1
|
Yamada S, Uchida Y, Kouyama JI, Naiki K, Yamaguchi H, Nakayama N, Imai Y, Mizuno S, Yamada T, Mochida S. Comprehensive genome analysis of hepatitis B virus using nanopore sequencing technology in patients with previously resolved infection and spontaneous reactivation without drug exposure. Clin J Gastroenterol 2025; 18:145-153. [PMID: 39625631 DOI: 10.1007/s12328-024-02078-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/23/2024] [Indexed: 02/01/2025]
Abstract
A 75-year-old Japanese woman experienced persistent fatigue and progressive jaundice for 6 weeks, and was subsequently diagnosed with acute liver failure. She had not received any immunosuppressive therapies and/or antineoplastic chemotherapy. Blood tests revealed elevated levels of HBsAg, HBV-DNA, and anti-HBc IgG, while anti-HBc IgM was negative. She had undergone hepatitis virus testing 48 weeks earlier, during which HBsAg was negative, indicating that HBV reactivation occurred in a patient with a previously resolved infection, without any drug therapies as triggers, ultimately leading to acute liver failure. Despite receiving multidisciplinary intensive treatment, her condition worsened, resulting in death. Full-length genomic analysis of the HBV strain, performed using nanopore sequencing technology, identified an I126S substitution in HBsAg, known as a vaccine escape mutation, along with a quasispecies consisting primarily of two HBV clone variants: one full-length and the other with a deletion in the nt2,448-nt488 region (sp1 spliced variant). These genetic factors may have contributed to the spontaneous HBV reactivation.
Collapse
Affiliation(s)
- Shunsuke Yamada
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama-cho, Iruma-gun, Saitama, 350-0495, Japan
| | - Yoshihito Uchida
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama-cho, Iruma-gun, Saitama, 350-0495, Japan.
| | - Jun-Ichi Kouyama
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama-cho, Iruma-gun, Saitama, 350-0495, Japan
| | - Kayoko Naiki
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama-cho, Iruma-gun, Saitama, 350-0495, Japan
| | - Hiroshi Yamaguchi
- Department of Pathology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Nobuaki Nakayama
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama-cho, Iruma-gun, Saitama, 350-0495, Japan
| | - Yukinori Imai
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama-cho, Iruma-gun, Saitama, 350-0495, Japan
| | - Suguru Mizuno
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama-cho, Iruma-gun, Saitama, 350-0495, Japan
| | - Taketo Yamada
- Department of Pathology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Satoshi Mochida
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama-cho, Iruma-gun, Saitama, 350-0495, Japan
| |
Collapse
|
2
|
Jose-Abrego A, Roman S, Laguna-Meraz S, Panduro A. Host and HBV Interactions and Their Potential Impact on Clinical Outcomes. Pathogens 2023; 12:1146. [PMID: 37764954 PMCID: PMC10535809 DOI: 10.3390/pathogens12091146] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/27/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Hepatitis B virus (HBV) is a challenge for global health services, affecting millions and leading thousands to end-stage liver disease each year. This comprehensive review explores the interactions between HBV and the host, examining their impact on clinical outcomes. HBV infection encompasses a spectrum of severity, ranging from acute hepatitis B to chronic hepatitis B, which can potentially progress to cirrhosis and hepatocellular carcinoma (HCC). Occult hepatitis B infection (OBI), characterized by low HBV DNA levels in hepatitis B surface antigen-negative individuals, can reactivate and cause acute hepatitis B. HBV genotyping has revealed unique geographical patterns and relationships with clinical outcomes. Moreover, single nucleotide polymorphisms (SNPs) within the human host genome have been linked to several clinical outcomes, including cirrhosis, HCC, OBI, hepatitis B reactivation, and spontaneous clearance. The immune response plays a key role in controlling HBV infection by eliminating infected cells and neutralizing HBV in the bloodstream. Furthermore, HBV can modulate host metabolic pathways involved in glucose and lipid metabolism and bile acid absorption, influencing disease progression. HBV clinical outcomes correlate with three levels of viral adaptation. In conclusion, the clinical outcomes of HBV infection could result from complex immune and metabolic interactions between the host and HBV. These outcomes can vary among populations and are influenced by HBV genotypes, host genetics, environmental factors, and lifestyle. Understanding the degrees of HBV adaptation is essential for developing region-specific control and prevention measures.
Collapse
Affiliation(s)
- Alexis Jose-Abrego
- Department of Genomic Medicine in Hepatology, Civil Hospital of Guadalajara, “Fray Antonio Alcalde”, Guadalajara 44280, Mexico; (A.J.-A.); (S.R.); (S.L.-M.)
