1
|
Liu S, Yang Y, Li X, Choi JW, Guo J, Luo H, Li C. Development of a single-tube RPA/CRISPR-cas12a detection platform for monkeypox virus. Biosens Bioelectron 2025; 278:117221. [PMID: 40054154 DOI: 10.1016/j.bios.2025.117221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/17/2025] [Accepted: 01/30/2025] [Indexed: 03/17/2025]
Abstract
Monkeypox is a zoonotic disease caused by the monkeypox virus (MPXV), with outbreaks primarily occurring in West and Central Africa. The recent global MPXV outbreak underscores the urgent need for effective detection methods. Currently, qPCR is considered the gold standard for MPXV detection; however, it requires specialized personnel and costly equipment. This study introduces a CRISPR-Cas12a-based detection system targeting the MPXV A27L gene, achieving a detection limit as low as 10 aM. This system exhibits high specificity, with no cross-reactivity with other orthopoxviruses, and delivers results in under 40 min. To support point-of-care testing (POCT), we developed a lateral flow assay (LFA) strip for easy result visualization. The detection system was validated using six different clinical sample types, revealing that herpes fluid and saliva are the most suitable sources. The findings of this study align with qPCR results. Additionally, we lyophilized the RPA and CRISPR reagents to improve transport, storage, and field deployment. In conclusion, this study presents a reliable molecular diagnostic approach for early MPXV detection and point-of-care testing, contributing to epidemic prevention and control.
Collapse
Affiliation(s)
- Shan Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yang Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, Guangdong, 518112, China
| | - Xue Li
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu, 641400, China; Juxintang (Chengdu) Biotechnology Co., Ltd., Chengdu, 641400, China
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Jinhong Guo
- School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Hongzhi Luo
- Department of Experimental Medicine, Jintang First People's Hospital·West China Hospital Sichuan University Jintang Hospital, Chengdu, 610400, China.
| | - Chenzhong Li
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu, 641400, China; Juxintang (Chengdu) Biotechnology Co., Ltd., Chengdu, 641400, China; Biomedical Engineering, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, China.
| |
Collapse
|
2
|
Mukherjee A, Samanta S, Das S, Haque MZ, Jana PS, Samanta I, Kar I, Das S, Nanda PK, Thomas P, Dandapat P. Leveraging CRISPR-Cas-Enhanced Isothermal Amplification Tools for Quick Identification of Pathogens Causing Livestock Diseases. Curr Microbiol 2025; 82:260. [PMID: 40274667 DOI: 10.1007/s00284-025-04226-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 03/31/2025] [Indexed: 04/26/2025]
Abstract
Prompt and accurate diagnosis of infectious pathogens of livestock origin is of utmost importance for epidemiological surveillance and effective therapeutic strategy formulation. Among various methods, nucleic acid-based detection of pathogens is the most sensitive and specific; but the majority of these assays need expensive equipment and skilled workers. Due to the rapid advancement of clustered regularly interspaced short palindromic repeats-CRISPR-associated protein (CRISPR-Cas)-based nucleic acid detection methods, these are now being widely used for pathogen detection. CRISPR-Cas is a bacterial counterpart of "adaptive immunity", generally used for editing genome. Many CRISPR systems have been modified for nucleic acid detection due to their excellent selectivity in detecting DNA and RNA sequences. The combination of CRISPR with suitable isothermal amplification technologies has made it more sensitive, specific, versatile, and reproducible for the detection of pathogen nucleic acids at the point of care. Amplification of pathogen nucleic acid by isothermal amplification followed by CRISPR-Cas-based detection has several advantages, including short sample-to-answer times and no requirement for laboratory set-up. They are also significantly less expensive than the existing nucleic acid detection methods. This review focuses on the recent trends in the use of this precision diagnostic method for diagnosis of a wide range of animal pathogens with or without zoonotic potential, particularly various isothermal amplification strategies, and visualization methods for sensing bacteria, viruses, and parasites of veterinary and public health importance.
