1
|
Ouard N, Tali A, Souhoudji TD, Jebbouj R, El-Bouchikhi I, Rose CF, Ahboucha S. Different cortical and subcortical astroglial responsiveness in rats with acute liver failure. J Neuropathol Exp Neurol 2025; 84:412-422. [PMID: 40173416 DOI: 10.1093/jnen/nlaf020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025] Open
Abstract
Hepatic encephalopathy (HE) is a neuropsychiatric complication of liver failure. Previous studies described astroglia alterations in HE, but regional changes have not been well investigated. This study addresses regional astroglial response by exploring glial fibrillary acidic protein (GFAP) immunoreactivity in cortical structures including somatosensory (S1Tr and S1BF), piriform (Pir), and perirhinal (PRh) cortices, and subcortical regions including corpus callosum (CC), ventromedial thalamus (VMT), mammillothalamic tract (MTT), and dorsomedial hypothalamic nucleus (DHN) in rats with acute liver failure (ALF) sacrificed at coma stage. Our data showed decreased numbers of astrocytes in S1Tr, Pir, and CC in ALF rats. GFAP-immunoreactive cells were increased within other regions including PRh, VMT, MTT, and DHN. Cell morphometric analysis showed significant increase in GFAP-immunoreactive astrocyte processes and cell bodies in cortical and subcortical regions but not in CC and DHN. However, astrocyte perimeters were increased, particularly in S1Tr and VMT. Our study demonstrates regional specificity including (1) regions with astrocyte activation associated with an increase of GFAP-immunostaining and astrocyte cell counts, together with (2) unaltered GFAP components, and (3) regions characterized by presumably inactive astrocyte with a reduced GFAP-immunostaining. These findings may reflect either different regional alterations in HE, or stages of an alteration progressing differently in different regions.
Collapse
Affiliation(s)
- Nahla Ouard
- Multidisciplinary Laboratory of Research and Innovation (MLRI), Technological Applications, Environmental Resources and Health Research Team (ATRES), Polydisciplinary Faculty, Sultan Moulay Slimane University, Khouribga, Morocco
| | - Assmaâ Tali
- Multidisciplinary Laboratory of Research and Innovation (MLRI), Technological Applications, Environmental Resources and Health Research Team (ATRES), Polydisciplinary Faculty, Sultan Moulay Slimane University, Khouribga, Morocco
| | - Themoi Demsou Souhoudji
- Multidisciplinary Laboratory of Research and Innovation (MLRI), Technological Applications, Environmental Resources and Health Research Team (ATRES), Polydisciplinary Faculty, Sultan Moulay Slimane University, Khouribga, Morocco
| | - Rajâa Jebbouj
- Multidisciplinary Laboratory of Research and Innovation (MLRI), Technological Applications, Environmental Resources and Health Research Team (ATRES), Polydisciplinary Faculty, Sultan Moulay Slimane University, Khouribga, Morocco
| | - Ihssane El-Bouchikhi
- Multidisciplinary Laboratory of Research and Innovation (MLRI), Technological Applications, Environmental Resources and Health Research Team (ATRES), Polydisciplinary Faculty, Sultan Moulay Slimane University, Khouribga, Morocco
| | - Christopher F Rose
- Hepato-Neuro Lab, CRCHUM, Montréal, Canada
- Médicine Département, Université de Montréal, Montréal, Canada
| | - Samir Ahboucha
- Multidisciplinary Laboratory of Research and Innovation (MLRI), Technological Applications, Environmental Resources and Health Research Team (ATRES), Polydisciplinary Faculty, Sultan Moulay Slimane University, Khouribga, Morocco
| |
Collapse
|
2
|
Lim CG, Lee HJ. Pattern Clustering of Symmetric Regional Cerebral Edema on Brain MRI in Patients with Hepatic Encephalopathy. JOURNAL OF THE KOREAN SOCIETY OF RADIOLOGY 2024; 85:381-393. [PMID: 38617858 PMCID: PMC11009126 DOI: 10.3348/jksr.2023.0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/16/2023] [Accepted: 06/11/2023] [Indexed: 04/16/2024]
Abstract
Purpose Metabolic abnormalities in hepatic encephalopathy (HE) cause brain edema or demyelinating disease, resulting in symmetric regional cerebral edema (SRCE) on MRI. This study aimed to investigate the usefulness of the clustering analysis of SRCE in predicting the development of brain failure. Materials and Methods MR findings and clinical data of 98 consecutive patients with HE were retrospectively analyzed. The correlation between the 12 regions of SRCE was calculated using the phi (Φ) coefficient, and the pattern was classified using hierarchical clustering using the φ2 distance measure and Ward's method. The classified patterns of SRCE were correlated with clinical parameters such as the model for end-stage liver disease (MELD) score and HE grade. Results Significant associations were found between 22 pairs of regions of interest, including the red nucleus and corpus callosum (Φ = 0.81, p < 0.001), crus cerebri and red nucleus (Φ = 0.72, p < 0.001), and red nucleus and dentate nucleus (Φ = 0.66, p < 0.001). After hierarchical clustering, 24 cases were classified into Group I, 35 into Group II, and 39 into Group III. Group III had a higher MELD score (p = 0.04) and HE grade (p = 0.002) than Group I. Conclusion Our study demonstrates that the SRCE patterns can be useful in predicting hepatic preservation and the occurrence of cerebral failure in HE.
Collapse
|
3
|
Yakubov E, Schmid S, Hammer A, Chen D, Dahlmanns JK, Mitrovic I, Zurabashvili L, Savaskan N, Steiner HH, Dahlmanns M. Ferroptosis and PPAR-gamma in the limelight of brain tumors and edema. Front Oncol 2023; 13:1176038. [PMID: 37554158 PMCID: PMC10406130 DOI: 10.3389/fonc.2023.1176038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/04/2023] [Indexed: 08/10/2023] Open
Abstract
Human malignant brain tumors such as gliomas are devastating due to the induction of cerebral edema and neurodegeneration. A major contributor to glioma-induced neurodegeneration has been identified as glutamate. Glutamate promotes cell growth and proliferation in variety of tumor types. Intriguently, glutamate is also an excitatory neurotransmitter and evokes neuronal cell death at high concentrations. Even though glutamate signaling at the receptor and its downstream effectors has been extensively investigated at the molecular level, there has been little insight into how glutamate enters the tumor microenvironment and impacts on metabolic equilibration until recently. Surprisingly, the 12 transmembrane spanning tranporter xCT (SLC7A11) appeared to be a major player in this process, mediating glutamate secretion and ferroptosis. Also, PPARγ is associated with ferroptosis in neurodegeneration, thereby destroying neurons and causing brain swelling. Although these data are intriguing, tumor-associated edema has so far been quoted as of vasogenic origin. Hence, glutamate and PPARγ biology in the process of glioma-induced brain swelling is conceptually challenging. By inhibiting xCT transporter or AMPA receptors in vivo, brain swelling and peritumoral alterations can be mitigated. This review sheds light on the role of glutamate in brain tumors presenting the conceptual challenge that xCT disruption causes ferroptosis activation in malignant brain tumors. Thus, interfering with glutamate takes center stage in forming the basis of a metabolic equilibration approach.