- Health Sciences Center, University of Guadalajara, Guadalajara 44340, Mexico
| | - Sonia Roman
- Department of Genomic Medicine in Hepatology, Civil Hospital of Guadalajara, “Fray Antonio Alcalde”, Guadalajara 44280, Mexico; (A.J.-A.); (S.R.); (S.L.-M.)
- Health Sciences Center, University of Guadalajara, Guadalajara 44340, Mexico
| | - Saul Laguna-Meraz
- Department of Genomic Medicine in Hepatology, Civil Hospital of Guadalajara, “Fray Antonio Alcalde”, Guadalajara 44280, Mexico; (A.J.-A.); (S.R.); (S.L.-M.)
- Health Sciences Center, University of Guadalajara, Guadalajara 44340, Mexico
| | - Arturo Panduro
- Department of Genomic Medicine in Hepatology, Civil Hospital of Guadalajara, “Fray Antonio Alcalde”, Guadalajara 44280, Mexico; (A.J.-A.); (S.R.); (S.L.-M.)
- Health Sciences Center, University of Guadalajara, Guadalajara 44340, Mexico
| |
Collapse
|
3
|
Immune-Related lncRNAs with WGCNA Identified the Function of SNHG10 in HBV-Related Hepatocellular Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:9332844. [PMID: 35847362 PMCID: PMC9279027 DOI: 10.1155/2022/9332844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 11/18/2022]
Abstract
Objective. The hepatitis B virus (HBV) infection led to hepatitis, which was one of common reasons for hepatocellular carcinoma (HCC). The immune microenvironment alteration played a crucial role in this process. The study aimed to identify immune-related long noncoding RNAs (lncRNAs) in HBV-related HCC and explore potential mechanisms. Methods. In total, 1,072 immune‐related genes (IRGs) were enriched in different co-expression modules with weighted gene co-expression network analysis (WGCNA) combining the corresponding clinical features in HBV-related HCC. The immune-related lncRNAs were selected from the crucial co-expression model based on the correlation analysis with IRGs. The immune-related lncRNAs were furtherly used to construct prognostic signature by the Cox proportional hazards regression and Lasso regression. Furthermore, the proliferation and migration ability of lncRNA SNHG10 were verified in vitro. Results. A total of nine co-expression modules were identified by WGCNA of which the “red” co-expression module was most correlated with various clinical characteristics. Additionally, the IRGs in this module were significantly enriched in multiple immune-related pathways. The twelve immune-related lncRNAs prognostic signature (HAND2-AS1, LINC00844, SNHG10, MALAT1, LINC00460, LBX2-AS1, MIR31HG, SEMA6A-AS1, LINC1278, LINC00514, CTBP-AS2, and LINC00205) was constructed. The risk score was an independent risk factor in HBV-related HCC and verified by principal components analysis (PCA), nomogram, and PCR between different cell lines. Moreover, the proportion of immune cells were significantly different between high-risk score group and low-risk score group. The malignant behavior of Hep3B was significantly different between si-lncRNA SNHG10 and control group. Conclusions. The immune-related lncRNAs prognostic signature provided some potential biomarkers and molecular mechanisms in HBV-related HCC.
Collapse
|
4
|
Exonic SNP in MHC-DMB2 is associated with gene expression and humoral immunity in Japanese quails. Vet Immunol Immunopathol 2021; 239:110302. [PMID: 34311147 DOI: 10.1016/j.vetimm.2021.110302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/01/2021] [Accepted: 07/16/2021] [Indexed: 11/23/2022]
Abstract
The DMB2 gene is widely expressed at high levels in avian. This gene plays an important role in humoral immunity. The aim of this study was to investigate the effects of 361 G > C Single nucleotide polymorphism (SNP) on DMB2 protein structure and gene expression to determine how the 361 G > C SNP affects humoral immune response in Japanese quails. 0.2 mL of 5% sheep red blood cell (SRBC) was injected into breast muscle of 130 Japanese quails on 28 days. After DNA extraction, PCR was carried out to amplify a 333-base pair DNA fragment from the exon 2 of DMB2 gene. The pattern of all samples was determined through RFLP technique. PCR-RFLP results identified two alleles segregating (C, G) as three genotypes (CC, CG and GG) in Japanese Quails. The antibody response to SRBC with CC genotype was significantly higher than the CG and GG genotypes (P < 0.01). In silico analysis showed that the 361 G > C SNP has no effect on the physicochemical properties and 3D structure. The results of RT-qPCR indicated that the effect of genotype on gene expression is significant, so that the expression of CC genotype is more than CG and GG genotype. It can be inferred that the 361 G > C SNP in the exon 2 of MHC-DMB2 gene is not desirable. This mutation decreases humoral immune response by reducing DMB2 gene expression.
