1
|
Lien K, Mayer W, Herrera R, Padilla NT, Cai X, Lin V, Pholcharoenchit R, Palefsky J, Tugizov SM. HIV-1 Proteins gp120 and Tat Promote Epithelial-Mesenchymal Transition and Invasiveness of HPV-Positive and HPV-Negative Neoplastic Genital and Oral Epithelial Cells. Microbiol Spectr 2022; 10:e0362222. [PMID: 36314970 PMCID: PMC9770004 DOI: 10.1128/spectrum.03622-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
The incidence of human papillomavirus (HPV)-associated anogenital and oropharyngeal cancer in human immunodeficiency virus (HIV)-infected individuals is substantially higher than in HIV-uninfected individuals. HIV may also be a risk factor for the development of HPV-negative head and neck, liver, lung, and kidney cancer. However, the molecular mechanisms underlying HIV-1-associated increase of epithelial malignancies are not fully understood. Here, we showed that HPV-16-immortalized anal AKC-2 and cervical CaSki epithelial cells that undergo prolonged exposure to cell-free HIV-1 virions or HIV-1 viral proteins gp120 and tat respond with the epithelial-mesenchymal transition (EMT) and increased invasiveness. Similar responses were observed in HPV-16-infected SCC-47 and HPV-16-negative HSC-3 oral epithelial cancer cells that were cultured with these viral proteins. EMT induced by gp120 and tat led to detachment of poorly adherent cells from the culture substratum; these cells remained capable of reattachment, upon which they coexpressed both E-cadherin and vimentin, indicative of an intermediate stage of EMT. The reattached cells also expressed stem cell markers CD133 and CD44, which may play a critical role in cancer cell invasion and metastasis. Inhibition of transforming growth factor (TGF)-β1 and MAPK signaling and vimentin expression, and restoration of E-cadherin expression reduced HIV-induced EMT and the invasive activity of HPV-16-immortalized anal and cervical epithelial cells. Collectively, our results suggest that these approaches along with HIV viral suppression with antiretroviral therapy (ART) might be useful to limit the role of HIV-1 infection in the acceleration of HPV-associated or HPV-independent epithelial neoplasia. IMPORTANCE HPV-16-immortalized genital and oral epithelial cells and HPV-negative oral cancer cells that undergo prolonged contact with cell-free HIV-1 virions or with viral proteins gp120 and tat respond by becoming more invasive. EMT cells induced by HIV-1 in cultures of HPV-16-immortalized anal and cervical epithelial cells express the stem cell markers CD133 and CD44. These results suggest that the interaction of HIV-1 with neoplastic epithelial cells may lead to their de-differentiation into cancer stem cells that are resistant to apoptosis and anti-cancer drugs. Thus, this pathway may play a critical role in the development of invasive cancer. Inhibition of TGF-β1 and MAPK signaling and vimentin expression, and restoration of E-cadherin expression reduced HIV-induced EMT and the invasiveness of HPV-16-immortalized anal and cervical epithelial cells. Taken together, these results suggest that these approaches might be exploited to limit the role of HIV-1 infection in the acceleration of HPV-associated or HPV-independent epithelial neoplasia.