Collapse
Affiliation(s)
- Eduard Yakubov
- Department of Neurosurgery, Paracelsus Medical University, Nuremberg, Germany
| | - Sebastian Schmid
- Department of Trauma, Orthopaedics, Plastic and Hand Surgery, University Hospital Augsburg, Augsburg, Germany
| | - Alexander Hammer
- Department of Neurosurgery, Paracelsus Medical University, Nuremberg, Germany
- Center for Spine and Scoliosis Therapy, Malteser Waldkrankenhaus St. Marien, Erlangen, Germany
| | - Daishi Chen
- Department of Otorhinolaryngology, Shenzhen People's Hospital, Jinan University, Shenzhen, China
| | - Jana Katharina Dahlmanns
- Institute for Physiology and Pathophysiology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Ivana Mitrovic
- Department of Cardiac Surgery, Bogenhausen Hospital, Munich, Germany
| | | | - Nicolai Savaskan
- Department of Neurosurgery, University Medical School Hospital Universitätsklinikum Erlangen (UKER), Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Department of Public Health Neukölln, District Office Neukölln of Berlin Neukölln, Berlin, Germany
| | | | - Marc Dahlmanns
- Institute for Physiology and Pathophysiology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
4
|
Lim CG, Hahm MH, Lee HJ. Hepatic encephalopathy on magnetic resonance imaging and its uncertain differential diagnoses: a narrative review. JOURNAL OF YEUNGNAM MEDICAL SCIENCE 2023; 40:136-145. [PMID: 36624654 PMCID: PMC10076915 DOI: 10.12701/jyms.2022.00689] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/11/2022] [Indexed: 04/12/2023]
Abstract
Hepatic encephalopathy (HE) is a severe neuropsychiatric abnormality in patients with either acute or chronic liver failure. Typical brain magnetic resonance imaging findings of HE are bilateral basal ganglia high signal intensities due to manganese deposition in chronic liver disease and hyperintensity in T2, fluid-attenuated inversion recovery, or diffusion-weighted imaging (DWI) with hemispheric white matter changes including the corticospinal tract. Low values on apparent diffusion coefficient mapping of the affected area on DWI, indicating cytotoxic edema, can be observed in acute HE. However, neuropsychological impairment in HE ranges from mild deficits in psychomotor abilities affecting quality of life to stupor or coma with higher grades of hepatic dysfunction. In particular, the long-lasting compensatory mechanisms for the altered metabolism in chronic liver disease make HE imaging results variable. Therefore, the clinical relevance of imaging findings is uncertain and differentiating HE from other metabolic diseases can be difficult. The recent introduction of concepts such as "acute-on-chronic liver failure (ACLF)," a new clinical entity, has led to a change in the clinical view of HE. Accordingly, there is a need to establish a corresponding concept in the field of neuroimaging diagnosis. Herein, we review HE from a historical and etiological perspective to increase understanding of brain imaging and help establish an imaging approach for advanced new concepts such as ACLF. The purpose of this manuscript is to provide an understanding of HE by reviewing neuroimaging findings based on pathological and clinical concepts of HE, thereby assisting in neuroimaging interpretation.
Collapse
Affiliation(s)
- Chun Geun Lim
- Department of Radiology, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Myong Hun Hahm
- Department of Radiology, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Hui Joong Lee
- Department of Radiology, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Korea
- Corresponding author: Hui Joong Lee, MD, PhD Department of Radiology, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, 130 Dongduk-ro, Jung-gu, Daegu 41944, Korea Tel.: +82-53-420-5397 • Fax: +82-53-422-2677 • E-mail:
| |
Collapse
|
5
|
Liotta EM, Kimberly WT. Cerebral edema and liver disease: Classic perspectives and contemporary hypotheses on mechanism. Neurosci Lett 2020; 721:134818. [PMID: 32035166 DOI: 10.1016/j.neulet.2020.134818] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 02/07/2023]
Abstract
Liver disease is a growing public health concern. Hepatic encephalopathy, the syndrome of brain dysfunction secondary to liver disease, is a frequent complication of both acute and chronic liver disease and cerebral edema (CE) is a key feature. While altered ammonia metabolism is a key contributor to hepatic encephalopathy and CE in liver disease, there is a growing appreciation that additional mechanisms contribute to CE. In this review we will begin by presenting three classic perspectives that form a foundation for a discussion of CE in liver disease: 1) CE is unique to acute liver failure, 2) CE in liver disease is only cytotoxic, and 3) CE in liver disease is primarily an osmotically mediated consequence of ammonia and glutamine metabolism. We will present each classic perspective along with more recent observations that call in to question that classic perspective. After highlighting these areas of debate, we will explore the leading contemporary mechanisms hypothesized to contribute to CE during liver disease.
Collapse
Affiliation(s)
- Eric M Liotta
- Northwestern University-Feinberg School of Medicine, Department of Neurology, United States; Northwestern University-Feinberg School of Medicine, Department of Surgery, Division of Organ Transplantation, United States; Northwestern University Transplant Outcomes Research Collaboration, United States.
| | | |
Collapse
|
6
|
Galland F, Negri E, Da Ré C, Fróes F, Strapazzon L, Guerra MC, Tortorelli LS, Gonçalves CA, Leite MC. Hyperammonemia compromises glutamate metabolism and reduces BDNF in the rat hippocampus. Neurotoxicology 2017; 62:46-55. [PMID: 28506823 DOI: 10.1016/j.neuro.2017.05.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/31/2017] [Accepted: 05/11/2017] [Indexed: 12/31/2022]
Abstract
Ammonia is putatively the major toxin associated with hepatic encephalopathy (HE), a neuropsychiatric manifestation that results in cognitive impairment, poor concentration and psychomotor alterations. The hippocampus, a brain region involved in cognitive impairment and depressive behavior, has been studied less than neocortical regions. Herein, we investigated hippocampal astrocyte parameters in a hyperammonemic model without hepatic lesion and in acute hippocampal slices exposed to ammonia. We also measured hippocampal BDNF, a neurotrophin commonly related to synaptic plasticity and cognitive deficit, and peripheral S100B protein, used as a marker for brain damage. Hyperammonemia directly impaired astrocyte function, inducing a decrease in glutamate uptake and in the activity of glutamine synthetase, in turn altering the glutamine-glutamate cycle, glutamatergic neurotransmission and ammonia detoxification itself. Hippocampal BDNF was reduced in hyperammonemic rats via a mechanism that may involve astrocyte production, since the same effect was observed in astrocyte cultures exposed to ammonia. Ammonia induced a significant increase in S100B secretion in cultured astrocytes; however, no significant changes were observed in the serum or in cerebrospinal fluid. Data demonstrating hippocampal vulnerability to ammonia toxicity, particularly due to reduced glutamate uptake activity and BDNF content, contribute to our understanding of the neuropsychiatric alterations in HE.
Collapse
Affiliation(s)
- Fabiana Galland
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Elisa Negri
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Carollina Da Ré
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Fernanda Fróes
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Liliane Strapazzon
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Maria Cristina Guerra
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Lucas Silva Tortorelli
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Carlos-Alberto Gonçalves
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Marina Concli Leite
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
7
|
Wieland MJ, Langenmayer MC, Matiasek K, Pfitzner A. Tenesmus in a calf with hepatic encephalopathy. VETERINARY RECORD CASE REPORTS 2015. [DOI: 10.1136/vetreccr-2014-000147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Matthias Josef Wieland
- Department of Population Medicine and Diagnostic SciencesAmbulatory and Production MedicineIthacaNew YorkUSA
- Clinic for Ruminants with Ambulatory and Herd Health ServicesCenter for Clinical Veterinary MedicineLudwig‐Maximilians‐University MunichGermany
| | - Martin Christoph Langenmayer
- Institute of Veterinary PathologyCenter for Clinical Veterinary MedicineLudwig‐Maximilians‐University MunichGermany
| | - Kaspar Matiasek
- Institute of Veterinary PathologyCenter for Clinical Veterinary MedicineLudwig‐Maximilians‐University MunichGermany
| | - Annette Pfitzner
- Clinic for Ruminants with Ambulatory and Herd Health ServicesCenter for Clinical Veterinary MedicineLudwig‐Maximilians‐University MunichGermany
| |
Collapse
|
8
|
Lichter-Konecki U, Nadkarni V, Moudgil A, Cook N, Poeschl J, Meyer MT, Dimmock D, Baumgart S. Feasibility of adjunct therapeutic hypothermia treatment for hyperammonemia and encephalopathy due to urea cycle disorders and organic acidemias. Mol Genet Metab 2013; 109:354-9. [PMID: 23791307 DOI: 10.1016/j.ymgme.2013.05.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 05/20/2013] [Accepted: 05/20/2013] [Indexed: 01/06/2023]
Abstract
BACKGROUND Children with urea cycle disorders (UCDs) or organic acidemias (OAs) and acute hyperammonemia and encephalopathy are at great risk for neurological injury, developmental delay, intellectual disability, and death. Nutritional support, intravenous alternative pathway therapy, and dialysis are used to treat severe hyperammonemia associated with UCDs and nutritional support and dialysis are used to treat severe hyperammonemia in OAs. Brain protective treatment while therapy is initiated may improve neurological and cognitive function for the lifetime of the child. Animal experiments and small clinical trials in hepatic encephalopathy caused by acute liver failure suggest that therapeutic hypothermia provides neuroprotection in hyperammonemia associated encephalopathy. We report results of an ongoing pilot study that assesses if whole body cooling during rescue treatment of neonates with acute hyperammonemia and encephalopathy is feasible and can be conducted safely. METHODS Adjunct whole body therapeutic hypothermia was conducted in addition to standard treatment in acutely encephalopathic, hyperammonemic neonates with UCDs and OAs requiring dialysis. Therapeutic hypothermia was initiated using cooling blankets as preparations for dialysis were underway. Similar to standard therapeutic hypothermia treatment for neonatal hypoxic ischemic encephalopathy, patients were maintained at 33.5°C±1°C for 72h, they were then slowly rewarmed by 0.5°C every 3h over 18h. In addition data of age-matched historic controls were collected for comparison. RESULTS Seven patients were cooled using the pilot study protocol and data of seven historic controls were reviewed. All seven patients survived the initial rescue and cooling treatment, 6 patients were discharged home 2-4weeks after hospitalization, five of them feeding orally. The main complication observed in a majority of patients was hypotension. CONCLUSION Adjunct therapeutic hypothermia for neonates with UCDs and OAs receiving standard treatment was feasible and could be conducted safely in pediatric and neonatal intensive care units experienced in the application of therapeutic hypothermia in critically ill neonates. However, including adjunct therapeutic hypothermia in the already involved treatment regimen of critically ill patients with hyperammonemia and encephalopathy adds to the complexity of care and should not be done unless it is proven efficacious in a randomized clinical trial.
