1
|
Chauhan P, Begum MY, Narapureddy BR, Gupta S, Wadhwa K, Singh G, Kumawat R, Sharma N, Ballal S, Jha SK, Abomughaid MM, B D, Ojha S, Jha NK. Unveiling the Involvement of Herpes Simplex Virus-1 in Alzheimer's Disease: Possible Mechanisms and Therapeutic Implications. Mol Neurobiol 2025; 62:5850-5874. [PMID: 39648189 DOI: 10.1007/s12035-024-04535-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/01/2024] [Indexed: 12/10/2024]
Abstract
Viruses pose a significant challenge and threat to human health, as demonstrated by the current COVID-19 pandemic. Neurodegeneration, particularly in the case of Alzheimer's disease (AD), is significantly influenced by viral infections. AD is a neurodegenerative disease that affects people of all ages and poses a significant threat to millions of individuals worldwide. The precise mechanism behind its development is not yet fully understood; however, the emergence and advancement of AD can be hastened by various environmental factors, such as bacterial and viral infections. There has been a longstanding suspicion that the herpes simplex virus-1 (HSV-1) may have a role to play in the development or advancement of AD. Reactivation of HSV-1 could potentially lead to damage to neurons, either by direct means or indirectly by triggering inflammation. This article provides an overview of the connection between HSV-1 infections and immune cells (astrocytes, microglia, and oligodendrocytes) in the progression of AD. It summarizes recent scientific research on how HSV-1 affects neurons, which could potentially shed light on the clinical features and treatment options for AD. In addition, the paper has explored the impact of HSV-1 on neurons and its role in various aspects of AD, such as Aβ secretion, tau hyperphosphorylation, metabolic dysregulation, oxidative damage, apoptosis, and autophagy. It is believed that the immune response triggered by HSV-1 reactivation plays a role in the development of neurodegeneration in AD. Despite the lack of a cure for AD, researchers have made significant efforts to study the clinical and pathological aspects of the disease, identify biomarkers, and gain insight into its underlying causes. The goal is to achieve early diagnosis and develop treatments that can modify the progression of the disease. The current article discusses the most promising therapy for combating the viral impacts, which provides additional evidence for the frequent reactivations of latent HSV-1 in the AD brain. However, further research is still required to establish the molecular and cellular mechanisms underlying the development of AD through the reactivation of HSV-1. This could potentially lead to new insights in drug development aimed at preventing HSV-1 reactivation and the subsequent development and progression of AD.
Collapse
Affiliation(s)
- Payal Chauhan
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - M Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Bayapa Reddy Narapureddy
- Department of Public Health, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Karan Wadhwa
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Govind Singh
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India.
| | - Rohit Kumawat
- Department of Neurology, National Institute of Medical Sciences, NIMS University Rajsthan, Jaipur, India
| | - Naveen Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges Jhanjeri, Mohali, 140307, Punjab, India
| | - Suhas Ballal
- Departmant of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, Delhi, 110008, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Dheepak B
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Biosciences & Technology, Galgotias University, Greater Noida, India.
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India.
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, 144411, India.
| |
Collapse
|
2
|
Zhao M, Wang Y, Shen Y, Wei C, Zhang G, Sun L. A review of the roles of pathogens in Alzheimer's disease. Front Neurosci 2024; 18:1439055. [PMID: 39224577 PMCID: PMC11366636 DOI: 10.3389/fnins.2024.1439055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Alzheimer's disease (AD) is one of the leading causes of dementia and is characterized by memory loss, mental and behavioral abnormalities, and impaired ability to perform daily activities. Even as a global disease that threatens human health, effective treatments to slow the progression of AD have not been found, despite intensive research and significant investment. In recent years, the role of infections in the etiology of AD has sparked intense debate. Pathogens invade the central nervous system through a damaged blood-brain barrier or nerve trunk and disrupt the neuronal structure and function as well as homeostasis of the brain microenvironment through a series of molecular biological events. In this review, we summarize the various pathogens involved in AD pathology, discuss potential interactions between pathogens and AD, and provide an overview of the promising future of anti-pathogenic therapies for AD.
Collapse
Affiliation(s)
| | | | | | | | | | - Li Sun
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
3
|
Wang Y, Tang Y, Liu TH, Shao L, Li C, Wang Y, Tan P. Integrative Multi-omics Analysis to Characterize Herpes Virus Infection Increases the Risk of Alzheimer's Disease. Mol Neurobiol 2024; 61:5337-5352. [PMID: 38191694 DOI: 10.1007/s12035-023-03903-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 12/22/2023] [Indexed: 01/10/2024]
Abstract
Evidence suggests that herpes virus infection is associated with an increased risk of Alzheimer's disease (AD), and innate and adaptive immunity plays an important role in the association. Although there have been many studies, the mechanism of the association is still unclear. This study aims to reveal the underlying molecular and immune regulatory network through multi-omics data and provide support for the study of the mechanism of infection and AD in the future. Here, we found that the herpes virus infection significantly increased the risk of AD. Genes associated with the occurrence and development of AD and genetically regulated by herpes virus infection are mainly enrichment in immune-related pathways. The 22 key regulatory genes identified by machine learning are mainly immune genes. They are also significantly related to the infiltration changes of 3 immune cell in AD. Furthermore, many of these genes have previously been reported to be linked, or potentially linked, to the pathological mechanisms of both herpes virus infection and AD. In conclusion, this study contributes to the study of the mechanisms related to herpes virus infection and AD, and indicates that the regulation of innate and adaptive immunity may be an effective strategy for preventing and treating herpes virus infection and AD. Additionally, the identified key regulatory genes, whether previously studied or newly discovered, may serve as valuable targets for prevention and treatment strategies.