Collapse
Affiliation(s)
- Ayan Mukherjee
- Faculty of Veterinary and Animal Sciences, West Bengal University of Animal & Fishery Sciences, Mohanpur, West Bengal, 741 252, India.
| | - Sukhen Samanta
- Department of Microbiology, University of Kalyani, Nadia, West Bengal, 741 235, India
| | - Subhasree Das
- Faculty of Veterinary and Animal Sciences, West Bengal University of Animal & Fishery Sciences, Mohanpur, West Bengal, 741 252, India
| | - Molla Zakirul Haque
- Faculty of Veterinary and Animal Sciences, West Bengal University of Animal & Fishery Sciences, Mohanpur, West Bengal, 741 252, India
| | - Partha Sarathi Jana
- Faculty of Veterinary and Animal Sciences, West Bengal University of Animal & Fishery Sciences, Mohanpur, West Bengal, 741 252, India
| | - Indranil Samanta
- Faculty of Veterinary and Animal Sciences, West Bengal University of Animal & Fishery Sciences, Mohanpur, West Bengal, 741 252, India
| | - Indrajit Kar
- Faculty of Veterinary and Animal Sciences, West Bengal University of Animal & Fishery Sciences, Mohanpur, West Bengal, 741 252, India
| | - Srinibas Das
- Faculty of Veterinary and Animal Sciences, West Bengal University of Animal & Fishery Sciences, Mohanpur, West Bengal, 741 252, India
- Faculty of Fishery Sciences, West Bengal University of Animal and Fishery Sciences, Chakgaria, Kolkata, 700 094, West Bengal, India
| | - Pramod Kumar Nanda
- ICAR-Indian Veterinary Research Institute, Eastern Regional Station, Belgachia Road, Kolkata, West Bengal, 700 037, India
| | - Prasad Thomas
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243 122, India
| | - Premanshu Dandapat
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243 122, India.
| |
Collapse
|
3
|
Chen H, Zhang H, Guo J, Meng X, Yao M, He L, Nie X, Xu H, Liu C, Sun J, Wang F, Sun Y, Jiang Z, He Y, Zhang J, Wang J. Rapid detection of feline parvovirus using RAA-CRISPR/Cas12a-based lateral flow strip and fluorescence. Front Microbiol 2025; 16:1501635. [PMID: 40135058 PMCID: PMC11932995 DOI: 10.3389/fmicb.2025.1501635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/13/2025] [Indexed: 03/27/2025] Open
Abstract
Feline parvovirus (FPV) causes severe gastroenteritis and leukopenia in cats, with high morbidity and mortality, necessitating a rapid and effective antigen diagnostic test with high sensitivity and specificity. In this study, a diagnostic platform based on a combination of Recombinase-Aided Amplification (RAA) and CRISPR/Cas12a was established for detecting FPV. Cas12a recombinant protein was purified using Nickel-Nitriloacetic Acid resin after heterologous expression in Escherichia coli. The results of RAA-CRISPR/Cas12a can be detected with a fluorescence reader or lateral flow strips (LFS) for on-site detection. The RAA-CRISPR/Cas12a-LFS had a detection limit of 2.1 × 100 copies of recombinant plasmids per reaction, compared with 2.1 × 103 copies for conventional PCR analysis. Furthermore, no cross-reactivity was observed for the RAA-CRISPR/Cas12a assay with feline coronavirus, feline herpesvirus, and feline calicivirus, demonstrating reasonable specificity. Additionally, 43 cat fecal samples with suspected clinical signs were assayed with RAA-CRISPR/Cas12a-LFS and conventional PCR in parallel. The RAA-CRISPR/Cas12a-LFS showed a 100% coincident rate with PCR. In summary, a novel, visual, sensitive, and specific detection assay based on RAA and CRISPR/Cas12a was developed for FPV.
