20246 Hamburg, Germany; (P.P.); (S.H.)
| | - Hartmut Schlüter
- Section/Core Facility Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf (UKE), Martinistr. 52, 20246 Hamburg, Germany; (M.M.); (H.V.); (H.S.)
| |
Collapse
|
12
|
Pulukkody AC, Yung YP, Donnarumma F, Murray KK, Carlson RP, Hanley L. Spatially resolved analysis of Pseudomonas aeruginosa biofilm proteomes measured by laser ablation sample transfer. PLoS One 2021; 16:e0250911. [PMID: 34292966 PMCID: PMC8297752 DOI: 10.1371/journal.pone.0250911] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/22/2021] [Indexed: 12/18/2022] Open
Abstract
Heterogeneity in the distribution of nutrients and oxygen gradients during biofilm growth gives rise to changes in phenotype. There has been long term interest in identifying spatial differences during biofilm development including clues that identify chemical heterogeneity. Laser ablation sample transfer (LAST) allows site-specific sampling combined with label free proteomics to distinguish radially and axially resolved proteomes for Pseudomonas aeruginosa biofilms. Specifically, differential protein abundances on oxic vs. anoxic regions of a biofilm were observed by combining LAST with bottom up proteomics. This study reveals a more active metabolism in the anoxic region of the biofilm with respect to the oxic region for this clinical strain of P. aeruginosa, despite this organism being considered an aerobe by nature. Protein abundance data related to cellular acclimations to chemical gradients include identification of glucose catabolizing proteins, high abundance of proteins from arginine and polyamine metabolism, and proteins that could also support virulence and environmental stress mediation in the anoxic region. Finally, the LAST methodology requires only a few mm2 of biofilm area to identify hundreds of proteins.
Collapse
Affiliation(s)
- Aruni Chathurya Pulukkody
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Yeni P. Yung
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Fabrizio Donnarumma
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Kermit K. Murray
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Ross P. Carlson
- Department of Chemical and Biological Engineering, Center for Biofilm Engineering, Montana State University, Bozeman, Montana, United States of America
| | - Luke Hanley
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
13
|
Kertesz V, Cahill JF. Spatially resolved absolute quantitation in thin tissue by mass spectrometry. Anal Bioanal Chem 2021; 413:2619-2636. [PMID: 33140126 DOI: 10.1007/s00216-020-02964-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mass spectrometry (MS) has become the de facto tool for routine quantitative analysis of biomolecules. MS is increasingly being used to reveal the spatial distribution of proteins, metabolites, and pharmaceuticals in tissue and interest in this area has led to a number of novel spatially resolved MS technologies. Most spatially resolved MS measurements are qualitative in nature due to a myriad of potential biases, such as sample heterogeneity, sampling artifacts, and ionization effects. As applications of spatially resolved MS in the pharmacological and clinical fields increase, demand has become high for quantitative MS imaging and profiling data. As a result, several varied technologies now exist that provide differing levels of spatial and quantitative information. This review provides an overview of MS profiling and imaging technologies that have demonstrated quantitative analysis from tissue. Focus is given on the fundamental processes affecting quantitative analysis in an array of MS imaging and profiling technologies and methods to address these biases.Graphical abstract.
Collapse
Affiliation(s)
- Vilmos Kertesz
- Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6131, USA.
| | - John F Cahill
- Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6131, USA.
| |
Collapse
|
14
|
Roberg-Larsen H, Wilson SR, Lundanes E. Recent advances in on-line upfront devices for sensitive bioanalytical nano LC methods. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Wang K, Donnarumma F, Pettit ME, Szot CW, Solouki T, Murray KK. MALDI imaging directed laser ablation tissue microsampling for data independent acquisition proteomics. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4475. [PMID: 31726477 DOI: 10.1002/jms.4475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/25/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
A multimodal workflow for mass spectrometry imaging was developed that combines MALDI imaging with protein identification and quantification by liquid chromatography tandem mass spectrometry (LC-MS/MS). Thin tissue sections were analyzed by MALDI imaging, and the regions of interest (ROI) were identified using a smoothing and edge detection procedure. A midinfrared laser at 3-μm wavelength was used to remove the ROI from the brain tissue section after MALDI mass spectrometry imaging (MALDI MSI). The captured material was processed using a single-pot solid-phase-enhanced sample preparation (SP3) method and analyzed by LC-MS/MS using ion mobility (IM) enhanced data independent acquisition (DIA) to identify and quantify proteins; more than 600 proteins were identified. Using a modified database that included isoform and the post-translational modifications chain, loss of the initial methionine, and acetylation, 14 MALDI MSI peaks were identified. Comparison of the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of the identified proteins was achieved through an evolutionary relationships classification system.