Collapse
Affiliation(s)
- Yongheng Wang
- Department of Bioinformatics, School of Basic Medicine, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproductive and Development, Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Yaqin Tang
- Department of Bioinformatics, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Tai-Hang Liu
- Department of Bioinformatics, School of Basic Medicine, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproductive and Development, Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Lizhen Shao
- Department of Bioinformatics, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Chunying Li
- Chongqing Vocational College of Resources and Environmental Protection, Chongqing, China.
| | - Yingxiong Wang
- Joint International Research Laboratory of Reproductive and Development, Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, China.
| | - Pengcheng Tan
- Department of Bioinformatics, School of Basic Medicine, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
4
|
Ajala A, Uzairu A, Shallangwa GA, Abechi SE. Virtual screening, molecular docking simulation and ADMET prediction of some selected natural products as potential inhibitors of NLRP3 inflammasomes as drug candidates for Alzheimer disease. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
5
|
de Erausquin GA, Snyder H, Brugha TS, Seshadri S, Carrillo M, Sagar R, Huang Y, Newton C, Tartaglia C, Teunissen C, Håkanson K, Akinyemi R, Prasad K, D'Avossa G, Gonzalez‐Aleman G, Hosseini A, Vavougios GD, Sachdev P, Bankart J, Mors NPO, Lipton R, Katz M, Fox PT, Katshu MZ, Iyengar MS, Weinstein G, Sohrabi HR, Jenkins R, Stein DJ, Hugon J, Mavreas V, Blangero J, Cruchaga C, Krishna M, Wadoo O, Becerra R, Zwir I, Longstreth WT, Kroenenberg G, Edison P, Mukaetova‐Ladinska E, Staufenberg E, Figueredo‐Aguiar M, Yécora A, Vaca F, Zamponi HP, Re VL, Majid A, Sundarakumar J, Gonzalez HM, Geerlings MI, Skoog I, Salmoiraghi A, Boneschi FM, Patel VN, Santos JM, Arroyo GR, Moreno AC, Felix P, Gallo C, Arai H, Yamada M, Iwatsubo T, Sharma M, Chakraborty N, Ferreccio C, Akena D, Brayne C, Maestre G, Blangero SW, Brusco LI, Siddarth P, Hughes TM, Zuñiga AR, Kambeitz J, Laza AR, Allen N, Panos S, Merrill D, Ibáñez A, Tsuang D, Valishvili N, Shrestha S, Wang S, Padma V, Anstey KJ, Ravindrdanath V, Blennow K, Mullins P, Łojek E, Pria A, Mosley TH, Gowland P, Girard TD, Bowtell R, Vahidy FS. Chronic neuropsychiatric sequelae of SARS-CoV-2: Protocol and methods from the Alzheimer's Association Global Consortium. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12348. [PMID: 36185993 PMCID: PMC9494609 DOI: 10.1002/trc2.12348] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 04/11/2022] [Accepted: 06/14/2022] [Indexed: 12/27/2022]
Abstract
Introduction Coronavirus disease 2019 (COVID-19) has caused >3.5 million deaths worldwide and affected >160 million people. At least twice as many have been infected but remained asymptomatic or minimally symptomatic. COVID-19 includes central nervous system manifestations mediated by inflammation and cerebrovascular, anoxic, and/or viral neurotoxicity mechanisms. More than one third of patients with COVID-19 develop neurologic problems during the acute phase of the illness, including loss of sense of smell or taste, seizures, and stroke. Damage or functional changes to the brain may result in chronic sequelae. The risk of incident cognitive and neuropsychiatric complications appears independent from the severity of the original pulmonary illness. It behooves the scientific and medical community to attempt to understand the molecular and/or systemic factors linking COVID-19 to neurologic illness, both short and long term. Methods This article describes what is known so far in terms of links among COVID-19, the brain, neurological symptoms, and Alzheimer's disease (AD) and related dementias. We focus on risk factors and possible molecular, inflammatory, and viral mechanisms underlying neurological injury. We also provide a comprehensive description of the Alzheimer's Association Consortium on Chronic Neuropsychiatric Sequelae of SARS-CoV-2 infection (CNS SC2) harmonized methodology to address these questions using a worldwide network of researchers and institutions. Results Successful harmonization of designs and methods was achieved through a consensus process initially fragmented by specific interest groups (epidemiology, clinical assessments, cognitive evaluation, biomarkers, and neuroimaging). Conclusions from subcommittees were presented to the whole group and discussed extensively. Presently data collection is ongoing at 19 sites in 12 countries representing Asia, Africa, the Americas, and Europe. Discussion The Alzheimer's Association Global Consortium harmonized methodology is proposed as a model to study long-term neurocognitive sequelae of SARS-CoV-2 infection. Key Points The following review describes what is known so far in terms of molecular and epidemiological links among COVID-19, the brain, neurological symptoms, and AD and related dementias (ADRD)The primary objective of this large-scale collaboration is to clarify the pathogenesis of ADRD and to advance our understanding of the impact of a neurotropic virus on the long-term risk of cognitive decline and other CNS sequelae. No available evidence supports the notion that cognitive impairment after