Collapse
Affiliation(s)
- Han Chen
- Hebei Veterinary Biotechnology Innovation Center, College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Hailing Zhang
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jie Guo
- Hebei Veterinary Biotechnology Innovation Center, College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Xiangshu Meng
- Hebei Veterinary Biotechnology Innovation Center, College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Mengfan Yao
- Hebei Veterinary Biotechnology Innovation Center, College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Longbin He
- Hebei Veterinary Biotechnology Innovation Center, College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Xiaoxuan Nie
- Hebei Veterinary Biotechnology Innovation Center, College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Han Xu
- Hebei Veterinary Biotechnology Innovation Center, College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Chao Liu
- Hebei Veterinary Biotechnology Innovation Center, College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Jian Sun
- Hebei Veterinary Biotechnology Innovation Center, College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
- Weihai Ocean Vocational College, Rongcheng, China
| | - Fei Wang
- Chongqing Three Gorges Vocational College, Chongqing, China
| | - Yuelong Sun
- Chongqing Three Gorges Vocational College, Chongqing, China
| | - Zhong Jiang
- Agriculture Bureau of Zhuozhou City, Zhuozhou, China
| | - Yanliang He
- Sinovet (Jiangsu) Biopharmaceuticals Co., Ltd., Taizhou, China
| | - Jianlou Zhang
- Hebei Veterinary Biotechnology Innovation Center, College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Jianke Wang
- Hebei Veterinary Biotechnology Innovation Center, College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| |
Collapse
|
4
|
Odiwuor N, Li J, He P, Wang N, Murtaza A, Jiang M, Yu J, Wei H. Facilitating self-testing with a fast, accurate, and simplified shelf-stable colorimetric LAMP system for Mpox and SARS-CoV-2 detection. Talanta 2025; 283:127119. [PMID: 39509899 DOI: 10.1016/j.talanta.2024.127119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/23/2024] [Accepted: 10/27/2024] [Indexed: 11/15/2024]
Abstract
The rapid and accurate detection of viral infections is essential for effective disease management and prevention. Quantitative polymerase chain reaction (qPCR) remains the gold standard for viral detection due to its high sensitivity and specificity. However, its limitations-including the need for specialized equipment, trained personnel, and longer processing times-make it impractical for at-home or rapid testing. Although numerous point-of-care assays based on isothermal nucleic acid amplification have been developed, they often lack the simplicity and adaptability required for self-testing in non-laboratory settings such as at home. To address this, we developed and validated the SCOLAR (Shelf-stable Colorimetric LAMP system for Rapid self-testing of viruses) system, a simplified, portable, and accurate diagnostic tool designed for self-testing of Mpox and SARS-CoV-2 infections. The SCOLAR system employs novel lyophilized colorimetric loop-mediated isothermal amplification (LAMP) beads, a customized sample lysis buffer, and smartphone-assisted RGB color analysis for interpreting results. Validation was conducted using 24 mock Mpox skin swabs, 32 wastewater samples, and 104 clinical SARS-CoV-2 nasopharyngeal swabs, with comparisons to an in-house qPCR assay. The SCOLAR system demonstrated an analytical sensitivity of below 10 copies/μL for all targets within 15 min. Diagnostic performance for mock Mpox samples exhibited 93.8 % sensitivity and 100 % specificity, while wastewater samples achieved 100 % sensitivity and specificity. SARS-CoV-2 swabs had 96 % sensitivity and 100 % specificity. The system also proved effective for self-testing by untrained individuals. SCOLAR offers a reliable, easy-to-use platform for rapid self-testing, with potential for broader applications in public health strategies to enhance pandemic preparedness and response.
Collapse
Affiliation(s)
- Nelson Odiwuor
- WHP Innovation Lab, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430207, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Sino-Africa Joint Research Centre, Nairobi, 62000 - 00200, Kenya
| | - Junhua Li
- WHP Innovation Lab, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430207, China
| | - Ping He
- WHP Innovation Lab, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430207, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nuo Wang
- WHP Innovation Lab, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430207, China
| | - Ali Murtaza
- WHP Innovation Lab, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430207, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengwei Jiang
- WHP Innovation Lab, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430207, China
| | - Junping Yu
- WHP Innovation Lab, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430207, China
| | - Hongping Wei
- WHP Innovation Lab, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430207, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Sino-Africa Joint Research Centre, Nairobi, 62000 - 00200, Kenya.