Collapse
Affiliation(s)
- Kelin Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, United States
| | - Fabrizio Donnarumma
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, United States
| | - Michael E Pettit
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76706, United States
| | - Carson W Szot
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, United States
| | - Touradj Solouki
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76706, United States
| | - Kermit K Murray
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, United States
| |
Collapse
|
16
|
Wang K, Donnarumma F, Herke SW, Dong C, Herke PF, Murray KK. RNA sampling from tissue sections using infrared laser ablation. Anal Chim Acta 2019; 1063:91-98. [PMID: 30967191 DOI: 10.1016/j.aca.2019.02.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/17/2019] [Accepted: 02/24/2019] [Indexed: 10/27/2022]
Abstract
RNA was obtained from discrete locations of frozen rat brain tissue sections through infrared (IR) laser ablation using a 3-μm wavelength in transmission geometry. The ablated plume was captured in a microcentrifuge tube containing RNAse-free buffer and processed using a commercial RNA purification kit. RNA transfer efficiency and integrity were evaluated based on automated electrophoresis in microfluidic chips. Reproducible IR-laser ablation of intact RNA was demonstrated with purified RNA at laser fluences of 3-5 kJ/m2 (72 ± 12% transfer efficiency) and with tissue sections at a laser fluence of 13 kJ/m2 (79 ± 14% transfer efficiency); laser energies were attenuated ∼20% by the soda-lime glass slides used to support the samples. RNA integrity from tissue ablation was >90% of its original RIN value (∼7) and the purified RNA was sufficiently intact for conversion to cDNA and subsequent qPCR assay.
Collapse
Affiliation(s)
- Kelin Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, United States
| | - Fabrizio Donnarumma
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, United States
| | - Scott W Herke
- Genomics Facility, College of Science, Louisiana State University, Baton Rouge, LA, 70803, United States
| | - Chao Dong
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, United States
| | - Patrick F Herke
- Genomics Facility, College of Science, Louisiana State University, Baton Rouge, LA, 70803, United States
| | - Kermit K Murray
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, United States.
| |
Collapse
|
17
|
Pettit ME, Donnarumma F, Murray KK, Solouki T. Infrared laser ablation sampling coupled with data independent high resolution UPLC-IM-MS/MS for tissue analysis. Anal Chim Acta 2018; 1034:102-109. [DOI: 10.1016/j.aca.2018.06.066] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/22/2018] [Accepted: 06/24/2018] [Indexed: 12/30/2022]
|
18
|
Zhu Y, Dou M, Piehowski PD, Liang Y, Wang F, Chu RK, Chrisler WB, Smith JN, Schwarz KC, Shen Y, Shukla AK, Moore RJ, Smith RD, Qian WJ, Kelly RT. Spatially Resolved Proteome Mapping of Laser Capture Microdissected Tissue with Automated Sample Transfer to Nanodroplets. Mol Cell Proteomics 2018; 17:1864-1874. [PMID: 29941660 DOI: 10.1074/mcp.tir118.000686] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/09/2018] [Indexed: 01/10/2023] Open
Abstract
Current mass spectrometry (MS)-based proteomics approaches are ineffective for mapping protein expression in tissue sections with high spatial resolution because of the limited overall sensitivity of conventional workflows. Here we report an integrated and automated method to advance spatially resolved proteomics by seamlessly coupling laser capture microdissection (LCM) with a recently developed nanoliter-scale sample preparation system termed nanoPOTS (Nanodroplet Processing in One pot for Trace Samples). The workflow is enabled by prepopulating nanowells with DMSO, which serves as a sacrificial capture liquid for microdissected tissues. The DMSO droplets efficiently collect laser-pressure catapulted LCM tissues as small as 20 μm in diameter with success rates >87%. We also demonstrate that tissue treatment with DMSO can significantly improve proteome coverage, likely due to its ability to dissolve lipids from tissue and enhance protein extraction efficiency. The LCM-nanoPOTS platform was able to identify 180, 695, and 1827 protein groups on average from 12-μm-thick rat brain cortex tissue sections having diameters of 50, 100, and 200 μm, respectively. We also analyzed 100-μm-diameter sections corresponding to 10-18 cells from three different regions of rat brain and comparatively quantified ∼1000 proteins, demonstrating the potential utility for high-resolution spatially resolved mapping of protein expression in tissues.