Collapse
Affiliation(s)
- Kathy Lien
- Department of Medicine, University of California-San Francisco, San Francisco, California, USA
| | - Wasima Mayer
- Department of Medicine, University of California-San Francisco, San Francisco, California, USA
| | - Rossana Herrera
- Department of Medicine, University of California-San Francisco, San Francisco, California, USA
| | - Nicole T. Padilla
- Department of Medicine, University of California-San Francisco, San Francisco, California, USA
| | - Xiaodan Cai
- Department of Medicine, University of California-San Francisco, San Francisco, California, USA
| | - Vicky Lin
- Department of Medicine, University of California-San Francisco, San Francisco, California, USA
| | | | - Joel Palefsky
- Department of Medicine, University of California-San Francisco, San Francisco, California, USA
| | - Sharof M. Tugizov
- Department of Medicine, University of California-San Francisco, San Francisco, California, USA
| |
Collapse
|
2
|
Albumin Enhances the Rate at Which Coxsackievirus B3 Strain 28 Converts to A-Particles. J Virol 2020; 94:JVI.01962-19. [PMID: 31915275 DOI: 10.1128/jvi.01962-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 12/21/2019] [Indexed: 12/13/2022] Open
Abstract
Three strains of coxsackievirus B3 (CVB3) differ by single mutations in capsid protein VP1 or VP3 and also differ in stability at 37°C in tissue culture medium. Among these strains, the CVB3/28 parent strain has been found to be uniquely sensitive to a component in fetal bovine serum (FBS) identified as serum albumin. In cell culture medium, serum increased the rate of CVB3/28 conversion to noninfectious particles at least 2-fold. The effect showed a saturable dose response. Rates of conversion to noninfectious virus with high concentrations of soluble coxsackievirus and adenovirus receptor (sCAR) were similar with and without FBS, but FBS amplified the catalytic effect of 100 nM sCAR nearly 3-fold. Such effects in other systems are due to nonessential activating cofactors.IMPORTANCE A factor other than the virus receptor expressed by target cells has been found to accelerate the loss of an enterovirus (CVB3/28) infectious titer, with little effect on nearly identical mutant strains. The destabilizing factor in fetal bovine serum, identified as albumin, does not interfere with the catalytic activity of soluble receptor at saturating receptor concentrations and amplifies the catalytic activity of the soluble receptor at a concentration that otherwise produces about one-third the saturated receptor-catalyzed rate of virus decay. This finding evidences the possibility that other virus-"priming" ligands may also be nonessential activating cofactors that serve to accelerate receptor-catalyzed viral eclipse.
Collapse
|
3
|
Qin Z, Li S, Yao Z, Hong X, Wu B, Krausz KW, Gonzalez FJ, Gao H, Yao X. Chemical inhibition and stable knock-down of efflux transporters leads to reduced glucuronidation of wushanicaritin in UGT1A1-overexpressing HeLa cells: the role of breast cancer resistance protein (BCRP) and multidrug resistance-associated proteins (MRPs) in the excretion of glucuronides. Food Funct 2018; 9:1410-1423. [DOI: 10.1039/c7fo01298e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We determine the contributions of BCRP and MRP transporters in HeLa cells.
Collapse
Affiliation(s)
- Zifei Qin
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- P. R. China
- Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research
| | - Shishi Li
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- P. R. China
| | - Zhihong Yao
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- P. R. China
- Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research
| | - Xiaodan Hong
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- P. R. China
- Guangzhou Research and Creativity Biotechnology Co. Ltd
| | - Baojian Wu
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- P. R. China
- Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research
| | - Kristopher W. Krausz
- Laboratory of Metabolism
- Center for Cancer Research
- National Cancer Institute
- National Institutes of Health
- Bethesda
| | - Frank J. Gonzalez
- Laboratory of Metabolism
- Center for Cancer Research
- National Cancer Institute
- National Institutes of Health
- Bethesda
| | - Hao Gao
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- P. R. China
- Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research
| | - Xinsheng Yao
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- P. R. China
- Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research
| |
Collapse
|
4
|
Carson SD, Hafenstein S, Lee H. MOPS and coxsackievirus B3 stability. Virology 2016; 501:183-187. [PMID: 27940223 DOI: 10.1016/j.virol.2016.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/30/2016] [Accepted: 12/02/2016] [Indexed: 01/05/2023]
Abstract
Study of coxsackievirus B3 strain 28 (CVB3/28) stability using MOPS to improve buffering in the experimental medium revealed that MOPS (3-morpholinopropane-1-sulfonic acid) increased CVB3 stability and the effect was concentration dependent. Over the pH range 7.0-7.5, virus stability was affected by both pH and MOPS concentration. Computer-simulated molecular docking showed that MOPS can occupy the hydrophobic pocket in capsid protein VP1 where the sulfonic acid head group can form ionic and hydrogen bonds with Arg95 and Asn211 near the pocket opening. The effects of MOPS and hydrogen ion concentrations on the rate of virus decay were modeled by including corresponding parameters in a recent kinetic model. These results indicate that MOPS can directly associate with CVB3 and stabilize the virus, possibly by altering capsid conformational dynamics.