Collapse
MESH Headings
- Adolescent
- Child
- Child, Preschool
- Developmental Disabilities/complications
- Developmental Disabilities/pathology
- Developmental Disabilities/therapy
- Humans
- Hyperammonemia/pathology
- Hyperammonemia/therapy
- Hypothermia, Induced
- Hypoxia-Ischemia, Brain/complications
- Hypoxia-Ischemia, Brain/drug therapy
- Hypoxia-Ischemia, Brain/pathology
- Infant
- Infant, Newborn
- Pilot Projects
- Urea/metabolism
- Urea Cycle Disorders, Inborn/complications
- Urea Cycle Disorders, Inborn/genetics
- Urea Cycle Disorders, Inborn/pathology
- Urea Cycle Disorders, Inborn/therapy
Collapse
Affiliation(s)
- Uta Lichter-Konecki
- Division Genetics & Metabolism, Children's National Medical Center, Dept. of Pediatrics, George Washington University MC, Washington, DC 20010, USA.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Bosoi CR, Rose CF. Brain edema in acute liver failure and chronic liver disease: similarities and differences. Neurochem Int 2013; 62:446-57. [PMID: 23376027 DOI: 10.1016/j.neuint.2013.01.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 01/11/2013] [Accepted: 01/16/2013] [Indexed: 12/12/2022]
Abstract
Hepatic encephalopathy (HE) is a complex neuropsychiatric syndrome that typically develops as a result of acute liver failure or chronic liver disease. Brain edema is a common feature associated with HE. In acute liver failure, brain edema contributes to an increase in intracranial pressure, which can fatally lead to brain stem herniation. In chronic liver disease, intracranial hypertension is rarely observed, even though brain edema may be present. This discrepancy in the development of intracranial hypertension in acute liver failure versus chronic liver disease suggests that brain edema plays a different role in relation to the onset of HE. Furthermore, the pathophysiological mechanisms involved in the development of brain edema in acute liver failure and chronic liver disease are dissimilar. This review explores the types of brain edema, the cells, and pathogenic factors involved in its development, while emphasizing the differences in acute liver failure versus chronic liver disease. The implications of brain edema developing as a neuropathological consequence of HE, or as a cause of HE, are also discussed.
Collapse
Affiliation(s)
- Cristina R Bosoi
- Neuroscience Research Unit, Hôpital Saint-Luc (CRCHUM), Université de Montréal, Québec, Canada
| | | |
Collapse
|
10
|
Ahboucha S, Gamrani H, Baker G. GABAergic neurosteroids: the "endogenous benzodiazepines" of acute liver failure. Neurochem Int 2012; 60:707-714. [PMID: 22041164 DOI: 10.1016/j.neuint.2011.10.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 10/06/2011] [Accepted: 10/10/2011] [Indexed: 12/19/2022]
Abstract
Acute liver failure (ALF) or fulminant hepatic failure represents a serious life-threatening condition. ALF is characterized by a significant liver injury that leads to a rapid onset of hepatic encephalopathy (HE). In ALF, patients manifest rapid deterioration in consciousness leading to hepatic coma together with an onset of brain edema which induces high intracranial pressure that frequently leads to herniation and death. It is well accepted that hyperammonemia is a cardinal, but not the sole, mediator in the pathophysiology of ALF. There is increasing evidence that neurosteroids, including the parent neurosteroid pregnenolone, and the progesterone metabolites tetrahydroprogesterone (allopregnanolone) and tetrahydrodeoxycorticosterone (THDOC) accumulate in brain in experimental models of ALF. Neurosteroids in ALF represent good candidates to explain the phenomenon of "increased GABAergic tone" in chronic and ALF, and the beneficial effects of benzodiazepine drugs. The mechanisms that trigger brain neurosteroid changes in ALF are not yet well known, but could involve partially de novo neurosteroidogenesis following activation of the translocator protein (TSPO). The factors that contribute to TSPO changes in ALF may include ammonia and cytokines. It is possible that increases in brain levels of neurosteroids in ALF may result in auto-regulatory mechanisms where hypothermia may play a significant role. Possible mechanisms that may involve neurosteroids in the pathophysiology of HE, and more speculatively in brain edema, and inflammatory processes in ALF are suggested.
Collapse
Affiliation(s)
- Samir Ahboucha
- Université Cadi Ayyad, Faculté des Sciences Semlalia, Equipe Neurosciences Pharmacologie et Environnement, BP 2930 Marrakech, Morocco.
| | | | | |
Collapse
|
11
|
Nguyen JH. Blood-brain barrier in acute liver failure. Neurochem Int 2011; 60:676-83. [PMID: 22100566 DOI: 10.1016/j.neuint.2011.10.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 10/20/2011] [Accepted: 10/26/2011] [Indexed: 12/16/2022]
Abstract
Brain edema remains a challenging obstacle in the management of acute liver failure (ALF). Cytotoxic mechanisms associated with brain edema have been well recognized, but evidence for vasogenic mechanisms in the pathogenesis of brain edema in ALF has been lacking. Recent reports have not only shown a role of matrix metalloproteinase-9 in the pathogenesis of brain edema in experimental ALF but have also found significant alterations in the tight junction elements including occludin and claudin-5, suggesting a vasogenic injury in the blood-brain barrier (BBB) integrity. This article reviews and explores the role of the paracellular tight junction proteins in the increased selective BBB permeability that leads to brain edema in ALF.
Collapse
Affiliation(s)
- Justin H Nguyen
- Division of Transplant Surgery, Department of Transplantation, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, United States.
| |
Collapse
|
12
|
Shawcross DL, Wendon JA. The neurological manifestations of acute liver failure. Neurochem Int 2011; 60:662-71. [PMID: 22067133 DOI: 10.1016/j.neuint.2011.10.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 10/12/2011] [Accepted: 10/14/2011] [Indexed: 12/12/2022]
Abstract
Acute liver failure is a disorder which impacts on multiple organ systems and results from hepatocellular necrosis in a patient with no previous history of chronic liver disease. It typically culminates in the development of liver dysfunction, coagulopathy and encephalopathy, and is associated with high mortality in poor prognostic groups. In acute liver failure, some patients may develop cerebral edema and increased intracranial pressure although recent data suggest that intracranial hypertension is less frequent than previously described, complicating 29% of acute cases who have proceeded to grade 3/4 coma. Neurological manifestations are primarily underpinned by the development of brain edema. The onset of encephalopathy can be rapid and dramatic with the development of asterixis, delirium, hyperreflexia, clonus, seizures, extensor posturing and coma. Ammonia plays a definitive role in the development of cytotoxic brain edema. Patients with acute liver failure have a marked propensity to develop renal insufficiency and hence impaired ammonia excretion. The incidence of both bacterial and fungal infection occurs in approximately one third of patients. The relationship between inflammation, as opposed to infection, and progression of encephalopathy is similar to that observed in chronic liver disease. Intracranial pressure monitoring is valuable in identifying surges in intracranial hypertension requiring intervention. Insertion of an intracranial bolt should be considered only in the subgroup of patients who have progressed to grade 4 coma. Risk factors for developing intracranial hypertension are those with hyperacute and acute etiologies, progression to grade 3/4 hepatic encephalopathy, those who develop pupillary abnormalities (dilated pupils, sluggishly responsive to light) or seizures, have systemic inflammation, an arterial ammonia >150 μmol/L, hyponatremia, and those in receipt of vasopressor support. Strategies employed in patients with established encephalopathy (grade 3/4) aim to maintain freedom from infection/inflammatory milieu, provide adequate sedation, and correct hypo-osmolality.
