1
|
Wachtler N, O’Brien R, Ehrlich BE, McGuone D. Exploring Calcium Channels as Potential Therapeutic Targets in Blast Traumatic Brain Injury. Pharmaceuticals (Basel) 2025; 18:223. [PMID: 40006037 PMCID: PMC11859800 DOI: 10.3390/ph18020223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Repeat low-level blast exposure has emerged as a significant concern for military populations exposed to explosive events. Blast-Related Traumatic Brain Injury (bTBI) is a unique form of brain trauma with poorly understood molecular mechanisms. Loss of calcium homeostasis has emerged as a mediator of early neuronal dysfunction after blast injury. This review aims to examine the role of calcium signaling in bTBI, focusing on the dual function of calcium channels as mediators and modulators of injury, and to explore therapeutic strategies targeting calcium homeostasis. Methods: We conducted a review of peer-reviewed articles published between 2000 and 2024, using the databases PubMed, Scopus, and EBSCO. Search terms included "blast traumatic brain injury", "calcium channels", and "calcium". Studies investigating intracellular calcium dynamics after bTBI were included. Exclusion criteria included studies lacking evaluation of calcium signaling, biomarker studies, and studies on extracellular calcium. Results: We identified 13 relevant studies, primarily using preclinical models. Dysregulated calcium signaling was consistently linked to cellular dysfunction, including plasma membrane abnormalities, cytoskeletal destabilization, mitochondrial dysfunction, and proteolytic enzyme activation. Studies highlighted spatially compartmentalized vulnerabilities across neurons and astrocytes, suggesting that targeting specific cellular regions, such as the neuronal soma or axons, could enhance the therapeutic outcome. Therapeutic strategies included pharmacological inhibitors, plasma membrane stabilizers, and modulators of secondary injury. Conclusions: Calcium signaling is implicated in the pathophysiology of bTBI. Standardized experimental approaches would reduce variability in findings and improve the understanding of the relationship between calcium channel dynamics and bTBI and help guide the development of neuroprotective interventions that mitigate injury and promote recovery.
Collapse
Affiliation(s)
- Noemi Wachtler
- School of Medicine and Health, Technical University of Munich, 81675 Munich, Germany;
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Rory O’Brien
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Barbara E. Ehrlich
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Declan McGuone
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
2
|
Fan J, Chen D, Wang N, Su R, Li H, Ma H, Gao F. Negative relationship between brain-derived neurotrophic factor (BDNF) and attention: A possible elevation in BDNF level among high-altitude migrants. Front Neurol 2023; 14:1144959. [PMID: 37114226 PMCID: PMC10126458 DOI: 10.3389/fneur.2023.1144959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Objective Brain-derived neurotrophic factor (BDNF), a member of the neurotrophic family that plays a vital role in regulating neuronal activity and synaptic plasticity in the brain, affects attention. However, studies investigating the association between BDNF and attention in long-term high-altitude (HA) migrants are limited in the literature. As HA affects both BDNF and attention, the relationship between these factors becomes more complex. Therefore, this study aimed to evaluate the relationship between peripheral blood concentrations of BDNF and the three attentional networks in both behavioral and electrical aspects of the brain in long-term HA migrants. Materials and methods Ninety-eight Han adults (mean age: 34.74 ± 3.48 years, 51 females and 47 males, all have lived at Lhasa for 11.30 ± 3.82 years) were recruited in this study. For all participants, the serum BDNF levels were assessed using enzyme-linked immunosorbent assay; event-related potentials (N1, P1, and P3) were recorded during the Attentional Networks Test, which was used as the measure of three attentional networks. Results Executive control scores were negatively correlated with P3 amplitude (r = -0.20, p = 0.044), and serum BDNF levels were positively correlated with executive control scores (r = 0.24, p = 0.019) and negatively correlated with P3 amplitude (r = -0.22, p = 0.027). Through grouping of BDNF levels and three attentional networks, executive control was found to be significantly higher in the high BDNF group than in the low BDNF group (p = 0.010). Different BDNF levels were associated with both orienting scores (χ2 = 6.99, p = 0.030) and executive control scores (χ2 = 9.03, p = 0.011). The higher the BDNF level, the worse was the executive function and the lower was the average P3 amplitude and vice versa. Females were found to have higher alerting scores than males (p = 0.023). Conclusion This study presented the relationship between BDNF and attention under HA. The higher the BDNF level, the worse was the executive control, suggesting that after long-term exposure to HA, hypoxia injury of the brain may occur in individuals with relatively higher BDNF levels, and this higher BDNF level may be the result of self-rehabilitation tackling the adverse effects brought by the HA environment.