Collapse
Affiliation(s)
- Steven D Carson
- Department of Pathology and Microbiology University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA.
| | - Susan Hafenstein
- Department of Medicine, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Hyunwook Lee
- Department of Medicine, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| |
Collapse
|
5
|
Carson SD, Tracy S, Kaczmarek ZG, Alhazmi A, Chapman NM. Three capsid amino acids notably influence coxsackie B3 virus stability. J Gen Virol 2015; 97:60-68. [PMID: 26489722 DOI: 10.1099/jgv.0.000319] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Coxsackievirus B3 strain 28 (CVB3/28) is less stable at 37 °C than eight other CVB3 strains with which it has been compared, including four in this study. In a variant CVB3/28 population selected for increased stability at 37 °C, the capsid proteins of the stable variant differed from the parental CVB3/28 by two mutations in Vp1 and one mutation in Vp3, each of which resulted in altered protein sequences. Each of the amino acid changes was individually associated with a more stable virus. Competition between CVB3/28 and a more stable derivative of the strain showed that propagation of the less stable virus was favoured in receptor-rich HeLa cells.
Collapse
Affiliation(s)
- Steven D Carson
- Department of Pathology and Microbiology, University of Nebraska College of Medicine, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | - Steven Tracy
- Department of Pathology and Microbiology, University of Nebraska College of Medicine, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | - Zac G Kaczmarek
- Department of Pathology and Microbiology, University of Nebraska College of Medicine, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | - Abdulaziz Alhazmi
- Department of Microbiology, College of Medicine, Jazan University, King Abdullah Street, Jazan 82621, Saudi Arabia
| | - Nora M Chapman
- Department of Pathology and Microbiology, University of Nebraska College of Medicine, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
| |
Collapse
|
6
|
Thair SA, Topchiy E, Boyd JH, Cirstea M, Wang C, Nakada TA, Fjell CD, Wurfel M, Russell JA, Walley KR. TNFAIP2 Inhibits Early TNFα-Induced NF-x03BA;B Signaling and Decreases Survival in Septic Shock Patients. J Innate Immun 2015; 8:57-66. [PMID: 26347487 DOI: 10.1159/000437330] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 07/01/2015] [Indexed: 12/24/2022] Open
Abstract
During septic shock, tumor necrosis factor alpha (TNFα) is an early response gene and induces a plethora of genes and signaling pathways. To identify robust signals in genes reliably upregulated by TNFα, we first measured microarray gene expression in vitro and searched methodologically comparable, publicly available data sets to identify concordant signals. Using tag single-nucleotide polymorphisms in the genes common to all data sets, we identified a genetic variant of the TNFAIP2 gene, rs8126, associated with decreased 28-day survival and increased organ dysfunction in an adult cohort in the Vasopressin and Septic Shock Trial. Similar to this cohort, we found that an association with rs8126 and increased organ dysfunction is replicated in a second cohort of septic shock patients in the St. Paul's Hospital Intensive Care Unit. We found that TNFAIP2 inhibits NF-x03BA;B activity, impacting the downstream cytokine interleukin (IL)-8. The minor G allele of TNFAIP2 rs8126 resulted in greater TNFAIP2 expression, decreased IL-8 production and was associated with decreased survival in patients experiencing septic shock. These data suggest that TNFAIP2 is a novel inhibitor of NF-x03BA;B that acts as an autoinhibitor of the TNFα response during septic shock.