Collapse
|
5
|
Variation and expression of HLA-DPB1 gene in HBV infection. Immunogenetics 2021; 73:253-261. [PMID: 33710355 DOI: 10.1007/s00251-021-01213-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 03/01/2021] [Indexed: 12/24/2022]
Abstract
Hepatitis B virus (HBV) affects approximately 68 million people in China, and 10-15% of adults infected with HBV develop chronic hepatitis B, liver cirrhosis, liver failure or hepatocellular carcinoma (HCC). HLA-DPB1 gene polymorphism and expression have been shown to be associated with HBV infection susceptibility and spontaneous clearance. The aim of this study is to evaluate the role of HLA-DPB1 gene polymorphism in HBV infection. HLA-DPB1 and rs9277535 polymorphisms were investigated in 259 patients with HBV infection and 442 healthy controls (HCs) using sequence-based typing. The mRNA of HLA-DPB1 was measured by real-time polymerase chain reaction. HLA-DPB1 genes and rs9277535 polymorphisms were all associated with HBV infection in the Sichuan Han population. rs9277535A and HLA-DPB1*04:02 played a protective role against HBV infection. rs9277535G and DPB1*05:01 were associated with susceptibility to HBV infection. rs9277535GG had significantly higher HLA-DPB1 mRNA expression in the HBV infection group compared with the HC group. HLA-DPB1*05:01 and HLA-DPB1*21:01 had significantly lower mRNA expression in the HBV infection group compared with the HC group. The meta-analysis revealed that HLA-DPB1*02:01, HLA-DPB1*02:02, HAL-DPB1*04:01 and HLA-DPB1*04:02 protected against HBV infection, while HLA-DPB1*05:01, HLA-DPB1*09:01, and HLA-DPB1*13:01 were risk factors for susceptibility to HBV infection. HLA-DPB1*02:01, HLA-DPB1*02:02, and HLA-DPB1*04:01 were associated with HBV spontaneous clearance, while HLA-DPB1*05:01 was associated with chronic HBV infection. HLA-DPB1 alleles and rs9277535 have a major effect on the risk of HBV infection, and HBV infection is associated with lower HLA-DPB1 expression. HLA-DPB1 alleles have an important role in HBV susceptibility and spontaneous clearance.
Collapse
|
6
|
Savage SA, Viard M, O'hUigin C, Zhou W, Yeager M, Li SA, Wang T, Ramsuran V, Vince N, Vogt A, Hicks B, Burdett L, Chung C, Dean M, de Andrade KC, Freedman ND, Berndt SI, Rothman N, Lan Q, Cerhan JR, Slager SL, Zhang Y, Teras LR, Haagenson M, Chanock SJ, Spellman SR, Wang Y, Willis A, Askar M, Lee SJ, Carrington M, Gadalla SM. Genome-wide Association Study Identifies HLA-DPB1 as a Significant Risk Factor for Severe Aplastic Anemia. Am J Hum Genet 2020; 106:264-271. [PMID: 32004448 PMCID: PMC7010969 DOI: 10.1016/j.ajhg.2020.01.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 01/07/2020] [Indexed: 12/20/2022] Open
Abstract
Severe aplastic anemia (SAA) is a rare disorder characterized by hypoplastic bone marrow and progressive pancytopenia. The etiology of acquired SAA is not understood but is likely related to abnormal immune responses and environmental exposures. We conducted a genome-wide association study of individuals with SAA genetically matched to healthy controls in discovery (359 cases, 1,396 controls) and validation sets (175 cases, 1,059 controls). Combined analyses identified linked SNPs in distinct blocks within the major histocompatibility complex on 6p21. The top SNP encodes p.Met76Val in the P4 binding pocket of the HLA class II gene HLA-DPB1 (rs1042151A>G, odds ratio [OR] 1.75, 95% confidence interval [CI] 1.50-2.03, p = 1.94 × 10-13) and was associated with HLA-DP cell surface expression in healthy individuals (p = 2.04 × 10-6). Phylogenetic analyses indicate that Val76 is not monophyletic and likely occurs in conjunction with different HLA-DP binding groove conformations. Imputation of HLA-DPB1 alleles revealed increased risk of SAA associated with Val76-encoding alleles DPB1∗03:01, (OR 1.66, p = 1.52 × 10-7), DPB1∗10:01 (OR 2.12, p = 0.0003), and DPB1∗01:01 (OR 1.60, p = 0.0008). A second SNP near HLA-B, rs28367832G>A, reached genome-wide significance (OR 1.49, 95% CI 1.22-1.78, p = 7.27 × 10-9) in combined analyses; the association remained significant after excluding cases with clonal copy-neutral loss-of-heterozygosity affecting class I HLA genes (8.6% of cases and 0% of controls). SNPs in the HLA class II gene HLA-DPB1 and possibly class I (HLA-B) are associated with SAA. The replacement of Met76 to Val76 in certain HLA-DPB1 alleles might influence risk of SAA through mechanisms involving DP peptide binding specificity, expression, and/or other factors affecting DP function.