Collapse
Affiliation(s)
- Jing Fan
- Plateau Brain Science Research Center, Tibet University, Lhasa, China
| | - Dongmei Chen
- Plateau Brain Science Research Center, Tibet University, Lhasa, China
- Office of Safety and Health, Lhasa No. 1 Middle School, Lhasa, China
| | - Niannian Wang
- Plateau Brain Science Research Center, Tibet University, Lhasa, China
| | - Rui Su
- Plateau Brain Science Research Center, Tibet University, Lhasa, China
- Beijing Key Laboratory of Behavior and Mental Health, School of Psychological and Cognitive Sciences, Peking University, Beijing, China
| | - Hao Li
- Plateau Brain Science Research Center, Tibet University, Lhasa, China
| | - Hailin Ma
- Plateau Brain Science Research Center, Tibet University, Lhasa, China
- Academy of Plateau Science and Sustainability, People's Government of Qinghai Province, Xining, China
- *Correspondence: Hailin Ma
| | - Fei Gao
- Plateau Brain Science Research Center, Tibet University, Lhasa, China
- Fei Gao
| |
Collapse
|
3
|
Fiorini MR, Dilliott AA, Farhan SMK. Sex-stratified RNA-seq analysis reveals traumatic brain injury-induced transcriptional changes in the female hippocampus conducive to dementia. Front Neurol 2022; 13:1026448. [PMID: 36619915 PMCID: PMC9813497 DOI: 10.3389/fneur.2022.1026448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Traumatic brain injury (TBI), resulting from a violent force that causes functional changes in the brain, is the foremost environmental risk factor for developing dementia. While previous studies have identified specific candidate genes that may instigate worse outcomes following TBI when mutated, TBI-induced changes in gene expression conducive to dementia are critically understudied. Additionally, biological sex seemingly influences TBI outcomes, but the discrepancies in post-TBI gene expression leading to progressive neurodegeneration between the sexes have yet to be investigated. Methods We conducted a whole-genome RNA sequencing analysis of post-mortem brain tissue from the parietal neocortex, temporal neocortex, frontal white matter, and hippocampus of 107 donors characterized by the Aging, Dementia, and Traumatic Brain Injury Project. Our analysis was sex-stratified and compared gene expression patterns between TBI donors and controls, a subset of which presented with dementia. Results We report three candidate gene modules from the female hippocampus whose expression correlated with dementia in female TBI donors. Enrichment analyses revealed that the candidate modules were notably enriched in cardiac processes and the immune-inflammatory response, among other biological processes. In addition, multiple candidate module genes showed a significant positive correlation with hippocampal concentrations of monocyte chemoattractant protein-1 in females with post-TBI dementia, which has been previously described as a potential biomarker for TBI and susceptibility to post-injury dementia. We concurrently examined the expression profiles of these candidate modules in the hippocampus of males with TBI and found no apparent indicator that the identified candidate modules contribute to post-TBI dementia in males. Discussion Herein, we present the first sex-stratified RNA sequencing analysis of TBI-induced changes within the transcriptome that may be conducive to dementia. This work contributes to our current understanding of the pathophysiological link between TBI and dementia and emphasizes the growing interest in sex as a biological variable affecting TBI outcomes.
Collapse
Affiliation(s)
- Michael R. Fiorini
- Department of Human Genetics, McGill University, Montreal, QC, Canada,*Correspondence: Michael R. Fiorini ✉
| | - Allison A. Dilliott
- Department of Neurology and Neurosurgery, The Neuro, McGill University, Montreal, QC, Canada,Allison A. Dilliott ✉
| | - Sali M. K. Farhan
- Department of Human Genetics, McGill University, Montreal, QC, Canada,Department of Neurology and Neurosurgery, The Neuro, McGill University, Montreal, QC, Canada,Sali M. K. Farhan ✉
| |
Collapse
|
4
|
Tang Q, Song M, Zhao R, Han X, Deng L, Xue H, Li W, Li G. Comprehensive RNA Expression Analysis Revealed Biological Functions of Key Gene Sets and Identified Disease-Associated Cell Types Involved in Rat Traumatic Brain Injury. J Clin Med 2022; 11:jcm11123437. [PMID: 35743506 PMCID: PMC9224987 DOI: 10.3390/jcm11123437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/06/2022] [Accepted: 06/11/2022] [Indexed: 12/29/2022] Open
Abstract
Traumatic brain injury (TBI) is a worldwide public health concern without major therapeutic breakthroughs over the past decades. Developing effective treatment options and improving the prognosis of TBI depends on a better understanding of the mechanisms underlying TBI. This study performed a comprehensive analysis of 15 RNA expression datasets of rat TBIs from the GEO database. By integrating the results from the various analyses, this study investigated the biological processes, pathways, and cell types associated with TBI and explored the activity of these cells during various TBI phases. The results showed the response to cytokine, inflammatory response, bacteria-associated response, metabolic and biosynthetic processes, and pathways of neurodegeneration to be involved in the pathogenesis of TBI. The cellular abundance of microglia, perivascular macrophages (PM), and neurons were found to differ after TBI and at different times postinjury. In conclusion, immune- and inflammation-related pathways, as well as pathways of neurodegeneration, are closely related to TBI. Microglia, PM, and neurons are thought to play roles in TBI with different activities that vary by phase of TBI.