Collapse
Affiliation(s)
- Simone A Thair
- Department of Emergency and Surgery, Stanford University School of Medicine, Stanford, Calif., USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Quan E, Wang H, Dong D, Zhang X, Wu B. Characterization of chrysin glucuronidation in UGT1A1-overexpressing HeLa cells: elucidating the transporters responsible for efflux of glucuronide. Drug Metab Dispos 2015; 43:433-43. [PMID: 25595598 DOI: 10.1124/dmd.114.061598] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Active transport of glucuronide out of cells is a critical process in elimination of drugs via the glucuronidation pathway. Here, HeLa cells were stably transfected with UGT1A1 and the contributions of BCRP and MRP family transporters to the cellular efflux of chrysin glucuronide (CG) were determined. The cDNA of UGT1A1 was introduced into HeLa cells using the lentiviral transfection method. The modified cells were functional in generation of the glucuronide from chrysin. Ko143 at 10-20 μM (a dual inhibitor of BCRP and UGT1A1) caused a marked decrease (51.3%-59.7%, P < 0.01) in the excretion rate and efflux clearance of CG. Likewise, MK-571 at 5-20 μM (an inhibitor of MRPs but an activator of UGT1A1) resulted in a significant reduction in the excretion rate (18.2%-64.0%, P < 0.01) and efflux clearance (37.0%-90.2%, P < 0.001). By contrast, dipyridamole and leukotriene C4 showed no inhibitory effects on CG excretion. The chemical inhibition indicated that excretion of CG was contributed by the MRP family transporters, whereas the role of BCRP was unclear. Furthermore, short hairpin RNA-mediated silencing of a target transporter led to a marked reduction in the excretion rate of CG (38.6% for BCRP, 39.3% for MRP1, 36.4% for MRP3, and 28.7% for MRP4; P < 0.01). Transporter silencing also led to substantial decreases in the efflux clearance (44.7% for BCRP, 60.4% for MRP1, 36.7% for MRP3, and 28.7% for MRP4; P < 0.01). The gene silencing results suggested that BCRP, MRP1, MRP3, and MRP4 were significant contributors to excretion of CG.
Collapse
Affiliation(s)
- Enxi Quan
- Division of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, China (E.Q., X.Z., B.W.); and Guangzhou Jinan Biomedicine Research and Development Center, Jinan University, Guangzhou, China (H.W., D.D.)
| | - Huailing Wang
- Division of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, China (E.Q., X.Z., B.W.); and Guangzhou Jinan Biomedicine Research and Development Center, Jinan University, Guangzhou, China (H.W., D.D.)
| | - Dong Dong
- Division of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, China (E.Q., X.Z., B.W.); and Guangzhou Jinan Biomedicine Research and Development Center, Jinan University, Guangzhou, China (H.W., D.D.)
| | - Xingwang Zhang
- Division of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, China (E.Q., X.Z., B.W.); and Guangzhou Jinan Biomedicine Research and Development Center, Jinan University, Guangzhou, China (H.W., D.D.)
| | - Baojian Wu
- Division of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, China (E.Q., X.Z., B.W.); and Guangzhou Jinan Biomedicine Research and Development Center, Jinan University, Guangzhou, China (H.W., D.D.)
