1
|
Suzuki Y, Kimura H, Katayama K. Classification of sapoviruses based on comparison of phylogenetic trees for structural and non-structural proteins. GENE REPORTS 2024; 34:101875. [DOI: 10.1016/j.genrep.2023.101875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Mai CTN, Ly LTK, Doan YH, Oka T, Mai LTP, Quyet NT, Mai TNP, Thiem VD, Anh LT, Van Sanh L, Hien ND, Anh DD, Parashar UD, Tate JE, Van Trang N. Prevalence and Characterization of Gastroenteritis Viruses among Hospitalized Children during a Pilot Rotavirus Vaccine Introduction in Vietnam. Viruses 2023; 15:2164. [PMID: 38005842 PMCID: PMC10675811 DOI: 10.3390/v15112164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/16/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Rotavirus (RV), norovirus (NoV), sapovirus (SaV), and human astrovirus (HAstV) are the most common viral causes of gastroenteritis in children worldwide. From 2016 to 2021, we conducted a cross-sectional descriptive study to determine the prevalence of these viruses in hospitalized children under five years old in Nam Dinh and Thua Thien Hue provinces in Vietnam during the pilot introduction of the RV vaccine, Rotavin-M1 (POLYVAC, Hanoi, Vietnam). We randomly selected 2317/6718 (34%) acute diarrheal samples from children <5 years of age enrolled at seven sentinel hospitals from December 2016 to May 2021; this period included one year surveillance pre-vaccination from December 2016 to November 2017. An ELISA kit (Premier Rotaclone®, Meridian Bioscience, Inc., Cincinnati, OH, USA) was used to detect RV, and two multiplex real-time RT-PCR assays were used for the detection of NoV, SaV and HAstV. The prevalence of RV (single infection) was reduced from 41.6% to 22.7% (p < 0.0001) between pre- and post-vaccination periods, while the single NoV infection prevalence more than doubled from 8.8% to 21.8% (p < 0.0001). The SaV and HAstV prevalences slightly increased from 1.9% to 3.4% (p = 0.03) and 2.1% to 3.3% (p = 0.09), respectively, during the same period. Viral co-infections decreased from 7.2% to 6.0% (p = 0.24), mainly due to a reduction in RV infection. Among the genotypeable samples, NoV GII.4, SaV GI.1, and HAstV-1 were the dominant types, representing 57.3%, 32.1%, and 55.0% among the individual viral groups, respectively. As the prevalence of RV decreases following the national RV vaccine introduction in Vietnam, other viral pathogens account for a larger proportion of the remaining diarrhea burden and require continuing close monitoring.
Collapse
Affiliation(s)
- Chu Thi Ngoc Mai
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam; (C.T.N.M.); (L.T.K.L.); (T.N.P.M.); (V.D.T.)
| | - Le Thi Khanh Ly
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam; (C.T.N.M.); (L.T.K.L.); (T.N.P.M.); (V.D.T.)
| | - Yen Hai Doan
- Center for Emergency Preparedness and Response, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Tomoichiro Oka
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Le Thi Phuong Mai
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam; (C.T.N.M.); (L.T.K.L.); (T.N.P.M.); (V.D.T.)
| | - Nguyen Tu Quyet
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam; (C.T.N.M.); (L.T.K.L.); (T.N.P.M.); (V.D.T.)
| | - Tran Ngoc Phuong Mai
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam; (C.T.N.M.); (L.T.K.L.); (T.N.P.M.); (V.D.T.)
| | - Vu Dinh Thiem
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam; (C.T.N.M.); (L.T.K.L.); (T.N.P.M.); (V.D.T.)
| | - Lai Tuan Anh
- Nam Dinh Center for Disease Control, Nam Dinh 420000, Vietnam
| | - Le Van Sanh
- TT Hue Center for Disease Control, Hue, Thua Thien Hue 530000, Vietnam
| | - Nguyen Dang Hien
- Center for Research and Production of Vaccines and Biologicals, Hanoi 100000, Vietnam
| | - Dang Duc Anh
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam; (C.T.N.M.); (L.T.K.L.); (T.N.P.M.); (V.D.T.)