Collapse
Affiliation(s)
- Sharon A Savage
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA.
| | - Mathias Viard
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Colm O'hUigin
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Weiyin Zhou
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Meredith Yeager
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Shengchao Alfred Li
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Tao Wang
- Center for International Blood and Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Veron Ramsuran
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Nicolas Vince
- Université de Nantes, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
| | - Aurelie Vogt
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Belynda Hicks
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Laurie Burdett
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Charles Chung
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Michael Dean
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Kelvin C de Andrade
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Neal D Freedman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - James R Cerhan
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55902, USA
| | - Susan L Slager
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55902, USA
| | - Yawei Zhang
- Section of Surgical Outcomes and Epidemiology, Department of Surgery, Yale Medical School, New Haven, CT 06520, USA
| | - Lauren R Teras
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, GA, 30303, USA
| | - Michael Haagenson
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Stephen R Spellman
- Center for International Blood and Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Youjin Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Amanda Willis
- Department of Pathology and Laboratory Medicine, Baylor University Medical Center, Dallas, TX 76798, USA
| | - Medhat Askar
- Department of Pathology and Laboratory Medicine, Baylor University Medical Center, Dallas, TX 76798, USA
| | - Stephanie J Lee
- Center for International Blood and Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Shahinaz M Gadalla
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Chung S, Roh EY, Park B, Lee Y, Shin S, Yoon JH, Song EY. GWAS identifying HLA-DPB1 gene variants associated with responsiveness to hepatitis B virus vaccination in Koreans: Independent association of HLA-DPB1*04:02 possessing rs1042169 G - rs9277355 C - rs9277356 A. J Viral Hepat 2019; 26:1318-1329. [PMID: 31243853 DOI: 10.1111/jvh.13168] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 05/07/2019] [Accepted: 05/15/2019] [Indexed: 02/06/2023]
Abstract
Recently, HLA class II loci, including HLA-DPB1, have been reported to be associated with interindividual variance in the hepatitis B (HB) vaccine response. In this study, we investigated significant single nucleotide polymorphisms (SNPs) for anti-HBs antibody levels in 6867 healthy Koreans using a genome-wide association study (GWAS). In GWAS, the top 20 SNPs that showed significant association with anti-HBs levels (P < 1.0 × 10-29 ) all resided in HLA-DPB1. Utilizing PCR sequencing, we verified the relationship of the top 3 most significant SNPs (rs1042169, rs9277355 and rs9277356) from the GWAS and genotypes of HLA-DPB1 with the HB vaccine response in Korean infants who received a scheduled vaccination. The DPB1*04:02 allele has G, C and A nucleotides for the 3SNP sites, and was significantly more frequent in responders than in nonresponders (10.9% vs 1.0%, Pc = 0.018). DPB1*05:01 was significantly more frequent in nonresponders than in responders (49.0% vs 31.1%, Pc = 0.018). In multivariate logistic regression, DPB1*04:02 showed a significant association with both vaccine response (P = 0.037, OR = 8.465) and high-titre response (P = 0.027, OR = 9.860). The haplotypes rs1042169 G - rs9277355 C - rs9277356 A showed a significant association with a high-titre response only (P = 0.002, OR = 2.941). In conclusion, DPB1*04:02 possessing rs1042169 G - rs9277355 C - rs9277356 A is an independent predictor of the HB vaccine response in Koreans.
Collapse
Affiliation(s)
- Soie Chung
- Department of Laboratory Medicine and Healthcare Research Institute, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eun Youn Roh
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Laboratory Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea.,Seoul Metropolitan Public Cord Blood Bank-ALLCORD, Seoul, Republic of Korea
| | - Boram Park
- Department of Public Health Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yunhwan Lee
- Department of Public Health Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sue Shin
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Laboratory Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea.,Seoul Metropolitan Public Cord Blood Bank-ALLCORD, Seoul, Republic of Korea
| | - Jong Hyun Yoon
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Laboratory Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea.,Seoul Metropolitan Public Cord Blood Bank-ALLCORD, Seoul, Republic of Korea
| | - Eun Young Song
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
8
|
Philips CA, Augustine P, Padsalgi G. Herbal Medicines and Reactivation of Chronic Hepatitis B Virus Infection. HEPATITIS MONTHLY 2018; In Press. [DOI: 10.5812/hepatmon.81000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
|