SARS-CoV-2 infection is a form of dementia (ADRD or otherwise). The longitudinal methodologies espoused by the consortium are intended to provide data to answer this question as clearly as possible controlling for possible confounders. Our specific hypothesis is that SARS-CoV-2 triggers ADRD-like pathology following the extended olfactory cortical network (EOCN) in older individuals with specific genetic susceptibility.The proposed harmonization strategies and flexible study designs offer the possibility to include large samples of under-represented racial and ethnic groups, creating a rich set of harmonized cohorts for future studies of the pathophysiology, determinants, long-term consequences, and trends in cognitive aging, ADRD, and vascular disease.We provide a framework for current and future studies to be carried out within the Consortium. and offers a "green paper" to the research community with a very broad, global base of support, on tools suitable for low- and middle-income countries aimed to compare and combine future longitudinal data on the topic.The Consortium proposes a combination of design and statistical methods as a means of approaching causal inference of the COVID-19 neuropsychiatric sequelae. We expect that deep phenotyping of neuropsychiatric sequelae may provide a series of candidate syndromes with phenomenological and biological characterization that can be further explored. By generating high-quality harmonized data across sites we aim to capture both descriptive and, where possible, causal associations.
Collapse
|
6
|
Rampa A, Gobbi S, Belluti F, Bisi A. Tackling Alzheimer's Disease with Existing Drugs: A Promising Strategy for Bypassing Obstacles. Curr Med Chem 2021; 28:2305-2327. [PMID: 32867634 DOI: 10.2174/0929867327666200831140745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/22/2020] [Accepted: 08/08/2020] [Indexed: 11/22/2022]
Abstract
The unmet need for the development of effective drugs to treat Alzheimer 's disease has been steadily growing, representing a major challenge in drug discovery. In this context, drug repurposing, namely the identification of novel therapeutic indications for approved or investigational compounds, can be seen as an attractive attempt to obtain new medications reducing both the time and the economic burden usually required for research and development programs. In the last years, several classes of drugs have evidenced promising beneficial effects in neurodegenerative diseases, and for some of them, preliminary clinical trials have been started. This review aims to illustrate some of the most recent examples of drugs reprofiled for Alzheimer's disease, considering not only the finding of new uses for existing drugs but also the new hypotheses on disease pathogenesis that could promote previously unconsidered therapeutic regimens. Moreover, some examples of structural modifications performed on existing drugs in order to obtain multifunctional compounds will also be described.
Collapse
Affiliation(s)
- Angela Rampa
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Silvia Gobbi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Federica Belluti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Alessandra Bisi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| |
Collapse
|
7
|
Chen LY, Hwang AC, Huang CY, Chen LK, Wang FD, Chan YJ. CMV infection, CD19 + B cell depletion, and Lymphopenia as predictors for unexpected admission in the institutionalized elderly. IMMUNITY & AGEING 2021; 18:21. [PMID: 33947427 PMCID: PMC8094471 DOI: 10.1186/s12979-021-00233-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 04/13/2021] [Indexed: 11/27/2022]
Abstract
Background Chronic infections played a detrimental role on health outcomes in the aged population, and had complex associations with lymphocyte subsets distribution. Our study aimed to explore the predictive roles of chronic infections, lymphopenia, and lymphocyte subsets on unexpected admission and mortality in the institutionalized oldest-old during 3 year follow-up period. Results There were 163 participants enrolled prospectively with median age of 87.3 years (IQR: 83.1–90.2), male of 88.3%, and being followed for 156.4 weeks (IQR: 136.9–156.4 weeks). The unexpected admission and mortality rates were 55.2 and 24.5% respectively. The Cox proportional hazards models demonstrated the 3rd quartile of cytomegalovirus IgG (OR: 3.26, 95% CI: 1.55–6.84), lymphopenia (OR: 2.85, 95% CI: 1.2–6.74), and 1st quartile of CD19+ B cell count (OR: 2.84, 95% CI: 1.29–6.25) predicted elevated risks of unexpected admission after adjusting for potential confounders; while the 3rd quartile of CD3+ T cell indicated a reduced risk of mortality (OR: 0.19, 95% CI: 0.05–0.71). Negative association between CMV IgG and CD19+ B cell count suggested that CMV infection might lead to B cell depletion via decreasing memory B cells repertoire. Conclusions CMV infection, lymphopenia, and CD19+ B cell depletion might predict greater risk of unexpected admission, while more CD3+ T cell would suggest a reduced risk of mortality among the oldest-old population. A non-linear or U-shaped relationship was supposed between health outcomes and CMV infection, CD3+ T cell, or CD19+ B cell counts. Further prospective studies with more participants included would be needed to elucidate above findings.