| | | | | | - Nguyen Van Trang
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam; (C.T.N.M.); (L.T.K.L.); (T.N.P.M.); (V.D.T.)
| |
Collapse
|
3
|
Matsumoto N, Kurokawa S, Tamiya S, Nakamura Y, Sakon N, Okitsu S, Ushijima H, Yuki Y, Kiyono H, Sato S. Replication of Human Sapovirus in Human-Induced Pluripotent Stem Cell-Derived Intestinal Epithelial Cells. Viruses 2023; 15:1929. [PMID: 37766335 PMCID: PMC10536750 DOI: 10.3390/v15091929] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Sapoviruses, like noroviruses, are single-stranded positive-sense RNA viruses classified in the family Caliciviridae and are recognized as a causative pathogen of diarrhea in infants and the elderly. Like human norovirus, human sapovirus (HuSaV) has long been difficult to replicate in vitro. Recently, it has been reported that HuSaV can be replicated in vitro by using intestinal epithelial cells (IECs) derived from human tissues and cell lines derived from testicular and duodenal cancers. In this study, we report that multiple genotypes of HuSaV can sufficiently infect and replicate in human-induced pluripotent stem cell-derived IECs. We also show that this HuSaV replication system can be used to investigate the conditions for inactivation of HuSaV by heat and alcohol, and the effects of virus neutralization of antisera obtained by immunization with vaccine antigens, under conditions closer to the living environment. The results of this study confirm that HuSaV can also infect and replicate in human normal IECs regardless of their origin and are expected to contribute to future virological studies.
Collapse
Affiliation(s)
- Naomi Matsumoto
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Shiho Kurokawa
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba 260-8670, Japan
| | - Shigeyuki Tamiya
- Department of Microbiology and Immunology, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama 640-8156, Japan
| | - Yutaka Nakamura
- Department of Microbiology and Immunology, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama 640-8156, Japan
| | - Naomi Sakon
- Department of Microbiology, Osaka Institute of Public Health, Osaka 537-0025, Japan
| | - Shoko Okitsu
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Hiroshi Ushijima
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Yoshikazu Yuki
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba 260-8670, Japan
| | - Hiroshi Kiyono
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba 260-8670, Japan
- Future Medicine Education and Research Organization, Chiba University, Chiba 263-8522, Japan
- CU-UCSD Center for Mucosal Immunology, Allergy, and Vaccines (cMAV), Departments of Medicine and Pathology, University of California, San Diego, CA 92093-0956, USA
| | - Shintaro Sato
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
- Department of Microbiology and Immunology, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama 640-8156, Japan
| |
Collapse
|
4
|
Hoque SA, Pham NTK, Onda-Shimizu Y, Nishimura S, Sugita K, Kobayashi M, Islam MT, Okitsu S, Khamrin P, Maneekarn N, Hayakawa S, Ushijima H. Sapovirus infections in Japan before and after the emergence of the COVID-19 pandemic: An alarming update. J Med Virol 2023; 95:e29023. [PMID: 37543991 DOI: 10.1002/jmv.29023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/19/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023]
Abstract
An increasing trend of sapovirus (SaV) infections in Japanese children during 2009-2019, particularly after the introduction of the voluntary rotavirus (RV)-vaccination program has been observed. Herein, we investigated the epidemiological situation of SaV infections from 2019 to 2022 when people adopted a precautionary lifestyle due to the emergence of the COVID-19 pandemic, and RV vaccines had been implemented as routine vaccines. Stool samples were collected from children who attended outpatient clinics with acute gastroenteritis and analyzed by reverse transcriptase-polymerase chain reaction to determine viral etiology. Among 961 stool samples, 80 (8.3%) were positive for SaV: 2019-2020 (6.5%), 2020-2021 (0%), and 2021-2022 (12.8%). The trend of SaV infection in Japanese children yet remained upward with statistical significance (p = 0.000). The major genotype was GI.1 (75%) which caused a large outbreak in Kyoto between December 2021 and February 2022. Phylogenetic, gene sequence and deduced amino acid sequence analyses suggested that these GI.1 strains detected in the outbreak and other places during 2021-2022 or 2019-2020 remained genetically identical and widely spread. This study reveals that SaV infection is increasing among Japanese children which is a grave concern and demands immediate attention to be paid before SaV attains a serious public health problem.