Collapse
Affiliation(s)
- Debbie L Shawcross
- Institute of Liver Studies, King's College London School of Medicine at King's College Hospital, King's College Hospital, Denmark Hill, London SE5 9RS, United Kingdom.
| | | |
Collapse
|
13
|
Toris GT, Bikis CN, Tsourouflis GS, Theocharis SE. Hepatic encephalopathy: an updated approach from pathogenesis to treatment. Med Sci Monit 2011; 17:RA53-63. [PMID: 21278704 PMCID: PMC3524698 DOI: 10.12659/msm.881387] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
One of the most serious complications of chronic or fulminant liver failure is hepatic encephalopathy (HE), associated most commonly with cirrhosis. In the presence of chronic liver disease, HE is a sign of decompensation, while in fulminant liver failure its development represents a worrying sign and usually indicates that transplantation will be required. Despite the significance of HE in the course of liver disease, the progress in development of new therapeutic options has been unremarkable over the last 20 years. An up-to-date review regarding HE, including both research and review articles. HE is a serious and progressive, but potentially reversible, disorder with a wide spectrum of neuropsychiatric abnormalities and motor disturbances that ranges from mild alteration of cognitive and motor function to coma and death. Although a clear pathogenesis is yet to be determined, elevated ammonia in serum and the central nervous system is the mainstay for pathogenesis and treatment of HE. Management includes early diagnosis and prompt treatment of precipitating factors. Clinical trials and extensive clinical experience have established the efficacy of diverse substances in HE treatment. Novel therapies with clinical promise include: L-ornithine L-aspartate, sodium benzoate, phenylacetate, AST-120, and the molecular adsorbent recirculating system. Eventually, liver transplantation is often the most successful long-term therapy for HE.
Collapse
Affiliation(s)
- Giannakis T Toris
- Department of Forensic Medicine and Toxicology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | | |
Collapse
|
14
|
Abstract
Hepatic encephalopathy is a complex and potentially reversible neuropsychiatric syndrome complicating acute or chronic liver disease. Clinical manifestations are multiple and varied, ranging from minimal neurological changes to coma. Ammonia is the main toxic substance involved in the pathogenesis of hepatic encephalopathy, although other mechanisms, such as modifications of the blood-brain barrier, disruptions in neurotransmission and abnormalities in GABAergic and benzodiazepine pathways may also play a role. The identification and treatment of precipitating factors is crucial in the management of patients with hepatic encephalopathy. Current treatments are based on reducing intestinal ammonia load by agents such as antibiotics or disaccharides, although their efficacy is yet to be clearly established.
Collapse
|
15
|
Seyan AS, Hughes RD, Shawcross DL. Changing face of hepatic encephalopathy: Role of inflammation and oxidative stress. World J Gastroenterol 2010; 16:3347-57. [PMID: 20632436 PMCID: PMC2904880 DOI: 10.3748/wjg.v16.i27.3347] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The face of hepatic encephalopathy (HE) is changing. This review explores how this neurocognitive disorder, which is associated with both acute and chronic liver injury, has grown to become a dynamic syndrome that spans a spectrum of neuropsychological impairment, from normal performance to coma. The central role of ammonia in the pathogenesis of HE remains incontrovertible. However, over the past 10 years, the HE community has begun to characterise the key roles of inflammation, infection, and oxidative/nitrosative stress in modulating the pathophysiological effects of ammonia on the astrocyte. This review explores the current thoughts and evidence base in this area and discusses the potential role of existing and novel therapies that might abrogate the oxidative and nitrosative stresses inflicted on the brain in patients with, or at risk of developing, HE.
Collapse
|
16
|
Hunter GRW, Young GB. Recovery of Awareness after Hyperacute Hepatic Encephalopathy with “Flat” EEG, Severe Brain Edema and Deep Coma. Neurocrit Care 2010; 13:247-51. [DOI: 10.1007/s12028-010-9391-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Soárez PCD, Oliveira AC, Padovan J, Parise ER, Ferraz MB. A critical analysis of studies assessing L-ornithine-L-aspartate (LOLA) in hepatic encephalopathy treatment. ARQUIVOS DE GASTROENTEROLOGIA 2009; 46:241-7. [DOI: 10.1590/s0004-28032009000300019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 03/03/2009] [Indexed: 01/19/2023]
Abstract
CONTEXT: Experimental and clinical studies suggest that LOLA may have a favorable influence on hepatic encephalopathy due to the effect on the reduction of ammonia, and improvement of the symptoms and laboratory findings. OBJECTIVES: To evaluate and to critically analyze the efficacy and/or effectiveness results of the use of LOLA when compared to placebo in the treatment of hepatic encephalopathy. DATA SOURCES: LILACS, SciELO, MEDLINE, PubMed database and Cochrane Collaboration Register of Controlled Trials were searched from 1966 to September of 2006. The review has included all the randomized controlled double-blind clinical trials performed in humans in English language. RESULTS: Four studies published between 1993 and 2000 were selected and reviewed. LOLA was showed as being able to reduce hyperammonemia in patients with hepatic encephalopathy, when compared to patients in the placebo group. CONCLUSIONS: Although the trials have shown efficacy of LOLA in reducing hyperammonemia of hepatic encephalopathy, sufficient evidence of a significant beneficial effect of LOLA on patients with hepatic encephalopathy was not found. The studies performed in this area were small, with short follow-up periods and half of them showed low methodological quality.
Collapse
|
18
|
Encephalopathy and cerebral edema in the setting of acute liver failure: pathogenesis and management. Neurocrit Care 2008; 9:97-102. [PMID: 18688582 DOI: 10.1007/s12028-008-9123-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cerebral edema is a potential life-threatening complication in patients with acute liver failure who progress to grade III/IV encephalopathy. The incidence is variably reported but appears to be most prevalent in those patients with hyperacute liver failure as opposed to subacute forms of liver failure. In those patients who are deemed at risk of cerebral edema and raised intracranial pressure, insertion of an intra-cranial pressure monitoring device may be considered to optimize treatment and interventions. The pathogenesis of cerebral edema in this setting remains controversial, although recent work suggests a pivotal role for arterial ammonia, whose effects appear to be potentiated by the presence of systemic inflammation. Recent work has also suggested the import of free radical formation occurring at a mitochondrial level as being the potential mediator of cellular dysfunction as opposed to ammonia per se. Treatment of such patients requires a multi-disciplinary approach incorporating both hepatology and critical care. In a significant proportion of such cases, consideration of liver transplantation may be required. Treatment should be focused at optimizing liver function and regenerative capacity and minimizing the inflammatory milieu. Controlled studies are lacking and much of the management has been extrapolated from neurocritical care. Sustained elevation of intracranial pressure may be responsive to mannitol or hypertonic saline bolus, and in those with hyperemia indomethacin has been reported as beneficial in case series. Recently, interest has developed into the use of cooling in the management of patients with acute liver failure and raised intracranial pressure. Animal studies support this treatment option as do case series, although randomized trials are still awaited.
Collapse
|
19
|
Lichter-Konecki U. Profiling of astrocyte properties in the hyperammonaemic brain: shedding new light on the pathophysiology of the brain damage in hyperammonaemia. J Inherit Metab Dis 2008; 31:492-502. [PMID: 18683079 DOI: 10.1007/s10545-008-0834-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2007] [Revised: 05/30/2008] [Accepted: 06/03/2008] [Indexed: 10/21/2022]
Abstract
Acute hyperammonaemia (HA) causes cerebral oedema and severe brain damage in patients with urea cycle disorders (UCDs) or acute liver failure (ALF). Chronic HA is associated with developmental delay and intellectual disability in patients with UCDs and with neuropsychiatric symptoms in patients with chronic liver failure. Treatment often cannot prevent severe brain injury and neurological sequelae. The causes of the brain oedema in hyperammonaemic encephalopathy (HAE) have been subject of intense controversy among physicians and scientists working in this field. Currently favoured hypotheses are astrocyte swelling due to increased intracellular glutamine content and neuronal cell death due to excitotoxicity caused by elevated extracellular glutamate levels. While many researchers focus on these mechanisms of cytotoxicity, others emphasize vascular causes of brain oedema. New data gleaned from expression profiling of astrocytes acutely isolated from hyperammonaemic mouse brains point to disturbed water and potassium homeostasis as regulated by astrocytes at the brain microvasculature and in the perisynaptic space as a potential mechanism of brain oedema development in hyperammonaemia.