Collapse
Affiliation(s)
- Liang-Yu Chen
- Institute of Public Health, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St, Taipei, 11221, Taiwan.,Aging and Health Research Center, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St, Taipei, 11221, Taiwan.,Center for Geriatrics and Gerontology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shi-Pai Rd, Taipei, 11217, Taiwan
| | - An-Chun Hwang
- Institute of Public Health, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St, Taipei, 11221, Taiwan.,Aging and Health Research Center, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St, Taipei, 11221, Taiwan.,Center for Geriatrics and Gerontology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shi-Pai Rd, Taipei, 11217, Taiwan
| | - Chung-Yu Huang
- Institute of Public Health, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St, Taipei, 11221, Taiwan.,Aging and Health Research Center, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St, Taipei, 11221, Taiwan.,Center for Geriatrics and Gerontology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shi-Pai Rd, Taipei, 11217, Taiwan
| | - Liang-Kung Chen
- Institute of Public Health, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St, Taipei, 11221, Taiwan.,Aging and Health Research Center, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St, Taipei, 11221, Taiwan.,Center for Geriatrics and Gerontology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shi-Pai Rd, Taipei, 11217, Taiwan
| | - Fu-Der Wang
- School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St, Taipei, 11221, Taiwan.,Division of Infectious Disease, Department of Medicine, Taipei Veterans General Hospital, No. 201, Sec. 2, Shi-Pai Rd, Taipei, 11217, Taiwan
| | - Yu-Jiun Chan
- Institute of Public Health, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St, Taipei, 11221, Taiwan. .,Division of Infectious Disease, Department of Medicine, Taipei Veterans General Hospital, No. 201, Sec. 2, Shi-Pai Rd, Taipei, 11217, Taiwan. .,Division of Microbiology, Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, No. 201, Sec. 2, Shi-Pai Rd, Taipei, 11217, Taiwan.
| |
Collapse
|
8
|
LAMP2 deficiency attenuates the neurodegeneration markers induced by HSV-1 infection. Neurochem Int 2021; 146:105032. [PMID: 33781848 DOI: 10.1016/j.neuint.2021.105032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 11/22/2022]
Abstract
Mounting evidence suggests a major role of infectious agents in the pathogenesis of sporadic Alzheimer's disease (AD). Among them, herpes simplex virus type 1 (HSV-1) infection has emerged as a major factor in the etiology of AD. HSV-1 is able to induce some of the main alterations of the disease such as hyperphosphorylation of tau protein and accumulation of amyloid-β peptide. Functional genomic analysis of a cell model of HSV-1 infection and oxidative stress developed in our laboratory revealed lysosomal system to be the main pathway altered, and the lysosome-associated membrane protein 2 (LAMP2) gene one of the most strongly modulated genes. The aim of this work is to study LAMP2 as an AD candidate gene and to investigate its role in the neurodegeneration induced by HSV-1 using a LAMP2 knockdown cell model. LAMP2 deficiency led to a significant reduction of viral DNA replication and formation of infectious particles. In addition, tau hyperphosphorylation and inhibition of Aβ secretion induced by the virus were attenuated by the absence of LAMP2. Finally, genetic association studies revealed LAMP2 genetic variants to be associated with AD risk. In summary, our data indicate that LAMP2 could be a suitable candidate to mediate the AD-like phenotype caused by HSV-1.
Collapse
|
9
|
Leblhuber F, Ehrlich D, Steiner K, Geisler S, Fuchs D, Lanser L, Kurz K. The Immunopathogenesis of Alzheimer's Disease Is Related to the Composition of Gut Microbiota. Nutrients 2021; 13:361. [PMID: 33504065 PMCID: PMC7912578 DOI: 10.3390/nu13020361] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 12/11/2022] Open
Abstract
The microbiota-gut-brain axis plays an important role in the development of neurodegenerative diseases. Commensal and pathogenic enteric bacteria can influence brain and immune system function by the production of lipopolysaccharides and amyloid. Dysbiosis of the intestinal microbiome induces local and consecutively systemic immune-mediated inflammation. Proinflammatory cytokines then trigger neuroinflammation and finally neurodegeneration. Immune-mediated oxidative stress can lead to a deficiency of vitamins and essential micronutrients. Furthermore, the wrong composition of gut microbiota might impair the intake and metabolization of nutrients. In patients with Alzheimer's disease (AD) significant alterations of the gut microbiota have been demonstrated. Standard Western diet, infections, decreased physical activity and chronic stress impact the composition and diversity of gut microbiota. A higher abundancy of "pro-inflammatory" gut microbiota goes along with enhanced systemic inflammation and neuroinflammatory processes. Thus, AD beginning in the gut is closely related to the imbalance of gut microbiota. Modulation of gut microbiota by Mediterranean diet, probiotics and curcumin can slow down cognitive decline and alter the gut microbiome significantly. A multi-domain intervention approach addressing underlying causes of AD (inflammation, infections, metabolic alterations like insulin resistance and nutrient deficiency, stress) appears very promising to reduce or even reverse cognitive decline by exerting positive effects on the gut microbiota.