Collapse
Affiliation(s)
- Sheikh Ariful Hoque
- Department of Pathology and Microbiology, Division of Microbiology, Nihon University School of Medicine, Tokyo, Japan
- Cell and Tissue Culture Research, Centre for Advanced Research in Sciences (CARS), University of Dhaka, Dhaka, Bangladesh
| | - Ngan Thi Kim Pham
- Department of Pathology and Microbiology, Division of Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Yuko Onda-Shimizu
- Department of Pathology and Microbiology, Division of Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Shuichi Nishimura
- Cell and Tissue Culture Research, Centre for Advanced Research in Sciences (CARS), University of Dhaka, Dhaka, Bangladesh
| | - Kumiko Sugita
- Division of Microbiology, Nihon University School of Medicine, Japanese Viral Gastritis Group, Tokyo, Japan
| | - Masaaki Kobayashi
- Division of Microbiology, Nihon University School of Medicine, Japanese Viral Gastritis Group, Tokyo, Japan
| | | | - Shoko Okitsu
- Department of Pathology and Microbiology, Division of Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Pattara Khamrin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Thailand
| | - Niwat Maneekarn
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Thailand
| | - Satoshi Hayakawa
- Department of Pathology and Microbiology, Division of Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Hiroshi Ushijima
- Department of Pathology and Microbiology, Division of Microbiology, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
5
|
Hoque SA, Kotaki T, Pham NTK, Onda Y, Okitsu S, Sato S, Yuki Y, Kobayashi T, Maneekarn N, Kiyono H, Hayakawa S, Ushijima H. Genotype Diversity of Enteric Viruses in Wastewater Amid the COVID-19 Pandemic. FOOD AND ENVIRONMENTAL VIROLOGY 2023; 15:176-191. [PMID: 37058225 PMCID: PMC10103036 DOI: 10.1007/s12560-023-09553-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/15/2023] [Indexed: 06/13/2023]
Abstract
Viruses remain the leading cause of acute gastroenteritis (AGE) worldwide. Recently, we reported the abundance of AGE viruses in raw sewage water (SW) during the COVID-19 pandemic, when viral AGE patients decreased dramatically in clinics. Since clinical samples were not reflecting the actual state, it remained important to determine the circulating strains in the SW for preparedness against impending outbreaks. Raw SW was collected from a sewage treatment plant in Japan from August 2018 to March 2022, concentrated by polyethylene-glycol-precipitation method, and investigated for major gastroenteritis viruses by RT-PCR. Genotypes and evolutionary relationships were evaluated through sequence-based analyses. Major AGE viruses like rotavirus A (RVA), norovirus (NoV) GI and GII, and astrovirus (AstV) increased sharply (10-20%) in SW during the COVID-19 pandemic, though some AGE viruses like sapovirus (SV), adenovirus (AdV), and enterovirus (EV) decreased slightly (3-10%). The prevalence remained top in the winter. Importantly, several strains, including G1 and G3 of RVA, GI.1 and GII.2 of NoV, GI.1 of SV, MLB1 of AstV, and F41 of AdV, either emerged or increased amid the pandemic, suggesting that the normal phenomenon of genotype changing remained active over this time. This study crucially presents the molecular characteristics of circulating AGE viruses, explaining the importance of SW investigation during the pandemic when a clinical investigation may not produce the complete scenario.