| |
Collapse
|
5
|
Chen Y, Zhao R, Hu X, Wang X. The current status and future prospects of CRISPR-based detection of monkeypox virus: A review. Anal Chim Acta 2025; 1336:343295. [PMID: 39788645 DOI: 10.1016/j.aca.2024.343295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND The current pandemic of 2022 global mpox (formerly known as monkeypox), caused by infection with monkeypox virus (MPXV), has now reached over 120 countries. This constitutes a critical public health issue requiring effective disease management and surveillance. Rapid and reliable diagnosis is conducive to the control of infection, early intervention, and timely treatment. Clinical laboratories use various conventional diagnostic methods for detecting MPXV, including PCR, which can be regarded as a gold-standard diagnostic method. However, the application of PCR is limited by its requirements for high-cost equipment, skilled professionals, and a laboratory setting. RESULTS Clustered regularly interspaced short palindromic repeats (CRISPR)-based diagnostic systems have provided promising prospects for the rapid, sensitive, and specific detection of infectious diseases, especially in point-of-care settings. Over the past 2 years, an increasing number of researchers have concentrated on the application of the CRISPR method to mpox diagnosis. In the majority of cases, a two-step method was chosen, with CRISPR/Cas12a and recombinase polymerase amplification (RPA) as pre-amplification methods, followed by a fluorescence readout. Different strategies have been applied to overcome the encountered limitations of CRISPR detection, but no consensus on an integrated solution has been achieved. Thus, the application of the CRISPR/Cas system in mpox detection requires further exploration and improvement. SIGNIFICANCE This review discusses contemporary studies on MPXV CRISPR detection systems and the strategies proposed to address the challenges faced by CRISPR diagnosis with the hope of helping the development of CRISPR detection methods and improving pathogen detection technologies.
Collapse
Affiliation(s)
- Yingwei Chen
- Department of Quality Control Material R&D, Shanghai Center for Clinical Laboratory, Shanghai, PR China; Department of Molecular Diagnostic Innovation Technology, Shanghai Academy of Experimental Medicine, Shanghai, PR China
| | - Ran Zhao
- Department of Quality Control Material R&D, Shanghai Center for Clinical Laboratory, Shanghai, PR China; Department of Molecular Diagnostic Innovation Technology, Shanghai Academy of Experimental Medicine, Shanghai, PR China
| | - Xiaobo Hu
- Department of Quality Control Material R&D, Shanghai Center for Clinical Laboratory, Shanghai, PR China; Department of Molecular Biology, Shanghai Center for Clinical Laboratory, Shanghai, PR China.
| | - Xueliang Wang
- Department of Quality Control Material R&D, Shanghai Center for Clinical Laboratory, Shanghai, PR China; Department of Molecular Biology, Shanghai Center for Clinical Laboratory, Shanghai, PR China; Department of Molecular Diagnostic Innovation Technology, Shanghai Academy of Experimental Medicine, Shanghai, PR China.
| |
Collapse
|
6
|
Sun Y, Zhang W, Zhang H, Zhao F, Su L. CRISPR/Cas13a combined with reverse transcription and RPA for NoV GII.4 monitoring in water environments. ENVIRONMENT INTERNATIONAL 2025; 195:109195. [PMID: 39675302 DOI: 10.1016/j.envint.2024.109195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/08/2024] [Accepted: 12/08/2024] [Indexed: 12/17/2024]
Abstract
Water bodies contaminated with the norovirus (NoV) are important vectors for its transmission. Therefore, enhanced monitoring of NoV in aqueous environments plays an active role in preventing diseases. Here, we reverse transcribed viral RNA into cDNA, and then used the constructed RPA-CRISPR/Cas13a-based platform for sensitive and quantitative monitoring of NoV GII.4 in aqueous environments. The use of glycerol as a phase separator and the direct release of nucleic acids from the virus by NaOH significantly enhanced the stability of the assay and reduced its economic cost. This assay is sensitive, specific, and stable. Based on the qualitative detection method, we established a relatively accurate quantitative detection method using the plasmid as a standard. Four water samples, totaling 64 samples, were analyzed using this method and compared with the qPCR method. The results of the two methods showed 100 % concordance with no significant difference in viral load. The entire process of our established method-from viral nucleic acid extraction to the output of the results-was completed in 30 min, much less than the time required for qPCR method. This suggests that the assay can be used as an alternative to qPCR for monitoring the change of NoV GII.4 concentration in water bodies, and shows high potential for application in the immediate detection of viruses in aqueous environments and resource-limited areas.