| |
Collapse
|
8
|
Pawlica P, Dufour C, Berthoux L. Inhibition of microtubules and dynein rescues human immunodeficiency virus type 1 from owl monkey TRIMCyp-mediated restriction in a cellular context-specific fashion. J Gen Virol 2014; 96:874-886. [PMID: 25502651 DOI: 10.1099/jgv.0.000018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
IFN-induced restriction factors can significantly affect the replicative capacity of retroviruses in mammals. TRIM5α (tripartite motif protein 5, isoform α) is a restriction factor that acts at early stages of the virus life cycle by intercepting and destabilizing incoming retroviral cores. Sensitivity to TRIM5α maps to the N-terminal domain of the retroviral capsid proteins. In several New World and Old World monkey species, independent events of retrotransposon-mediated insertion of the cyclophilin A (CypA)-coding sequence in the trim5 gene have given rise to TRIMCyp (also called TRIM5-CypA), a hybrid protein that is active against some lentiviruses in a species-specific fashion. In particular, TRIMCyp from the owl monkey (omkTRIMCyp) very efficiently inhibits human immunodeficiency virus type 1 (HIV-1). Previously, we showed that disrupting the integrity of microtubules (MTs) and of cytoplasmic dynein complexes partially rescued replication of retroviruses, including HIV-1, from restriction mediated by TRIM5α. Here, we showed that efficient restriction of HIV-1 by omkTRIMCyp was similarly dependent on the MT network and on dynein complexes, but in a context-dependent fashion. When omkTRIMCyp was expressed in human HeLa cells, restriction was partially counteracted by pharmacological agents targeting MTs or by small interfering RNA-mediated inhibition of dynein. The same drugs (nocodazole and paclitaxel) also rescued HIV-1 from restriction in cat CRFK cells, although to a lesser extent. Strikingly, neither nocodazole, paclitaxel nor depletion of the dynein heavy chain had a significant effect on the restriction of HIV-1 in an owl monkey cell line. These results suggested the existence of cell-specific functional interactions between MTs/dynein and TRIMCyp.
Collapse
Affiliation(s)
- Paulina Pawlica
- Laboratory of Retrovirology, Department of Medical Biology and BioMed Research Group, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Rivières, Quebec G9A 5H7, Canada
| | - Caroline Dufour
- Laboratory of Retrovirology, Department of Medical Biology and BioMed Research Group, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Rivières, Quebec G9A 5H7, Canada
| | - Lionel Berthoux
- Laboratory of Retrovirology, Department of Medical Biology and BioMed Research Group, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Rivières, Quebec G9A 5H7, Canada
| |
Collapse
|
9
|
Liu B, Liu C, Zhao X, Shen W, Qian L, Wei Y, Kong X. Establishment of a cell line with stable expression of mCherry-EGFP tandem fluorescent-tagged LC3B for studying the impact of HIV-1 infection on autophagic flux. J Virol Methods 2014; 209:95-102. [PMID: 25241145 DOI: 10.1016/j.jviromet.2014.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 09/02/2014] [Accepted: 09/09/2014] [Indexed: 02/05/2023]
Abstract
Increasing evidence indicates that HIV-1 infection has an impact on cell autophagy, and a susceptible cell line is required for studying the relationship of HIV-1 with autophagy. However, there is limited information on the optimal cell line to evaluate the changes of autophagy affected by HIV infection. In this study cell line TZM-tfLC3B was constructed to express mCherry-EGFP tandem fluorescent tagged LC3B (tfLC3B) by stable transfection of tfLC3B as well as allowing X4/R5 tropic HIV-1 replication. The monitoring of autophagic flux in TZM-tfLC3B was achieved by observing fluorescent puncta. HIV-1 virus-like particles lacking replicative nucleic acid could induce autophagy in TZM-tfLC3B in an envelope glycoprotein dependent manner. These data suggest that TZM-tfLC3B will be a useful tool for studying the HIV-1-induced autophagy modulation of host cells.
Collapse
Affiliation(s)
- Bin Liu
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, 94 Weijin Road, Nankai District, Tianjin, China.
| | - Chang Liu
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, 94 Weijin Road, Nankai District, Tianjin, China.
| | - Xuechao Zhao
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, 94 Weijin Road, Nankai District, Tianjin, China.
| | - Wenyuan Shen
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, 94 Weijin Road, Nankai District, Tianjin, China.
| | - Lingyu Qian
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, 94 Weijin Road, Nankai District, Tianjin, China.
| | - Yuquan Wei
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, No. 17, Section 3, Renmin South Road, Chengdu, China.
| | - Xiaohong Kong
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, 94 Weijin Road, Nankai District, Tianjin, China.
| |
Collapse
|