Collapse
Affiliation(s)
- Sheikh Ariful Hoque
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 OyaguchiKamicho, Itabashi-Ku, Tokyo, 173-8610, Japan
- Cell and Tissue Culture Laboratory, Centre for Advanced Research in Sciences (CARS), University of Dhaka, Dhaka, 1000, Bangladesh
| | - Tomohiro Kotaki
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
| | - Ngan Thi Kim Pham
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 OyaguchiKamicho, Itabashi-Ku, Tokyo, 173-8610, Japan
| | - Yuko Onda
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 OyaguchiKamicho, Itabashi-Ku, Tokyo, 173-8610, Japan
| | - Shoko Okitsu
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 OyaguchiKamicho, Itabashi-Ku, Tokyo, 173-8610, Japan
| | - Shintaro Sato
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
- Department of Microbiology and Immunology, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, 640-8156, Japan
| | - Yoshikazu Yuki
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
| | - Takeshi Kobayashi
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
| | - Niwat Maneekarn
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Hiroshi Kiyono
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
- Research Institute of Disaster Medicine, Institute for Global Prominent Research, Institute for Advanced Academic Research, Chiba University, Chiba, Japan
- CU-UCSD Center for Mucosal Immunology, Allergy and Vaccines (cMAV), Division of Gastroenterology, Department of Medicine, University of California, San Diego, USA
| | - Satoshi Hayakawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 OyaguchiKamicho, Itabashi-Ku, Tokyo, 173-8610, Japan
| | - Hiroshi Ushijima
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 OyaguchiKamicho, Itabashi-Ku, Tokyo, 173-8610, Japan.
| |
Collapse
|
6
|
Impact after the Change from Voluntary to Universal Oral Rotavirus Vaccination on Consecutive Emergency Department Visits for Acute Gastroenteritis among Children in Kobe City, Japan (2016-2022). Vaccines (Basel) 2022; 10:vaccines10111831. [PMID: 36366340 PMCID: PMC9693232 DOI: 10.3390/vaccines10111831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
Rotavirus (RV) is the leading cause of acute gastroenteritis (AGE), particularly in infants. In 2006, the high efficacy of oral RV vaccines (RVVs, RotarixTM and RotaTeqTM) was demonstrated. Voluntary RVV started in Japan in 2011, and in October 2020 were launched as universal oral RVVs in Japan. However, the impact of changes from voluntary to universal RVVs has not been studied in a primary emergency medical center in Japan. We investigated changes in the number of pediatric patients with AGE after introducing universal RVVs in our center. A clinical database of consecutive patients aged <16 who presented to Kobe Children’s Primary Emergency Medical Center between 1 April 2016 and 30 June 2022 was reviewed. After implementing universal RVVs, fewer children presented with RV-associated AGE (the reduction of proportion of the patients in 2022 was −61.7% (all ages), −57.9% (<1 years), −67.8% (1−<3 years), and −61.4% (3−<5 years) compared to 2019). A similar decrease in those of age who were not covered by the universal RVV was observed. There was a significant decline in the number of patients with AGE during the RV season who presented to the emergency department after implementing universal RVVs.
Collapse
|
7
|
Liu X, Song C, Liu Y, Qu K, Bi J, Bi J, Wang Y, Yang Y, Sun J, Guo Z, Li G, Liu J, Yin G. High Genetic Diversity of Porcine Sapovirus From Diarrheic Piglets in Yunnan Province, China. Front Vet Sci 2022; 9:854905. [PMID: 35873674 PMCID: PMC9300989 DOI: 10.3389/fvets.2022.854905] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
As one of the most important enteric viruses, sapovirus (SaV) can infect humans and a variety of animals. Until now, 19 SaV genogroups have been identified, among which 4 from human (GI, GII, GIV, and GV) and 8 from swine (GIII, GV–GXI). Porcine sapovirus (PoSaV) GIII has been prevalent in China; however, the status of PoSaV infection in Yunnan province remains unknown. In this study, 202 fecal samples were collected from piglets associated with outbreaks of acute diarrhea in Yunnan between January and May 2020. PoSaV detection revealed that the total PoSaV infection rate in Yunnan was 35.2%, with 21 PoSaV strains determined and phylogenetically analyzed. The phylogenetic tree analyses demonstrated that twenty PoSaV strains belonged to GIII and fell into five genotypes, whereas one PoSaV strain (YNQB) belonged to GV. Sequence alignments revealed deletions in VP2 region in 10 of the 20 GIII strains, as well as deletions and insertions in VP1 region of the GV strain (YNQB). Furthermore, genomic recombination analyses showed that two GIII strains (YNAN and YNJD) were recombinants, closely related to reference sequences MK965898 and LC215880, MK965898 and FJ387164, respectively. In summary, PoSaV-GIII strains were identified in Yunnan in 2020, and for the first time, a PoSaV-GV strain was identified from China, whereas the comprehensive analyses illustrated high genetic diversity of Yunnan PoSaV strains. This study may shed new light on the current PoSaV infections in Yunnan and pave the way toward further control of the PoSaV infections in China.