Collapse
Affiliation(s)
- Friedrich Leblhuber
- Department of Gerontology, Neuromed Campus, Kepler University Clinic, Linz A-4020, Austria; (F.L.); (D.E.); (K.S.)
| | - Daniela Ehrlich
- Department of Gerontology, Neuromed Campus, Kepler University Clinic, Linz A-4020, Austria; (F.L.); (D.E.); (K.S.)
| | - Kostja Steiner
- Department of Gerontology, Neuromed Campus, Kepler University Clinic, Linz A-4020, Austria; (F.L.); (D.E.); (K.S.)
| | - Simon Geisler
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck A-6020, Austria; (S.G.); (D.F.)
| | - Dietmar Fuchs
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck A-6020, Austria; (S.G.); (D.F.)
| | - Lukas Lanser
- Department of Internal Medicine, Medical University of Innsbruck, Innsbruck A-6020, Austria;
| | - Katharina Kurz
- Department of Internal Medicine, Medical University of Innsbruck, Innsbruck A-6020, Austria;
| |
Collapse
|
10
|
Zhao C, Strobino K, Moon YP, Cheung YK, Sacco RL, Stern Y, Elkind MSV. APOE ϵ4 modifies the relationship between infectious burden and poor cognition. Neurol Genet 2020; 6:e462. [PMID: 32754642 PMCID: PMC7357411 DOI: 10.1212/nxg.0000000000000462] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/18/2020] [Indexed: 12/27/2022]
Abstract
OBJECTIVE We investigated whether APOE ϵ4 is an effect modifier of the association between infectious burden (IB) and poor cognition in a multiethnic cohort, the Northern Manhattan Study. METHODS IB was assessed by a quantitative weighted index of exposure to common pathogens associated with vascular risk, infectious burden index (IBI), and by serology for individual infections. Cognition was assessed by completion of the Mini-Mental State Examination at baseline and a full neuropsychological test battery after a median follow-up of approximately 6 years. Adjusted linear and logistic regressions estimated the association between IBI and cognition, with a term included for the interaction between APOE ϵ4 and IBI. RESULTS Among those with full neuropsychological test results (n = 569), there were interactions between IBI and APOE ϵ4 (p = 0.07) and herpes simplex virus 1 (HSV-1) and APOE ϵ4 (p = 0.02) for processing speed. IBI was associated with slower processing speed among non-ϵ4 carriers (β = -0.08 per SD change in IBI, 95% confidence interval [CI] -0.16 to -0.01), but not among APOE ϵ4 carriers (β = 0.06 per SD change in IBI, 95% CI -0.08 to 0.19). HSV-1 positivity was associated with slower processing speed among non-ϵ4 carriers (β = -0.24, 95% CI -0.45 to -0.03), but not among APOE ϵ4 carriers (β = 0.27, 95% CI -0.09 to 0.64). CONCLUSIONS Potential effect modification by the APOE ϵ4 allele on the relationship of infection, and particularly viral infection, to cognitive processing speed warrants further investigation.
Collapse
Affiliation(s)
- Chen Zhao
- Department of Neurology (C.Z., K.S., Y.P.M.), Vagelos College of Physicians and Surgeons, Columbia University, New York, NY; Department of Neurology (C.Z.), Penn State Health Milton S. Hershey Medical Center; Department of Public Health Sciences (C.Z.), Pennsylvania State College of Medicine, Pennsylvania State University, Hershey, PA; Department of Biostatistics (Y.K.C.), Mailman School of Public Health, Columbia University, New York, NY; Departments of Neurology (R.L.S.), Public Health Sciences, and Human Genomics, Miller School of Medicine, University of Miami, Miami, FL; Cognitive Neuroscience Division (Y.S.), Department of Neurology, Vagelos College of Physicians and Surgeons, Taub Institute for Research of Alzheimer's Disease and the Aging Brain, Gertrude H. Sergievsky Center, Columbia University, New York, NY; Department of Neurology (M.S.V.E.), Vagelos College of Physicians and Surgeons; and Department of Epidemiology (M.S.V.E.), Mailman School of Public Health, Columbia University, New York, NY
| | - Kevin Strobino
- Department of Neurology (C.Z., K.S., Y.P.M.), Vagelos College of Physicians and Surgeons, Columbia University, New York, NY; Department of Neurology (C.Z.), Penn State Health Milton S. Hershey Medical Center; Department of Public Health Sciences (C.Z.), Pennsylvania State College of Medicine, Pennsylvania State University, Hershey, PA; Department of Biostatistics (Y.K.C.), Mailman School of Public Health, Columbia University, New York, NY; Departments of Neurology (R.L.S.), Public Health Sciences, and Human Genomics, Miller School of Medicine, University of Miami, Miami, FL; Cognitive Neuroscience Division (Y.S.), Department of Neurology, Vagelos College of Physicians and Surgeons, Taub Institute for Research of Alzheimer's Disease and the Aging Brain, Gertrude H. Sergievsky Center, Columbia University, New York, NY; Department of Neurology (M.S.V.E.), Vagelos College of Physicians and Surgeons; and Department of Epidemiology (M.S.V.E.), Mailman School of Public Health, Columbia University, New York, NY
| | - Yeseon Park Moon