Collapse
Affiliation(s)
- U Lichter-Konecki
- Center for Neuroscience Research, and Division of Genetics & Metabolism, Children's National Medical Center, Washington, DC 20010-2970, USA.
| |
Collapse
|
20
|
Lichter-Konecki U, Mangin JM, Gordish-Dressman H, Hoffman EP, Gallo V. Gene expression profiling of astrocytes from hyperammonemic mice reveals altered pathways for water and potassium homeostasis in vivo. Glia 2008; 56:365-77. [PMID: 18186079 DOI: 10.1002/glia.20624] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Acute hyperammonemia (HA) causes cerebral edema and brain damage in children with urea cycle disorders (UCDs) and in patients in acute liver failure. Chronic HA is associated with developmental delay and mental retardation in children with UCDs, and with neuropsychiatric symptoms in patients with chronic liver failure. Astrocytes are a major cellular target of hyperammonemic encephalopathy, and changes occurring in these cells are thought to be causally related to the brain edema of acute HA. To study the effect of HA on astrocytes in vivo, we crossed the Otc(spf) mouse, a mouse with the X-linked UCD ornithine transcarbamylase (OTC) deficiency, with the hGFAP-EGFP mouse, a mouse selectively expressing green fluorescent protein in astrocytes. We used FACS to purify astrocytes from the brains of hyperammonemic and healthy Otcspf/GFAP-EGFP mice. RNA isolated from these astrocytes was used in microarray expression analyses and qRT-PCR. When compared with healthy littermates, we observed a significant downregulation of the gap-junction channel connexin 43 (Cx43) the water channel aquaporin 4 (Aqp4) genes, and the astrocytic inward-rectifying potassium channel (Kir) genes Kir4.1 and Kir5.1 in hyperammonemic mice. Aqp4, Cx43, and Kir4.1/Kir5.1 are co-localized to astrocytic end-feet at the brain vasculature, where they regulate potassium and water transport. Since, NH4+ ions can permeate water and K+-channels, downregulation of these three channels may be a direct effect of elevated blood ammonia levels. Our results suggest that alterations in astrocyte-mediated water and potassium homeostasis in brain may be key to the development of the brain edema.
Collapse
Affiliation(s)
- Uta Lichter-Konecki
- Center for Neuroscience Research, Children's National Medical Center, Washington, DC 20010, USA
| | | | | | | | | |
Collapse
|
21
|
Shimojima N, Eckman CB, McKinney M, Sevlever D, Yamamoto S, Lin W, Dickson DW, Nguyen JH. Altered expression of zonula occludens-2 precedes increased blood-brain barrier permeability in a murine model of fulminant hepatic failure. J INVEST SURG 2008; 21:101-8. [PMID: 18569429 PMCID: PMC2667930 DOI: 10.1080/08941930802043565] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Brain edema secondary to increased blood-brain barrier (BBB) permeability is a lethal complication in fulminant hepatic failure (FHF). Intact tight junctions (TJ) between brain capillary endothelial cells are critical for normal BBB function. However, the role of TJ in FHF has not been explored. We hypothesized that alterations in the composition of TJ proteins would result in increased BBB permeability in FHF. In this study, FHF was induced in C57BL/6J mice by using azoxymethane. BBB permeability was assessed with sodium fluorescein. Expression of TJ proteins was determined by Western blot, and their cellular distribution was examined using immunofluorescent microscopy. Comatose FHF mice had significant cerebral sodium fluorescein extravasation compared with control and precoma FHF mice, indicating increased BBB permeability. Western blot analysis showed a significant decrease in zonula occludens (ZO)-2 expression starting in the precoma stage. Immunofluorescent microscopy showed a significantly altered distribution pattern of ZO-2 in isolated microvessels from precoma FHF mice. These changes were more prominent in comatose FHF animals. Significant alterations in ZO-2 expression and distribution in the tight junctions preceded the increased BBB permeability in FHF mice. These results suggest that ZO-2 may play an important role in the pathogenesis of brain edema in FHF.
Collapse
Affiliation(s)
- Naoki Shimojima
- Department of Transplantation, Division of Transplant Surgery, Mayo Clinic College of Medicine, Jacksonville, FL 32216, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Ferrara CT, Wang P, Neto EC, Stevens RD, Bain JR, Wenner BR, Ilkayeva OR, Keller MP, Blasiole DA, Kendziorski C, Yandell BS, Newgard CB, Attie AD. Genetic networks of liver metabolism revealed by integration of metabolic and transcriptional profiling. PLoS Genet 2008; 4:e1000034. [PMID: 18369453 PMCID: PMC2265422 DOI: 10.1371/journal.pgen.1000034] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Accepted: 02/11/2008] [Indexed: 11/19/2022] Open
Abstract
Although numerous quantitative trait loci (QTL) influencing disease-related phenotypes have been detected through gene mapping and positional cloning, identification of the individual gene(s) and molecular pathways leading to those phenotypes is often elusive. One way to improve understanding of genetic architecture is to classify phenotypes in greater depth by including transcriptional and metabolic profiling. In the current study, we have generated and analyzed mRNA expression and metabolic profiles in liver samples obtained in an F2 intercross between the diabetes-resistant C57BL/6 leptinob/ob and the diabetes-susceptible BTBR leptinob/ob mouse strains. This cross, which segregates for genotype and physiological traits, was previously used to identify several diabetes-related QTL. Our current investigation includes microarray analysis of over 40,000 probe sets, plus quantitative mass spectrometry-based measurements of sixty-seven intermediary metabolites in three different classes (amino acids, organic acids, and acyl-carnitines). We show that liver metabolites map to distinct genetic regions, thereby indicating that tissue metabolites are heritable. We also demonstrate that genomic analysis can be integrated with liver mRNA expression and metabolite profiling data to construct causal networks for control of specific metabolic processes in liver. As a proof of principle of the practical significance of this integrative approach, we illustrate the construction of a specific causal network that links gene expression and metabolic changes in the context of glutamate metabolism, and demonstrate its validity by showing that genes in the network respond to changes in glutamine and glutamate availability. Thus, the methods described here have the potential to reveal regulatory networks that contribute to chronic, complex, and highly prevalent diseases and conditions such as obesity and diabetes. Although numerous quantitative trait loci (QTL) influencing disease-related phenotypes have been detected through gene mapping and positional cloning, identifying individual genes and their potential roles in molecular pathways leading to disease remains a challenge. In this study, we include transcriptional and metabolic profiling in genomic analyses to address this limitation. We investigated an F2 intercross between the diabetes-resistant C57BL/6 leptinob/ob and the diabetes-susceptible BTBR leptinob/ob mouse strains that segregates for genotype and diabetes-related physiological traits; blood glucose, plasma insulin and body weight. Our study shows that liver metabolites (comprised of amino acids, organic acids, and acyl-carnitines) map to distinct genetic regions, thereby indicating that tissue metabolites are heritable. We also demonstrate that genomic analysis can be integrated with liver mRNA expression and metabolite profiling data to construct causal, testable networks for control of specific metabolic processes in liver. We apply an in vitro study to confirm the validity of this integrative method, and thus provide a novel approach to reveal regulatory networks that contribute to chronic, complex, and highly prevalent diseases and conditions such as obesity and diabetes.
Collapse
Affiliation(s)
- Christine T. Ferrara
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail: (CTF); (CBN); (ADA)
| | - Ping Wang
- Department of Statistics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Elias Chaibub Neto
- Department of Statistics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Robert D. Stevens
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina, United States of America
| | - James R. Bain
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Brett R. Wenner
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Olga R. Ilkayeva
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Mark P. Keller
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Daniel A. Blasiole
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Christina Kendziorski
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Brian S. Yandell
- Department of Statistics, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Horticulture, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Christopher B. Newgard
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail: (CTF); (CBN); (ADA)
| | - Alan D. Attie
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail: (CTF); (CBN); (ADA)
| |
Collapse
|
23
|
Ahboucha S, Butterworth RF. The neurosteroid system: implication in the pathophysiology of hepatic encephalopathy. Neurochem Int 2008; 52:575-587. [PMID: 17610999 DOI: 10.1016/j.neuint.2007.05.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 04/23/2007] [Accepted: 05/03/2007] [Indexed: 01/09/2023]
Abstract
Hepatic encephalopathy (HE) is a serious cerebral complication of both acute and chronic liver failure. In acute liver failure, astrocytes undergo swelling which results in increased intracranial pressure and may lead to brain herniation and death. In chronic liver failure, Alzheimer-type II astrocytosis is the characteristic neuropathologic finding. Patients with liver failure manifest severe alterations of their quality of life including sleep disorders as well as memory, learning, and locomotor abnormalities. Neurosteroids (NS) are synthesized in the brain mainly by astrocytes independent of peripheral steroidal sources (adrenals and gonads) and are suggested to play a role in the pathogenesis of HE. NS bind and modulate different types of neural receptors; effects on the gamma amino butyric acid (GABA)-A receptor complex are the most extensively studied. For example, the NS tetrahydroprogesterone (allopregnanolone), and tetrahydrodeoxycorticosterone (THDOC) are potent positive allosteric modulators of the GABA-A receptor. As a consequence of modulation of these receptors, NS stimulate inhibitory neurotransmission in the CNS, and neuroinhibitory changes including "increased GABA-ergic tone" have been suggested as pathophysiological mechanisms in HE. Moreover, some NS bind to intracellular receptors through which they also regulate gene expression, and there is substantial evidence confirming that expression of genes coding for key astrocytic and neuronal proteins are altered in HE. This review summarizes findings consistent with the involvement of NS in human and experimental HE.