Collapse
Affiliation(s)
- Xiao Liu
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Chunlian Song
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Yinghua Liu
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Kaixing Qu
- Academy of Science and Technology, Chuxiong Normal University, Chuxiong, China
| | - Junyu Bi
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Junlong Bi
- Academy of Science and Technology, Chuxiong Normal University, Chuxiong, China
| | - Yunhua Wang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Ying Yang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Junhua Sun
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhigang Guo
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ganwu Li
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Jianping Liu
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- *Correspondence: Jianping Liu
| | - Gefen Yin
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, China
- Gefen Yin
| |
Collapse
|
8
|
Landa E, Javaid S, Won JS, Vigandt E, Caronia J, Mir P, Thet Z. Septic Shock Secondary to Severe Gastroenteritis Resulting From Sapovirus Infection. Cureus 2022; 14:e24010. [PMID: 35547467 PMCID: PMC9090209 DOI: 10.7759/cureus.24010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2022] [Indexed: 11/09/2022] Open
Abstract
Sapovirus causes acute gastroenteritis (AGE) which manifests as severe diarrhea and vomiting. It is most often seen in, but not limited to, children and toddlers but can occur in people of all ages. It is typically more prevalent in low to middle-income countries but has also been reported in progressive countries such as the United States. Due to the universal use of reverse transcriptase-polymerase chain reaction (RT-PCR) testing, the reported incidence of sapovirus has continued to grow as the culprit agent in both AGE outbreaks and isolated cases. Its symptoms resemble what is seen with rotavirus but with a milder clinical course. This discussion explores the dire implications of a relatively understated pathogen. Here, we present a rare case of a 20-year-old woman who presented with septic shock secondary to severe gastroenteritis as a result of sapovirus infection.
Collapse
Affiliation(s)
- Eric Landa
- Internal Medicine, Unity Health, Searcy, USA
| | - Saad Javaid
- Internal Medicine, Wyckoff Heights Medical Center, New York City, USA
| | - Jung S Won
- Internal Medicine, Wyckoff Heights Medical Center, New York City, USA
| | - Erika Vigandt
- Internal Medicine, The Brooklyn Hospital Center, New York City, USA
| | - Jonathan Caronia
- Pulmonary and Critical Care Medicine, Northwell Health, New York City, USA
| | - Parvez Mir
- Pulmonary and Critical Care/Internal Medicine, Wyckoff Heights Medical Center, New York City, USA
| | - Zeyar Thet
- Internal Medicine and Infectious Diseases, Wyckoff Heights Medical Center, New York City, USA
| |
Collapse
|
9
|
Hoque SA, Nishimura K, Thongprachum A, Khamrin P, Thi Kim Pham N, Islam MT, Khandoker N, Okitsu S, Onda-Shimizu Y, Dey SK, Maneekarn N, Kobayashi T, Hayakawa S, Ushijima H. An Increasing Trend of Human Sapovirus Infection in Japan, 2009 to 2019: An Emerging Public Health Concern. J Infect Public Health 2022; 15:315-320. [DOI: 10.1016/j.jiph.2022.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/21/2021] [Accepted: 01/27/2022] [Indexed: 11/16/2022] Open
|