Collapse
Affiliation(s)
- Yiqiang Sun
- National and Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, Zhejiang, China
| | - Weiwei Zhang
- National and Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, Zhejiang, China
| | - Houyun Zhang
- National and Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, Zhejiang, China
| | - Feng Zhao
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China
| | - Laijin Su
- National and Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, Zhejiang, China.
| |
Collapse
|
7
|
Yang X, Zeng X, Huang J, Yang L, Mao S, Chen X, Wang Y, Wei X, Li S. Loop-mediated isothermal amplification linked a nanoparticles-based biosensor for detecting Epstein-Barr virus. Appl Microbiol Biotechnol 2024; 108:91. [PMID: 38212962 PMCID: PMC10784390 DOI: 10.1007/s00253-023-12948-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/24/2023] [Accepted: 12/01/2023] [Indexed: 01/13/2024]
Abstract
Epstein-Barr virus (EBV) is a ubiquitous gamma herpesvirus that maintains a lifelong latent association with B lymphocytes. Here, a rapid and reliable diagnosis platform for detecting EBV infection, employing loop-mediated isothermal amplification (LAMP) combined with a gold nanoparticles-based lateral flow biosensors (AuNPs-LFB) (termed LAMP Amplification Mediated AuNPs-LFB Detection, LAMAD), was developed in the current study. A set of specific LAMP primers targeting the Epstein-Barr nuclear antigen (EBNA) leader protein (EBNA-LP) gene was designed and synthesized. Subsequently, these templates extracted from various pathogens and whole blood samples were used to optimize and evaluate the EBV-LAMAD assay. As a result, the limit of detection (LoD) of the EBV-LAMAD assay was 45 copies/reaction. The EBV-LAMAD assay can detect all representative EBV pathogens used in the study, and of note, no cross-reactions were observed with other non-EBV organisms. Moreover, the whole workflow of the EBV-LAMAD assay can be completed within 70 min, including rapid EBV template preparation, EBV-LAMP amplification, and AuNPs-LFB-mediated detection. Taken together, the EBV-LAMAD assay targeting the EBNA-LP gene is a rapid, simplified, sensitive, reliable, and easy-to-use detection protocol that can be used as a competitive potential diagnostic/screening tool for EBV infection in clinical settings, especially in basic laboratories in resource-limited regions. KEY POINTS: • A novel, simplified, and easy-to-use AuNPs-LFB biosensor was designed and prepared. • LAMP combined with an AuNPs-LFB targeting the novel EBNA-LP gene was established. • EBV-LAMAD is a rapid, sensitive, and reliable detection protocol for EBV infection.
Collapse
Affiliation(s)
- Xinggui Yang
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, 550004, Guizhou, People's Republic of China
| | - Xiaoyan Zeng
- The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550003, Guizhou, People's Republic of China
| | - Junfei Huang
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, 550004, Guizhou, People's Republic of China
| | - Ludi Yang
- Tongren People's Hospital, Tongren, 554399, Guizhou, People's Republic of China
| | - Sha Mao
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, 550004, Guizhou, People's Republic of China
| | - Xu Chen
- The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550003, Guizhou, People's Republic of China
| | - Yu Wang
- Department of Clinical Laboratory, The First People's Hospital of Guiyang, Guiyang, 550002, Guizhou, People's Republic of China
| | - Xiaoyu Wei
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, 550004, Guizhou, People's Republic of China
| | - Shijun Li
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, 550004, Guizhou, People's Republic of China.