Collapse
Affiliation(s)
- Ying Zhu
- From the ‡Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354
| | - Maowei Dou
- From the ‡Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354
| | - Paul D Piehowski
- §Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354
| | - Yiran Liang
- From the ‡Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354
| | - Fangjun Wang
- ¶CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| | - Rosalie K Chu
- From the ‡Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354
| | - William B Chrisler
- §Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354
| | - Jordan N Smith
- §Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354
| | - Kaitlynn C Schwarz
- From the ‡Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354
| | - Yufeng Shen
- §Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354
| | - Anil K Shukla
- §Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354
| | - Ronald J Moore
- §Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354
| | - Richard D Smith
- §Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354
| | - Wei-Jun Qian
- §Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354
| | - Ryan T Kelly
- From the ‡Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354;
| |
Collapse
|
19
|
Wang K, Donnarumma F, Baldone MD, Murray KK. Infrared laser ablation and capture of enzymes with conserved activity. Anal Chim Acta 2018; 1027:41-46. [PMID: 29866268 DOI: 10.1016/j.aca.2018.04.058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/16/2018] [Accepted: 04/22/2018] [Indexed: 01/24/2023]
Abstract
Infrared (IR) laser ablation at 3 μm wavelength was used to extract enzymes from tissue and quantitatively determine their activity. Experiments were conducted with trypsin, which was ablated, captured and then used to digest bovine serum albumin (BSA). BSA digests were evaluated using matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS) and sequence coverage of 59% was achieved. Quantification was performed using trypsin and catalase standards and rat brain tissue by fluorescence spectroscopy. Both enzymes were reproducibly transferred with an efficiency of 75 ± 8% at laser fluences between 10 and 30 kJ/m2. Trypsin retained 37 ± 2% of its activity and catalase retained 50 ± 7%. The activity of catalase from tissue was tested using three consecutive 50 μm thick rat brain sections. Two 4 mm2 regions were ablated and captured from the cortex and cerebellum regions. The absolute catalase concentration in the two regions was consistent with previously published data, demonstrating transfer of intact enzymes from tissue.
Collapse
Affiliation(s)
- Kelin Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana, 70803, United States
| | - Fabrizio Donnarumma
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana, 70803, United States
| | - Matthew D Baldone
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana, 70803, United States
| | - Kermit K Murray
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana, 70803, United States.
| |
Collapse
|
20
|
Pettit ME, Brantley MR, Donnarumma F, Murray KK, Solouki T. Broadband ion mobility deconvolution for rapid analysis of complex mixtures. Analyst 2018; 143:2574-2586. [DOI: 10.1039/c8an00193f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Broadband IM-MS deconvolution allows generation of IM and MS data for species that are UPLC-IM-MS unresolved.
Collapse
Affiliation(s)
| | | | | | | | - Touradj Solouki
- Department of Chemistry and Biochemistry
- Baylor University
- Waco
- USA
| |
Collapse
|
21
|
Chau SL, Tang HW, Cheng YH, Lok CN, Ng KM. Chemical Printing of Biological Tissue by Gold Nanoparticle-Assisted Laser Ablation. ACS OMEGA 2017; 2:6031-6038. [PMID: 30023759 PMCID: PMC6044615 DOI: 10.1021/acsomega.7b00385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/08/2017] [Indexed: 05/11/2023]
Abstract
A chemical printing method based on gold nanoparticle (AuNP)-assisted laser ablation has been developed. By rastering a thin layer of AuNPs coated on a rat kidney tissue section with a UV laser, biomolecules are extracted and immediately transferred/printed onto a supporting glass substrate. The integrity of the printed sample is preserved, as revealed by imaging mass spectrometric analysis. By studying the mechanism of the extraction/printing process, transiently molten AuNPs were found to be involved in the process, as supported by the color and morphological changes of the AuNP thin film. The success of this molecular printing method was based on the efficient laser-nanomaterial interaction, that is, the strong photoabsorption, laser-induced heating, and phase-transition properties of the AuNPs. It is anticipated that the molecular printing method can be applied to perform site-specific printing, which extracts and transfers biochemicals from different regions of biological tissue sections to different types of supporting materials for subsequent biochemical analysis with the preservation of the original tissue samples.