Collapse
Affiliation(s)
- Samir Ahboucha
- Neuroscience Research Unit, Hôpital Saint-Luc (CHUM), 1058 St-Denis, Montreal, Quebec, Canada H2X 3J4
| | | |
Collapse
|
24
|
Isobe-Harima Y, Terai S, Miura I, Segawa M, Murata T, Itamoto K, Taura Y, Shinoda K, Sakaida I. A new hepatic encephalopathy model to monitor the change of neural amino acids and astrocytes with behaviour disorder. Liver Int 2008; 28:117-25. [PMID: 17971093 DOI: 10.1111/j.1478-3231.2007.01589.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
BACKGROUND/AIMS To elucidate the pathogenesis of hepatic encephalopathy (HE), we developed a new HE model with behaviour disorder. METHODS Male Wistar rats were divided into four treatment groups: a HE model: acetaminophen (APAP)+3-methylcholanthrene (3-MC) group (APAP+MC group); control group: acetaminophen group; 3-methylcholanthrene group; and a no-treatment group. We monitored the changes of neural amino acids in the synaptic cleft and astrocytes in the brain during behaviour disorder. RESULTS In the APAP+MC group, alanine amino transferase, blood ammonia and glucose increased from 3 h and total bilirubin increased at 6 h. Prothrombin time was prolonged from 3 h in the APAP+MC group. The APAP+MC group exhibited centrilobular necrosis in the liver after 8 h. In the APAP+MC group, rats jumped vertically and this vertical activity increased significantly from 4 to 7 h. During the behaviour disorder, we found that glutamate and aspartate increased in the synaptic cleft from 4 h after treatment with APAP+3-MC, glutamate increased 23.9-fold at 7 h and aspartate increased 16.1-fold at 4 h, whereas glutamine did not change. At that time, we observed morphological changes of the astrocytes by immunostaining for the glial fibrillary acidic protein. CONCLUSIONS Our new HE model demonstrated that increased excitatory neural amino acids and morphological change in astrocytes were involved in the behaviour disorder that occurs with HE.
Collapse
Affiliation(s)
- Yumiko Isobe-Harima
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ahboucha S, Butterworth RF. The neurosteroid system: an emerging therapeutic target for hepatic encephalopathy. Metab Brain Dis 2007; 22:291-308. [PMID: 17823858 DOI: 10.1007/s11011-007-9065-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Both acute and chronic liver failure induce cerebral complications known as hepatic encephalopathy (HE) and thought to selectively involve brain astrocytes. Alterations of astrocytic-neuronal cross talk occurs affecting brain function. In acute liver failure, astrocyte undergo swelling, which results in increased intracranial pressure and may lead to brain herniation. In chronic liver failure, Alzheimer-type II astrocytosis is a characteristic change. Neurosteroids (NS) synthesized in the brain mainly by astrocytes independent of peripheral steroidal sources (adrenals and gonads) are suggested to play a role in HE. NS bind and modulate different types of membrane receptors. Effects on the gamma amino butyric acid (GABA)-A receptor complex are the most extensively studied. For example, the NS tetrahydroprogesterone (allopregnanolone), and tetrahydrodeoxycorticosterone (THDOC) are potent positive allosteric modulators of GABA-A receptors. As a consequence of modulation of these receptors, NS are well-known to modulate inhibitory neurotransmission in the central nervous system. Some NS bind to intracellular receptors, and in this way may also regulate gene expression. In HE, it has been well documented that neurotransmission and gene expression alterations occur during the progression of the disease. This review summarizes findings of relevance for the involvement of NS in human and experimental HE.
Collapse
Affiliation(s)
- Samir Ahboucha
- Neuroscience Research Unit, CHUM-Campus Saint-Luc, 1058 St-Denis, Montreal, Quebec, Canada.
| | | |
Collapse
|
26
|
Abstract
It is generally assumed that neuronal cell death is minimal in liver failure and is insufficient to account for the neuropsychiatric symptoms characteristic of hepatic encephalopathy. However, contrary to this assumption, neuronal cell damage and death are well documented in liver failure patients, taking the form of several distinct clinical entities namely acquired (non-Wilsonian) hepatocerebral degeneration, cirrhosis-related Parkinsonism, post-shunt myelopathy and cerebellar degeneration. In addition, there is evidence to suggest that liver failure contributes to the severity of neuronal loss in Wernicke's encephalopathy. The long-standing nature of the thalamic and cerebellar lesions, over 80% of which are missed by routine clinical evaluation, together with the probability that they are nutritional in origin, underscores the need for careful nutritional management (adequate dietary protein, Vitamin B(1)) in liver failure patients. Mechanisms identified with the potential to cause neuronal cell death in liver failure include NMDA receptor-mediated excitotoxicity, lactic acidosis, oxidative/nitrosative stress and the presence of pro-inflammatory cytokines. The extent of neuronal damage in liver failure may be attenuated by compensatory mechanisms that include down-regulation of NMDA receptors, hypothermia and the presence of neuroprotective steroids such as allopregnanolone. These findings suggest that some of the purported "sequelae" of liver transplantation (gait ataxia, memory loss, confusion) could reflect preexisting neuropathology.
Collapse
Affiliation(s)
- Roger F Butterworth
- Neuroscience Research Unit, Hôpital Saint-Luc (CHUM), 1058 Saint-Denis, Montréal, Quebec, Canada.
| |
Collapse
|
27
|
Patzer JF, Lopez RC, Aggarwal S. Intracranial Pressure Observations in a Canine Model of Acute Liver Failure Supported by a Bioartificial Liver Support System. Artif Organs 2007; 31:834-9. [DOI: 10.1111/j.1525-1594.2007.00476.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Zwingmann C. Nuclear magnetic resonance studies of energy metabolism and glutamine shunt in hepatic encephalopathy and hyperammonemia. J Neurosci Res 2007; 85:3429-42. [PMID: 17722064 DOI: 10.1002/jnr.21445] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Hepatic encephalopathy (HE) in both acute and chronic liver failure is more likely a reversible functional disease rather than an irreversible pathological lesion of brain cells. Metabolic alterations underlie many of the mechanisms leading to HE. This paper summarizes in vivo and ex vivo (1)H-, (13)C-, and (15)N-nuclear magnetic resonance (NMR) spectroscopy data on patients and experimental models of HE. In vivo NMR spectroscopy provides a unique opportunity to study metabolic changes noninvasively in the brain in vivo, and to quantify various metabolites in localized brain areas, and ex vivo NMR permits the high-resolution measurement of metabolites and the identification of different metabolic pathways. In vivo and ex vivo (1)H-NMR investigations consistently reveal severalfold increases in brain glutamine and concomitant decreases in myo-inositol, an important osmolyte in astrocytes. An osmotic disturbance in these cells has long been suggested to be responsible for astrocyte swelling and brain edema. However, ex vivo (13)C-NMR studies have challenged the convention that glutamine accumulation is the major cause of brain edema in acute HE. They rather indicate a limited anaplerotic flux and capacity of astrocytes to detoxify ammonia by glutamine synthesis and emphasize distortions of energy and neurotransmitter metabolism. However, recent (15)N-NMR investigations have demonstrated that glutamine fluxes between neurons and astrocytes are affected by ammonia. Further NMR studies may provide novel insights into the relationship between brain edema and/or astrocyte pathology and changes in inter- and intracellular glutamine homeostasis, which may secondarily alter brain energy metabolism.