- Department of Neurology (C.Z., K.S., Y.P.M.), Vagelos College of Physicians and Surgeons, Columbia University, New York, NY; Department of Neurology (C.Z.), Penn State Health Milton S. Hershey Medical Center; Department of Public Health Sciences (C.Z.), Pennsylvania State College of Medicine, Pennsylvania State University, Hershey, PA; Department of Biostatistics (Y.K.C.), Mailman School of Public Health, Columbia University, New York, NY; Departments of Neurology (R.L.S.), Public Health Sciences, and Human Genomics, Miller School of Medicine, University of Miami, Miami, FL; Cognitive Neuroscience Division (Y.S.), Department of Neurology, Vagelos College of Physicians and Surgeons, Taub Institute for Research of Alzheimer's Disease and the Aging Brain, Gertrude H. Sergievsky Center, Columbia University, New York, NY; Department of Neurology (M.S.V.E.), Vagelos College of Physicians and Surgeons; and Department of Epidemiology (M.S.V.E.), Mailman School of Public Health, Columbia University, New York, NY
| | - Ying Kuen Cheung
- Department of Neurology (C.Z., K.S., Y.P.M.), Vagelos College of Physicians and Surgeons, Columbia University, New York, NY; Department of Neurology (C.Z.), Penn State Health Milton S. Hershey Medical Center; Department of Public Health Sciences (C.Z.), Pennsylvania State College of Medicine, Pennsylvania State University, Hershey, PA; Department of Biostatistics (Y.K.C.), Mailman School of Public Health, Columbia University, New York, NY; Departments of Neurology (R.L.S.), Public Health Sciences, and Human Genomics, Miller School of Medicine, University of Miami, Miami, FL; Cognitive Neuroscience Division (Y.S.), Department of Neurology, Vagelos College of Physicians and Surgeons, Taub Institute for Research of Alzheimer's Disease and the Aging Brain, Gertrude H. Sergievsky Center, Columbia University, New York, NY; Department of Neurology (M.S.V.E.), Vagelos College of Physicians and Surgeons; and Department of Epidemiology (M.S.V.E.), Mailman School of Public Health, Columbia University, New York, NY
| | - Ralph L Sacco
- Department of Neurology (C.Z., K.S., Y.P.M.), Vagelos College of Physicians and Surgeons, Columbia University, New York, NY; Department of Neurology (C.Z.), Penn State Health Milton S. Hershey Medical Center; Department of Public Health Sciences (C.Z.), Pennsylvania State College of Medicine, Pennsylvania State University, Hershey, PA; Department of Biostatistics (Y.K.C.), Mailman School of Public Health, Columbia University, New York, NY; Departments of Neurology (R.L.S.), Public Health Sciences, and Human Genomics, Miller School of Medicine, University of Miami, Miami, FL; Cognitive Neuroscience Division (Y.S.), Department of Neurology, Vagelos College of Physicians and Surgeons, Taub Institute for Research of Alzheimer's Disease and the Aging Brain, Gertrude H. Sergievsky Center, Columbia University, New York, NY; Department of Neurology (M.S.V.E.), Vagelos College of Physicians and Surgeons; and Department of Epidemiology (M.S.V.E.), Mailman School of Public Health, Columbia University, New York, NY
| | - Yaakov Stern
- Department of Neurology (C.Z., K.S., Y.P.M.), Vagelos College of Physicians and Surgeons, Columbia University, New York, NY; Department of Neurology (C.Z.), Penn State Health Milton S. Hershey Medical Center; Department of Public Health Sciences (C.Z.), Pennsylvania State College of Medicine, Pennsylvania State University, Hershey, PA; Department of Biostatistics (Y.K.C.), Mailman School of Public Health, Columbia University, New York, NY; Departments of Neurology (R.L.S.), Public Health Sciences, and Human Genomics, Miller School of Medicine, University of Miami, Miami, FL; Cognitive Neuroscience Division (Y.S.), Department of Neurology, Vagelos College of Physicians and Surgeons, Taub Institute for Research of Alzheimer's Disease and the Aging Brain, Gertrude H. Sergievsky Center, Columbia University, New York, NY; Department of Neurology (M.S.V.E.), Vagelos College of Physicians and Surgeons; and Department of Epidemiology (M.S.V.E.), Mailman School of Public Health, Columbia University, New York, NY
| | - Mitchell S V Elkind
- Department of Neurology (C.Z., K.S., Y.P.M.), Vagelos College of Physicians and Surgeons, Columbia University, New York, NY; Department of Neurology (C.Z.), Penn State Health Milton S. Hershey Medical Center; Department of Public Health Sciences (C.Z.), Pennsylvania State College of Medicine, Pennsylvania State University, Hershey, PA; Department of Biostatistics (Y.K.C.), Mailman School of Public Health, Columbia University, New York, NY; Departments of Neurology (R.L.S.), Public Health Sciences, and Human Genomics, Miller School of Medicine, University of Miami, Miami, FL; Cognitive Neuroscience Division (Y.S.), Department of Neurology, Vagelos College of Physicians and Surgeons, Taub Institute for Research of Alzheimer's Disease and the Aging Brain, Gertrude H. Sergievsky Center, Columbia University, New York, NY; Department of Neurology (M.S.V.E.), Vagelos College of Physicians and Surgeons; and Department of Epidemiology (M.S.V.E.), Mailman School of Public Health, Columbia University, New York, NY
| |
Collapse
|
11
|