| |
Collapse
|
8
|
Ahamed MA, Politza AJ, Liu T, Khalid MAU, Zhang H, Guan W. CRISPR-based strategies for sample-to-answer monkeypox detection: current status and emerging opportunities. NANOTECHNOLOGY 2024; 36:042001. [PMID: 39433062 PMCID: PMC11533882 DOI: 10.1088/1361-6528/ad892b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/06/2024] [Accepted: 10/21/2024] [Indexed: 10/23/2024]
Abstract
The global health threat posed by the Monkeypox virus (Mpox) requires swift, simple, and accurate detection methods for effective management, emphasizing the growing necessity for decentralized point-of-care (POC) diagnostic solutions. The clustered regularly interspaced short palindromic repeats (CRISPR), initially known for its effective nucleic acid detection abilities, presents itself as an attractive diagnostic strategy. CRISPR offers exceptional sensitivity, single-base specificity, and programmability. Here, we reviewed the latest developments in CRISPR-based POC devices and testing strategies for Mpox detection. We explored the crucial role of genetic sequencing in designing crRNA for CRISPR reaction and understanding Mpox transmission and mutations. Additionally, we showed the integration of CRISPR-Cas12 strategy with pre-amplification and amplification-free methods. Our study also focused on the significant role of Cas12 proteins and the effectiveness of Cas12 coupled with recombinase polymerase amplification (RPA) for Mpox detection. We envision the future prospects and challenges, positioning CRISPR-Cas12-based POC devices as a frontrunner in the next generation of molecular biosensing technologies.
Collapse
Affiliation(s)
- Md Ahasan Ahamed
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA 16802, United States of America
| | - Anthony J Politza
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, United States of America
| | - Tianyi Liu
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA 16802, United States of America
| | - Muhammad Asad Ullah Khalid
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA 16802, United States of America
| | - Huanshu Zhang
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA 16802, United States of America
| | - Weihua Guan
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA 16802, United States of America
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, United States of America
| |
Collapse
|
9
|
Liu W, Zhang E, Li W, Lv R, Lin Y, Xu Y, Li J, Lai Y, Jiang Y, Lin S, Wang X, Zhou P, Song Y, Shen W, Sun Y, Li Y. Advances and challenges of mpox detection technology. BIOSAFETY AND HEALTH 2024; 6:260-269. [PMID: 40078738 PMCID: PMC11895016 DOI: 10.1016/j.bsheal.2024.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 03/14/2025] Open
Abstract
Mpox is a zoonotic disease caused by the monkeypox virus (MPXV). Diagnosing and treating the disease has become a global health concern requiring close attention to its spread to non-endemic regions. Clinical diagnosis is based on laboratory test results. Conventional detection techniques include real-time quantitative polymerase chain reaction (qPCR), genome sequencing, antigen and antibody identification, and virus isolation. Nevertheless, these methods fall short of rapidly and efficiently identifying MPXV, as they require specialized training, specific laboratory environments, and professional-grade equipment. Emerging technologies offer complementary advantages to meet diverse diagnostic needs, including various point-of-care testing (POCT) approaches and integrating biosensors with rapid detection techniques. This review discusses prospective future research avenues for MPXV detection, examining the advances and challenges of various detection techniques which may contribute to the ongoing elimination of mpox human-to-human transmission and serves as a reference for developing effective prevention and control strategies.
Collapse
Affiliation(s)
- Wenjing Liu
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing 210002, China
| | - Erxin Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Wei Li
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ruichen Lv
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing 210002, China
| | - Yanfeng Lin
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing 210002, China
| | - Yingjia Xu
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing 210002, China
| | - Jiameng Li
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing 210002, China
| | - Yuzhen Lai
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Yuxin Jiang
- School of Public Health, Nanjing Medical University, Nanjing 211100, China
| | - Sijia Lin
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xueqin Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Peize Zhou
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yue Song
- School of Public Health, Nanjing Medical University, Nanjing 211100, China
| | - Wanpeng Shen
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing 210002, China
| | - Yiqian Sun
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing 210002, China
| | - Yuexi Li
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing 210002, China
| |
Collapse
|
10
|
Zhou J, Xiao F, Huang X, Fu J, Jia N, Sun C, Chen M, Xu Z, Huang H, Wang Y. Rapid detection of monkeypox virus and differentiation of West African and Congo Basin strains using endonuclease restriction-mediated real-time PCR-based testing. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2693-2701. [PMID: 38624185 DOI: 10.1039/d4ay00492b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The ongoing multi-country outbreak of monkeypox virus (MPXV) has continuously attracted global attention, highlighting the critical need for timely and accurate methods to detect MPXV and differentiate its clades. Herein, we devised a novel multiplex ET-PCR (endonuclease restriction-mediated real-time PCR) assay that integrates PCR amplification, restriction endonuclease cleavage and real-time fluorescence detection to diagnose MPXV infection and distinguish the Congo Basin and West African MPXV strains. In the MPXV ET-PCR system, three sets of specific primers were designed for MPXV, Congo Basin and West African strains. A short sequence, which could be recognized by restriction endonuclease enzyme BstUI, was added to the 5'end of amplification primers. Then, the modified primers were assigned different reporter dyes and corresponding quenching dyes to each of the three targets, enabling real-time fluorescence reporting of the results and multiplex detection. The designed assay enabled the detection of single or three targets in a single tube, with excellent specificity and analytical sensitivity in terms of plasmid and pseudotyped virus. Moreover, the clinical feasibility of our assay was validated using artificially simulated plasma, nasopharyngeal swab and skin swab samples. In conclusion, the multiplex ET-PCR assay devised here had the advantages of simple primer design, cost-effectiveness, low contamination risk, excellent sensitivity, high specificity and multiplex detection, making it a valuable and dependable tool for curbing the extensive spread of MPXV.