Collapse
Affiliation(s)
- Claudia Zwingmann
- Neuroscience Research Unit, Centre de recherche, Hôpital Saint-Luc, Centre hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, Canada.
| |
Collapse
|
29
|
Detry O, De Roover A, Honore P, Meurisse M. Brain edema and intracranial hypertension in fulminant hepatic failure: Pathophysiology and management. World J Gastroenterol 2006; 12:7405-12. [PMID: 17167826 PMCID: PMC4087583 DOI: 10.3748/wjg.v12.i46.7405] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Intracranial hypertension is a major cause of morbidity and mortality of patients suffering from fulminant hepatic failure. The etiology of this intracranial hypertension is not fully determined, and is probably multifactorial, combining a cytotoxic brain edema due to the astrocytic accumulation of glutamine, and an increase in cerebral blood volume and cerebral blood flow, in part due to inflammation, to glutamine and to toxic products of the diseased liver. Validated methods to control intracranial hypertension in fulminant hepatic failure patients mainly include mannitol, hypertonic saline, indomethacin, thiopental, and hyperventilation. However all these measures are often not sufficient in absence of liver transplantation, the only curative treatment of intracranial hypertension in fulminant hepatic failure to date. Induced moderate hypothermia seems very promising in this setting, but has to be validated by a controlled, randomized study. Artificial liver support systems have been under investigation for many decades. The bioartificial liver, based on both detoxification and swine liver cells, has shown some efficacy on reduction of intracranial pressure but did not show survival benefit in a controlled, randomized study. The Molecular Adsorbents Recirculating System has shown some efficacy in decreasing intracranial pressure in an animal model of liver failure, but has still to be evaluated in a phase III trial.
Collapse
|
30
|
Bélanger M, Asashima T, Ohtsuki S, Yamaguchi H, Ito S, Terasaki T. Hyperammonemia induces transport of taurine and creatine and suppresses claudin-12 gene expression in brain capillary endothelial cells in vitro. Neurochem Int 2006; 50:95-101. [PMID: 16956696 DOI: 10.1016/j.neuint.2006.07.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Revised: 07/10/2006] [Accepted: 07/13/2006] [Indexed: 11/23/2022]
Abstract
Ammonia is a key neurotoxin involved in the neurological complications of acute liver failure. The present study was undertaken to study the effects of exposure to pathophysiologically relevant concentrations of ammonium chloride on cultured brain capillary endothelial cells in order to identify mechanisms by which ammonia may alter blood-brain barrier function. Conditionally immortalized mouse brain capillary endothelial cells (TM-BBB) were used as an in vitro model of the blood-brain barrier. Gene expression of a series of blood-brain barrier transporters and tight junction proteins was assessed by quantitative real time PCR analysis. Exposure to ammonia (5mM for 72h) resulted in significant increases in mRNA levels of taurine transporter (TAUT; 2.0-fold increase) as well as creatine transporter (CRT; 1.9-fold increase) whereas claudin-12 mRNA expression was significantly reduced to 67.7% of control levels. Furthermore, [(3)H]taurine and [(14)C]creatine uptake were concomitantly increased following exposure to ammonia, suggesting that up-regulation of both TAUT and CRT under hyperammonemic conditions results in an increased function of these two transporters in TM-BBB cells. TAUT and CRT are respectively involved in osmoregulation and energy buffering in the brain, two systems that are thought to be affected in acute liver failure. Furthermore, claudin-12 down-regulation suggests that hyperammonemia may also affect tight junction integrity. Our results provide evidence that ammonia can alter brain capillary endothelial cell gene expression and transporter function. These findings may be relevant to pathological situations involving hyperammonemia, such as liver disease.
Collapse
Affiliation(s)
- Mireille Bélanger
- Neuroscience Research Unit, CHUM (Hôpital Saint-Luc), Université de Montréal, 1058 St-Denis, Montréal, Québec H2X 3J4, Canada
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
Liver failure results in significant alterations of the brain glutamate system. Ammonia and the astrocyte play major roles in such alterations, which affect several components of the brain glutamate system, namely its synthesis, intercellular transport (uptake and release), and function. In addition to the neurological symptoms of hepatic encephalopathy, modified glutamatergic regulation may contribute to other cerebral complications of liver failure, such as brain edema, intracranial hypertension and changes in cerebral blood flow. A better understanding of the cause and precise nature of the alterations of the brain glutamate system in liver failure could lead to new therapeutic avenues for the cerebral complications of liver disease.
Collapse
Affiliation(s)
- Javier Vaquero
- Neuroscience Research Unit, Hôpital Saint-Luc (CHUM), University of Montreal, Montreal, QC, Canada
| | | |
Collapse
|
32
|
Bélanger M, Côté J, Butterworth RF. Neurobiological characterization of an azoxymethane mouse model of acute liver failure. Neurochem Int 2006; 48:434-40. [PMID: 16563565 DOI: 10.1016/j.neuint.2005.11.022] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Revised: 11/01/2005] [Accepted: 11/02/2005] [Indexed: 12/31/2022]
Abstract
Molecular biological approaches continue to lead to the identification of alterations in expression of genes coding for key central nervous system proteins involved in water homeostasis, energy metabolism and neurotransmitter regulation in acute liver failure (ALF). However, studies aimed at elucidating the pathophysiological consequences of these changes in gene expression are impeded by the lack of a suitable mouse model of ALF. A previous report described hepatic pathology characteristic of ALF resulting from the administration of azoxymethane (AOM) in mice [Matkowskyj, K.A., Marrero, J.A., Carroll, R.E., Danilkovich, A.V., Green, R.M., Benya, R.V., 1999. Azoxymethane-induced fulminant hepatic failure in C57BL/6J mice: characterization of a new animal model. Am. J. Physiol. 277, G455-G462]. In a series of experiments to further assess this treatment as an effective model of ALF, the effects of administration of AOM to male C57BL mice on hepatic and cerebral function were studied. With maintenance of body temperature at 37 degrees C and control of hypoglycemia, mice developed signs of encephalopathy (decreased locomotor activity followed by loss of righting and corneal reflexes) within 16 h of AOM treatment. AOM-treated mice were hyperammonemic, developed spontaneous hypothermia and brain edema. Brain ammonia concentrations were increased to 0.98+/-0.12 mM at coma stages of encephalopathy. Brain amino acid profiles determined by HPLC were typical of ALF in other species including humans. Mild hypothermia (35 degrees C) led to significant attenuation of brain edema, ammonia, and amino acid changes. These findings demonstrate that AOM treatment affords a simple, reproducible mouse model of ALF which may be suitable for the study of the effects of gene manipulation on the cerebral complications of ALF.
Collapse
Affiliation(s)
- Mireille Bélanger
- Neuroscience Research Unit, Hôpital Saint-Luc, CHUM, Montreal, Canada
| | | | | |
Collapse
|
33
|
Hutchinson PJ, Gimson A, Al-Rawi PG, O'Connell MT, Czosnyka M, Menon DK. Microdialysis in the management of hepatic encephalopathy. Neurocrit Care 2006; 5:202-5. [PMID: 17290089 DOI: 10.1385/ncc:5:3:202] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Fulminant hepatic encephalopathy has a high mortality. METHODS This case report describes the role of cerebral microdialysis as an adjunct to the management of a 49 - year-old woman with hepatic encephalopathy secondary to a paracetamol overdose. RESULTS The application of the microdialysis technique, by detecting a very low cerebral glucose concentration in the presence of a normal plasma glucose, assisted in clinical decision making. CONCLUSIONS Cerebral microdialysis, by enabling continuous on-line monitoring of substrate delivery and metabolism, may have a role in the management of patients with fulminant hepatic failure.
Collapse
Affiliation(s)
- P J Hutchinson
- Academic Department of Neurosurgery, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.
| | | | | | | | | | | |
Collapse
|
34
|
Vaquero J, Rose C, Butterworth RF. Keeping cool in acute liver failure: rationale for the use of mild hypothermia. J Hepatol 2005; 43:1067-77. [PMID: 16246452 DOI: 10.1016/j.jhep.2005.05.039] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Revised: 05/05/2005] [Accepted: 05/12/2005] [Indexed: 12/19/2022]
Abstract
Encephalopathy, brain edema and intracranial hypertension are neurological complications responsible for substantial morbidity/mortality in patients with acute liver failure (ALF), where, aside from liver transplantation, there is currently a paucity of effective therapies. Mirroring its cerebro-protective effects in other clinical conditions, the induction of mild hypothermia may provide a potential therapeutic approach to the management of ALF. A solid mechanistic rationale for the use of mild hypothermia is provided by clinical and experimental studies showing its beneficial effects in relation to many of the key factors that determine the development of brain edema and intracranial hypertension in ALF, namely the delivery of ammonia to the brain, the disturbances of brain organic osmolytes and brain extracellular amino acids, cerebro-vascular haemodynamics, brain glucose metabolism, inflammation, subclinical seizure activity and alterations of gene expression. Initial uncontrolled clinical studies of mild hypothermia in patients with ALF suggest that it is an effective, feasible and safe approach. Randomized controlled clinical trials are now needed to adequately assess its efficacy, safety, clinical impact on global outcomes and to provide the guidelines for its use in ALF.