Collapse
Affiliation(s)
- Qilin Tang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China; (Q.T.); (R.Z.); (X.H.); (L.D.); (H.X.); (W.L.)
- Shandong Key Laboratory of Brain Function Remodeling, Jinan 250012, China
| | - Mengmeng Song
- Department of Nuclear Medicine, Qilu Hospital, Shandong University, Jinan 250012, China;
| | - Rongrong Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China; (Q.T.); (R.Z.); (X.H.); (L.D.); (H.X.); (W.L.)
- Shandong Key Laboratory of Brain Function Remodeling, Jinan 250012, China
| | - Xiao Han
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China; (Q.T.); (R.Z.); (X.H.); (L.D.); (H.X.); (W.L.)
- Shandong Key Laboratory of Brain Function Remodeling, Jinan 250012, China
- Department of Neurosurgery, Children’s Hospital Affiliated to Shandong University, Jinan 250012, China
| | - Lin Deng
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China; (Q.T.); (R.Z.); (X.H.); (L.D.); (H.X.); (W.L.)
- Shandong Key Laboratory of Brain Function Remodeling, Jinan 250012, China
| | - Hao Xue
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China; (Q.T.); (R.Z.); (X.H.); (L.D.); (H.X.); (W.L.)
- Shandong Key Laboratory of Brain Function Remodeling, Jinan 250012, China
| | - Weiguo Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China; (Q.T.); (R.Z.); (X.H.); (L.D.); (H.X.); (W.L.)
- Shandong Key Laboratory of Brain Function Remodeling, Jinan 250012, China
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China; (Q.T.); (R.Z.); (X.H.); (L.D.); (H.X.); (W.L.)
- Shandong Key Laboratory of Brain Function Remodeling, Jinan 250012, China
- Correspondence:
| |
Collapse
|
5
|
Motanis H, Khorasani LN, Giza CC, Harris NG. Peering into the Brain through the Retrosplenial Cortex to Assess Cognitive Function of the Injured Brain. Neurotrauma Rep 2021; 2:564-580. [PMID: 34901949 PMCID: PMC8655812 DOI: 10.1089/neur.2021.0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The retrosplenial cortex (RSC) is a posterior cortical area that has been drawing increasing interest in recent years, with a growing number of studies studying its contribution to cognitive and sensory functions. From an anatomical perspective, it has been established that the RSC is extensively and often reciprocally connected with the hippocampus, neocortex, and many midbrain regions. Functionally, the RSC is an important hub of the default-mode network. This endowment, with vast anatomical and functional connections, positions the RSC to play an important role in episodic memory, spatial and contextual learning, sensory-cognitive activities, and multi-modal sensory information processing and integration. Additionally, RSC dysfunction has been reported in cases of cognitive decline, particularly in Alzheimer's disease and stroke. We review the literature to examine whether the RSC can act as a cortical marker of persistent cognitive dysfunction after traumatic brain injury (TBI). Because the RSC is easily accessible at the brain's surface using in vivo techniques, we argue that studying RSC network activity post-TBI can shed light into the mechanisms of less-accessible brain regions, such as the hippocampus. There is a fundamental gap in the TBI field about the microscale alterations occurring post-trauma, and by studying the RSC's neuronal activity at the cellular level we will be able to design better therapeutic tools. Understanding how neuronal activity and interactions produce normal and abnormal activity in the injured brain is crucial to understanding cognitive dysfunction. By using this approach, we expect to gain valuable insights to better understand brain disorders like TBI.