Collapse
Affiliation(s)
- Juan Zhou
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, 100020, P. R. China.
| | - Fei Xiao
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, 100020, P. R. China.
| | - Xiaolan Huang
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, 100020, P. R. China.
| | - Jin Fu
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, 100020, P. R. China.
| | - Nan Jia
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, 100020, P. R. China.
| | - Chunrong Sun
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, 100020, P. R. China.
| | - Min Chen
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, 100020, P. R. China.
| | - Zheng Xu
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, 100020, P. R. China.
| | - Hui Huang
- Department of Infectious Diseases, Affiliated Children's Hospital, Capital Institute of Pediatrics, Beijing, 10020, P. R. China.
| | - Yi Wang
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, 100020, P. R. China.
| |
Collapse
|
11
|
Zeng X, Yang X, Yang L, Yi X, Chen X, Huang J, Wang Y, Li S. A modified multiple cross displacement amplification linked with a gold nanoparticle biosensor for the detection of Epstein-Barr virus in clinical applications. Front Microbiol 2023; 14:1268572. [PMID: 37886077 PMCID: PMC10598869 DOI: 10.3389/fmicb.2023.1268572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Epstein-Barr virus (EBV), a double-stranded DNA virus belonging to the family Herpesviridae, infects more than 95% of healthy adults by attacking the host immune system. Here, a novel detection protocol, utilizing the modified multiple cross displacement amplification (MCDA) technique combined with a gold nanoparticles-based lateral flow biosensors (AuNPs-LFB), was devised and developed to detect EBV infection (termed EBV-MCDA-LFB assay). Ten MCDA primers targeting the EBNA-LP gene were designed, including CP1* primers modified with 6-carboxyfluorescein (FAM) and D1* primers modified with biotin. Then, nucleic acid templates extracted from various pathogens and whole blood samples were used to optimize and evaluate the EBV-MCDA-LFB assay. As a result, the lowest concentration of EBNA-plasmids, which can be detected by MCDA-LFB assay with an optimal reaction condition of 67°C for 30 min, was 10 copies/reaction. Here, the MCDA-LFB assay can detect all EBV pathogens used in the study, and no cross-reactions with non-EBV organisms were observed. Meanwhile, the entire detection workflow of the EBV-MCDA-LFB assay for whole blood samples, including DNA template preparation (25 min), EBV-MCDA amplification (30 min), and AuNPs-LFB-mediated validation (2-5 min), can be completed within 1 h. Taken together, the EBV-MCDA-LFB assay established in the current study is a rapid, simplified, sensitive, specific, and easy-to-obtain technique that can be used as a screening or diagnostic tool for EBV infection in clinical applications, especially in resource-poor regions.
Collapse
Affiliation(s)
- Xiaoyan Zeng
- The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Xinggui Yang
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, China
| | - Ludi Yang
- Tongren People's Hospital, Tongren, Guizhou, China
| | - Xu Yi
- The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Xu Chen
- The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Junfei Huang
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, China
| | - Yu Wang
- Department of Clinical Laboratory, The First People's Hospital of Guiyang, Guiyang, Guizhou, China
| | - Shijun Li
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, China
| |
Collapse
|