Fülöp T, Munawara U, Larbi A, Desroches M, Rodrigues S, Catanzaro M, Guidolin A, Khalil A, Bernier F, Barron AE, Hirokawa K, Beauregard PB, Dumoulin D, Bellenger JP, Witkowski JM, Frost E. Targeting Infectious Agents as a Therapeutic Strategy in Alzheimer's Disease. CNS Drugs 2020; 34:673-695. [PMID: 32458360 PMCID: PMC9020372 DOI: 10.1007/s40263-020-00737-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent dementia in the world. Its cause(s) are presently largely unknown. The most common explanation for AD, now, is the amyloid cascade hypothesis, which states that the cause of AD is senile plaque formation by the amyloid β peptide, and the formation of neurofibrillary tangles by hyperphosphorylated tau. A second, burgeoning theory by which to explain AD is based on the infection hypothesis. Much experimental and epidemiological data support the involvement of infections in the development of dementia. According to this mechanism, the infection either directly or via microbial virulence factors precedes the formation of amyloid β plaques. The amyloid β peptide, possessing antimicrobial properties, may be beneficial at an early stage of AD, but becomes detrimental with the progression of the disease, concomitantly with alterations to the innate immune system at both the peripheral and central levels. Infection results in neuroinflammation, leading to, and sustained by, systemic inflammation, causing eventual neurodegeneration, and the senescence of the immune cells. The sources of AD-involved microbes are various body microbiome communities from the gut, mouth, nose, and skin. The infection hypothesis of AD opens a vista to new therapeutic approaches, either by treating the infection itself or modulating the immune system, its senescence, or the body's metabolism, either separately, in parallel, or in a multi-step way.
Collapse
Affiliation(s)
- Tamàs Fülöp
- Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Research Center on Aging, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada.
| | - Usma Munawara
- Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Research Center on Aging, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Biopolis, Singapore, Singapore
- Department of Biology, Faculty of Science, University Tunis El Manar, Tunis, Tunisia
| | - Mathieu Desroches
- MathNeuro Team, Inria Sophia Antipolis Méditerranée, Valbonne, France
- Université Côte d'Azur, Nice, France
| | - Serafim Rodrigues
- Ikerbasque, The Basque Foundation for Science, Bilbao, Spain
- BCAM, The Basque Center for Applied Mathematics, Bilbao, Spain
| | - Michele Catanzaro
- Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Research Center on Aging, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Andrea Guidolin
- BCAM, The Basque Center for Applied Mathematics, Bilbao, Spain
| | - Abdelouahed Khalil
- Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Research Center on Aging, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - François Bernier
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Japan
| | - Annelise E Barron
- Department of Bioengineering, Stanford School of Medicine, Stanford, CA, USA
| | - Katsuiku Hirokawa
- Department of Pathology, Institute of Health and Life Science, Tokyo and Nito-memory Nakanosogo Hospital, Tokyo Med. Dent. University, Tokyo, Japan
| | - Pascale B Beauregard
- Department of Biology, Faculty of Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - David Dumoulin
- Department of Biology, Faculty of Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Jean-Philippe Bellenger
- Department of Chemistry, Faculty of Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdansk, Gdansk, Poland
| | - Eric Frost
- Department of Microbiology and Infectious diseases, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
12
|
Allnutt MA, Johnson K, Bennett DA, Connor SM, Troncoso JC, Pletnikova O, Albert MS, Resnick SM, Scholz SW, De Jager PL, Jacobson S. Human Herpesvirus 6 Detection in Alzheimer's Disease Cases and Controls across Multiple Cohorts. Neuron 2020; 105:1027-1035.e2. [PMID: 31983538 PMCID: PMC7182308 DOI: 10.1016/j.neuron.2019.12.031] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/11/2019] [Accepted: 12/26/2019] [Indexed: 01/03/2023]
Abstract
The interplay between viral infection and Alzheimer's disease (AD) has long been an area of interest, but proving causality has been elusive. Several recent studies have renewed the debate concerning the role of herpesviruses, and human herpesvirus 6 (HHV-6) in particular, in AD. We screened for HHV-6 detection across three independent AD brain repositories using (1) RNA sequencing (RNA-seq) datasets and (2) DNA samples extracted from AD and non-AD control brains. The RNA-seq data were screened for pathogens against taxon references from over 25,000 microbes, including 118 human viruses, whereas DNA samples were probed for PCR reactivity to HHV-6A and HHV-6B. HHV-6 demonstrated little specificity to AD brains over controls by either method, whereas other viruses, such as Epstein-Barr virus (EBV) and cytomegalovirus (CMV), were detected at comparable levels. These direct methods of viral detection do not suggest an association between HHV-6 and AD.