Collapse
Affiliation(s)
- Javier Vaquero
- Neuroscience Research Unit, Hôpital Saint-Luc (C.H.U.M.), 1058 St Denis street, Montreal, QC, Canada H2X 3J4
| | | | | |
Collapse
|
35
|
Abstract
The availability of adequate experimental models of acute liver failure (ALF) is of prime importance to provide a better understanding of this condition and allow the development and testing of new therapeutic approaches for patients with ALF. However, the numerous etiologies and complications of ALF contribute to the complexity of this condition and render the development of an ideal experimental model of ALF more difficult than expected. Instead, a number of different models that may be used for the study of specific aspects of ALF have been developed. The most common approaches used to induce ALFin experimental animals are surgical procedures, toxic liver injury,or a combination of both. Despite the high prevalence of viral hepatitis worldwide, very few satisfactory viral models of ALF are available. Established and newly developed models of ALF are reviewed.
Collapse
Affiliation(s)
- Mireille Bélanger
- Neuroscience Research Unit, C.H.U.M. (Hôpital Saint-Luc, Montreal, Quebec, Canada
| | | |
Collapse
|
36
|
Abstract
Brain edema with intracranial hypertension is a major complication in patients with acute liver failure. Current therapies for this complication include a variety of pharmacologic and interventional measures, some of which are frequently associated with adverse effects or contraindications. Even though these measures usually allow the control of intracranial hypertension for a certain period of time, recurrence is common. New therapies are therefore needed. Increasing clinical and experimental evidence suggests that induction of mild hypothermia (32 degrees C-35 degrees C) may be a therapeutic alternative. Similar to traumatic brain injury or brain stroke, induction of mild hypothermia seems highly effective to reduce intracranial pressure in patients with acute liver failure. Several mechanisms by which mild hypothermia may prevent brain edema and intracranial hypertension in this condition have been disclosed and may include beneficial effects on ammonia metabolism, as well as on the disturbances of brain osmolarity, cerebrovascular hemodynamics, brain glucose metabolism, inflammation, and others. Improvement of systemic hemodynamics and amelioration of liver injury may be other benefits of the systemic induction of mild hypothermia, but the impact of potential adverse events, such as infection, should also be taken into account. At a time when mild hypothermia is increasingly used in several specialized centers, performance of a randomized controlled trial seems critical to confirm the benefits of mild hypothermia in acute liver failure and to provide adequate guidelines for its use.
Collapse
Affiliation(s)
- Javier Vaquero
- Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | |
Collapse
|
37
|
Abstract
Hepatic encephalopathy (HE) incorporates a spectrum of neuropsychiatric abnormalities seen in patients with liver dysfunction with a potential for full reversibility. Distinct syndromes are identified in acute liver failure and cirrhosis. Rapid deterioration in consciousness level and increased intracranial pressure that may result in brain herniation and death are a feature of acute liver failure whereas manifestations of HE in cirrhosis include psychomotor dysfunction, impaired memory, increased reaction time, sensory abnormalities, poor concentration and in severe forms, coma. For over a 100 years ammonia has been considered central to its pathogenesis. In the brain, the astrocyte is the main site for ammonia detoxification, during the conversion of glutamate to glutamine. An increased ammonia level raises the amount of glutamine within astrocytes, causing an osmotic imbalance resulting in cell swelling and ultimately brain oedema. The present review focuses upon the molecular mechanisms involved in the pathogenesis of HE. Therapy of HE is directed primarily at reducing ammonia generation and increasing its detoxification.
Collapse
Affiliation(s)
- Rajiv Jalan
- Institute of Hepatology, University College London Medical School, 69-75 Chenies Mews, UK.
| | | | | |
Collapse
|
38
|
Kim Y, Haam S, Shul YG, Kim WS, Jung JK, Eun HC, Koo KK. Pseudopolymorphic Crystallization of l-Ornithine-l-Aspartate by Drowning Out. Ind Eng Chem Res 2003. [DOI: 10.1021/ie020432d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yehoon Kim
- Department of Chemical Engineering, Yonsei University, Seoul 120-742, Korea, Korea Research Institute of Bioscience and Biotechnology, Taejeon 305-333, Korea, and Department of Chemical Engineering, Sogang University, Seoul 121-742, Korea
| | - Seungjoo Haam
- Department of Chemical Engineering, Yonsei University, Seoul 120-742, Korea, Korea Research Institute of Bioscience and Biotechnology, Taejeon 305-333, Korea, and Department of Chemical Engineering, Sogang University, Seoul 121-742, Korea
| | - Yong Gun Shul
- Department of Chemical Engineering, Yonsei University, Seoul 120-742, Korea, Korea Research Institute of Bioscience and Biotechnology, Taejeon 305-333, Korea, and Department of Chemical Engineering, Sogang University, Seoul 121-742, Korea
| | - Woo-Sik Kim
- Department of Chemical Engineering, Yonsei University, Seoul 120-742, Korea, Korea Research Institute of Bioscience and Biotechnology, Taejeon 305-333, Korea, and Department of Chemical Engineering, Sogang University, Seoul 121-742, Korea
| | - Joon Ki Jung
- Department of Chemical Engineering, Yonsei University, Seoul 120-742, Korea, Korea Research Institute of Bioscience and Biotechnology, Taejeon 305-333, Korea, and Department of Chemical Engineering, Sogang University, Seoul 121-742, Korea
| | - Hee-Chun Eun
- Department of Chemical Engineering, Yonsei University, Seoul 120-742, Korea, Korea Research Institute of Bioscience and Biotechnology, Taejeon 305-333, Korea, and Department of Chemical Engineering, Sogang University, Seoul 121-742, Korea
| | - Kee-Kahb Koo
- Department of Chemical Engineering, Yonsei University, Seoul 120-742, Korea, Korea Research Institute of Bioscience and Biotechnology, Taejeon 305-333, Korea, and Department of Chemical Engineering, Sogang University, Seoul 121-742, Korea
| |
Collapse
|
39
|
Abstract
In patients with severe liver failure, brain edema is a frequent and serious complication that may result in high intracranial pressure and brain damage. This short article focuses on basic physiologic principles that determine water flux across the blood-brain barrier. Using the Starling equation, it is evident that both the osmotic and hydrostatic pressure gradients are imbalanced across the blood-brain barrier in patients with acute liver failure. This combination will tend to favor cerebral capillary water influx to the brain. In contrast, the disequilibration of the Starling forces seems to be less pronounced in patients with cirrhosis because the regulation of cerebral blood flow is preserved and the arterial ammonia concentration is lower compared with that of patients with acute liver failure. Treatments that are known to reverse high intracranial pressure tend to decrease the osmotic pressure gradients across the blood-brain barrier. Recent studies indicate that interventions that restrict cerebral blood flow, such as hyperventilation, hypothermia, and indomethacin, are also efficient in preventing edema and high intracranial pressure, probably by decreasing the transcapillary hydrostatic pressure gradient. In our opinion, it is important to recall that rational fluid therapy, adequate ventilation, and temperature control are of direct importance to controlling cerebral capillary water flux in patients with acute liver failure. These simple interventions should be secured before more advanced experimental technologies are instituted to treat these patients.
Collapse
|
40
|
Bélanger M, Desjardins P, Chatauret N, Butterworth RF. Loss of expression of glial fibrillary acidic protein in acute hyperammonemia. Neurochem Int 2002; 41:155-60. [PMID: 12020615 DOI: 10.1016/s0197-0186(02)00037-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glial fibrillary acid protein (GFAP) is a major component of the glial filament network and alterations in expression of this protein in cultured astrocytes have been reported in response to acute ammonia exposure in vitro. In order to determine the effects of acute hyperammonemia in vivo on GFAP expression, brain extracts from rats with acute liver failure due to hepatic devascularization (portacaval anastomosis followed 24h later by hepatic artery ligation, HAL) were analyzed for GFAP mRNA using reverse transcription-polymerase chain reaction (RT-PCR) and appropriate oligonucleotide primers. GFAP protein was assayed by immunoblotting using a polyclonal antibody. Hepatic devascularization resulted in a significant 55-68% decrease (P<0.01) of GFAP mRNA and a concomitant loss of GFAP protein at precoma and coma stages of encephalopathy when brain water content was significantly increased and brain ammonia concentrations were in the millimolar range (1-5mM). Expression of a second glial filament protein S-100beta was unaffected by acute hyperammonemia. These findings suggest a role for GFAP in cell volume regulation and that loss of GFAP expression could contribute to the pathogenesis of brain edema in acute hyperammonemic syndromes.
Collapse
Affiliation(s)
- Mireille Bélanger
- Neuroscience Research Unit, Hôpital Saint-Luc du Chum, University of Montreal, 1058 St-Denis Street, Que., H2X 3J4, Montreal, Canada
| | | | | | | |
Collapse
|