Collapse
|
22
|
Donnarumma F, Camp EE, Cao F, Murray KK. Infrared Laser Ablation with Vacuum Capture for Fingermark Sampling. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1958-1964. [PMID: 28534157 DOI: 10.1007/s13361-017-1703-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/26/2017] [Accepted: 04/30/2017] [Indexed: 06/07/2023]
Abstract
Infrared laser ablation coupled to vacuum capture was employed to collect material from fingermarks deposited on surfaces of different porosity and roughness. Laser ablation at 3 μm was performed in reflection mode with subsequent capture of the ejecta with a filter connected to vacuum. Ablation and capture of standards from fingermarks was demonstrated on glass, plastic, aluminum, and cardboard surfaces. Using matrix assisted laser desorption ionization (MALDI), it was possible to detect caffeine after spiking with amounts as low as 1 ng. MALDI detection of condom lubricants and detection of antibacterial peptides from an antiseptic cream was demonstrated. Detection of explosives from fingermarks left on plastic surfaces as well as from direct deposition on the same surface using gas chromatography mass spectrometry (GC-MS) was shown. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Fabrizio Donnarumma
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Eden E Camp
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Fan Cao
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Kermit K Murray
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
23
|
Infrared laser ablation sample transfer of tissue DNA for genomic analysis. Anal Bioanal Chem 2017; 409:4119-4126. [DOI: 10.1007/s00216-017-0373-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/20/2017] [Indexed: 01/01/2023]
|
24
|
Systematic assessment of surfactants for matrix-assisted laser desorption/ionization mass spectrometry imaging. Anal Chim Acta 2017; 963:76-82. [DOI: 10.1016/j.aca.2017.01.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 01/02/2017] [Accepted: 01/13/2017] [Indexed: 11/18/2022]
|
25
|
Affiliation(s)
- Patricia M Peacock
- First State IR, LLC , 118 Susan Drive, Hockessin, Delaware 19707, United States
| | - Wen-Jing Zhang
- Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Sarah Trimpin
- Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202, United States
| |
Collapse
|
26
|
Murray KK, Seneviratne CA, Ghorai S. High resolution laser mass spectrometry bioimaging. Methods 2016; 104:118-26. [PMID: 26972785 PMCID: PMC4937799 DOI: 10.1016/j.ymeth.2016.03.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/23/2016] [Accepted: 03/08/2016] [Indexed: 12/11/2022] Open
Abstract
Mass spectrometry imaging (MSI) was introduced more than five decades ago with secondary ion mass spectrometry (SIMS) and a decade later with laser desorption/ionization (LDI) mass spectrometry (MS). Large biomolecule imaging by matrix-assisted laser desorption/ionization (MALDI) was developed in the 1990s and ambient laser MS a decade ago. Although SIMS has been capable of imaging with a moderate mass range at sub-micrometer lateral resolution from its inception, laser MS requires additional effort to achieve a lateral resolution of 10μm or below which is required to image at the size scale of single mammalian cells. This review covers untargeted large biomolecule MSI using lasers for desorption/ionization or laser desorption and post-ionization. These methods include laser microprobe (LDI) MSI, MALDI MSI, laser ambient and atmospheric pressure MSI, and near-field laser ablation MS. Novel approaches to improving lateral resolution are discussed, including oversampling, beam shaping, transmission geometry, reflective and through-hole objectives, microscope mode, and near-field optics.
Collapse
Affiliation(s)
- Kermit K Murray
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | | - Suman Ghorai
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|