Collapse
Affiliation(s)
- Mary Alice Allnutt
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA
| | - Kory Johnson
- Bioinformatics Section, Information Technology & Bioinformatics Program, Division of Intramural Research (DIR), National Institute of Neurological Disorders and Stroke/National Institute of Health, Bethesda, MD 20814, USA
| | - David A Bennett
- Alzheimer Disease Center, RUSH University, Chicago, IL 60612, USA
| | - Sarah M Connor
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| | - Juan C Troncoso
- Department of Pathology (Neuropathology), Johns Hopkins University Medical Center, Baltimore, MD 21205, USA
| | - Olga Pletnikova
- Department of Pathology (Neuropathology), Johns Hopkins University Medical Center, Baltimore, MD 21205, USA
| | - Marilyn S Albert
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Sonja W Scholz
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA
| | - Philip L De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| | - Steven Jacobson
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA.
| |
Collapse
|
13
|
Cordaro M, Cuzzocrea S, Crupi R. An Update of Palmitoylethanolamide and Luteolin Effects in Preclinical and Clinical Studies of Neuroinflammatory Events. Antioxidants (Basel) 2020; 9:antiox9030216. [PMID: 32150935 PMCID: PMC7139331 DOI: 10.3390/antiox9030216] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023] Open
Abstract
The inflammation process represents of a dynamic series of phenomena that manifest themselves with an intense vascular reaction. Neuroinflammation is a reply from the central nervous system (CNS) and the peripheral nervous system (PNS) to a changed homeostasis. There are two cell systems that mediate this process: the glia of the CNS and the lymphocites, monocytes, and macrophages of the hematopoietic system. In both the peripheral and central nervous systems, neuroinflammation plays an important role in the pathogenesis of neurodegenerative diseases, such as Parkinson’s and Alzheimer’s diseases, and in neuropsychiatric illnesses, such as depression and autism spectrum disorders. The resolution of neuroinflammation is a process that allows for inflamed tissues to return to homeostasis. In this process the important players are represented by lipid mediators. Among the naturally occurring lipid signaling molecules, a prominent role is played by the N-acylethanolamines, namely N-arachidonoylethanolamine and its congener N-palmitoylethanolamine, which is also named palmitoylethanolamide or PEA. PEA possesses a powerful neuroprotective and anti-inflammatory power but has no antioxidant effects per se. For this reason, its co-ultramicronization with the flavonoid luteolin is more efficacious than either molecule alone. Inhibiting or modulating the enzymatic breakdown of PEA represents a complementary therapeutic approach to treating neuroinflammation. The aim of this review is to discuss the role of ultramicronized PEA and co-ultramicronized PEA with luteolin in several neurological diseases using preclinical and clinical approaches.
Collapse
Affiliation(s)
- Marika Cordaro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98100 Messina, Italy;
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Via F. Stagno D’Alcontres 31, 98166 Messina, Italy;
- Department of Pharmacology and Physiology, Saint Louis University, St. Louis, MO 63103, USA
- Correspondence: ; Tel.: +390-906-765-208
| | - Rosalia Crupi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Via F. Stagno D’Alcontres 31, 98166 Messina, Italy;
| |
Collapse
|
14
|
Meta-Analysis of Gene Expression Changes in the Blood of Patients with Mild Cognitive Impairment and Alzheimer's Disease Dementia. Int J Mol Sci 2019; 20:ijms20215403. [PMID: 31671574 PMCID: PMC6862214 DOI: 10.3390/ijms20215403] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022] Open
Abstract
Background: Dementia is a major public health concern affecting approximately 47 million people worldwide. Mild cognitive impairment (MCI) is one form of dementia that affects an individual’s memory with or without affecting their daily life. Alzheimer’s disease dementia (ADD) is a more severe form of dementia that usually affects elderly individuals. It remains unclear whether MCI is a distinct disorder from or an early stage of ADD. Methods: Gene expression data from blood were analyzed to identify potential biomarkers that may be useful for distinguishing between these two forms of dementia. Results: A meta-analysis revealed 91 genes dysregulated in individuals with MCI and 387 genes dysregulated in ADD. Pathway analysis identified seven pathways shared between MCI and ADD and nine ADD-specific pathways. Fifteen transcription factors were associated with MCI and ADD, whereas seven transcription factors were specific for ADD. Mir-335-5p was specific for ADD, suggesting that it may be useful as a biomarker. Diseases that are associated with MCI and ADD included developmental delays, cognition impairment, and movement disorders. Conclusion: These results provide a better molecular understanding of peripheral changes that occur in MCI and ADD patients and may be useful in the identification of diagnostic and prognostic biomarkers.
Collapse
|