Collapse
Affiliation(s)
- Helen Motanis
- UCLA Brain Injury Research Center, Department of Neurosurgery, Geffen Medical School, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
| | - Laila N. Khorasani
- UCLA Brain Injury Research Center, Department of Neurosurgery, Geffen Medical School, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
| | - Christopher C. Giza
- UCLA Brain Injury Research Center, Department of Neurosurgery, Geffen Medical School, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
- Department of Pediatrics, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
| | - Neil G. Harris
- UCLA Brain Injury Research Center, Department of Neurosurgery, Geffen Medical School, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
- Intellectual Development and Disabilities Research Center, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
- *Address correspondence to: Neil G. Harris, PhD, Department of Neurosurgery, University of California at Los Angeles, Wasserman Building, 300 Stein Plaza, Room 551, Los Angeles, CA 90095, USA;
| |
Collapse
|
6
|
Catta-Preta R, Zdilar I, Jenner B, Doisy ET, Tercovich K, Nord AS, Gurkoff GG. Transcriptional Pathology Evolves over Time in Rat Hippocampus after Lateral Fluid Percussion Traumatic Brain Injury. Neurotrauma Rep 2021; 2:512-525. [PMID: 34909768 PMCID: PMC8667199 DOI: 10.1089/neur.2021.0021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Traumatic brain injury (TBI) causes acute and lasting impacts on the brain, driving pathology along anatomical, cellular, and behavioral dimensions. Rodent models offer an opportunity to study the temporal progression of disease from injury to recovery. Transcriptomic and epigenomic analysis were applied to evaluate gene expression in ipsilateral hippocampus at 1 and 14 days after sham (n = 2 and 4, respectively per time point) and moderate lateral fluid percussion injury (n = 4 per time point). This enabled the identification of dynamic changes and differential gene expression (differentially expressed genes; DEGs) modules linked to underlying epigenetic response. We observed acute signatures associated with cell death, astrocytosis, and neurotransmission that largely recovered by 2 weeks. Inflammation and immune signatures segregated into upregulated modules with distinct expression trajectories and functions. Whereas most down-regulated genes recovered by 14 days, two modules with delayed and persistent changes were associated with cholesterol metabolism, amyloid beta clearance, and neurodegeneration. Differential expression was paralleled by changes in histone H3 lysine residue 4 trimethylation at the promoters of DEGs at 1 day post-TBI, with the strongest changes observed for inflammation and immune response genes. These results demonstrate how integrated genomics analysis in the pre-clinical setting has the potential to identify stage-specific biomarkers for injury and/or recovery. Though limited in scope here, our general strategy has the potential to capture pathological signatures over time and evaluate treatment efficacy at the systems level.
Collapse
Affiliation(s)
- Rinaldo Catta-Preta
- Department of Neurobiology, Physiology, and Behavior, University of California Davis, Davis, California, USA
- Center for Neuroscience, University of California Davis, Davis, California, USA
| | - Iva Zdilar
- Department of Neurobiology, Physiology, and Behavior, University of California Davis, Davis, California, USA
- Center for Neuroscience, University of California Davis, Davis, California, USA
| | - Bradley Jenner
- Department of Neurobiology, Physiology, and Behavior, University of California Davis, Davis, California, USA
- Center for Neuroscience, University of California Davis, Davis, California, USA
| | - Emily T. Doisy
- Department of Neurological Surgery, University of California Davis, Davis, California, USA
| | - Kayleen Tercovich
- Department of Neurological Surgery, University of California Davis, Davis, California, USA
- Center for Neuroscience, University of California Davis, Davis, California, USA
| | - Alex S. Nord
- Department of Neurobiology, Physiology, and Behavior, University of California Davis, Davis, California, USA
- Center for Neuroscience, University of California Davis, Davis, California, USA
| | - Gene G. Gurkoff
- Department of Neurological Surgery, University of California Davis, Davis, California, USA
- Center for Neuroscience, University of California Davis, Davis, California, USA
| |
Collapse
|
7
|
Said MF, Islam AA, Massi MN, Prihantono, Hatta M, Patellongi IJ, Cangara H, Adhimarta W, Nasrullah, Nasution RA. Effect of erythropoietin administration on expression of mRNA brain-derived Neutrophic factor, levels of stromal cell-derived Factor-1, and neuron specific enolase in brain injury model Sprague Dawley. Ann Med Surg (Lond) 2021; 70:102877. [PMID: 34691421 PMCID: PMC8519762 DOI: 10.1016/j.amsu.2021.102877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/18/2021] [Accepted: 09/19/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is a complicated condition that is the primary cause of death and disability in children and young adults in developed countries. Various kinds of therapy have been carried out in the management of brain injury, one of which is the administration of erythropoietin (EPO). There are not many studies in Indonesia have proven that EPO administration is effective on parameters such as stromal cell-derived factor 1 (SDF-1), brain-derived neurotrophic factor (BDNF mRNA), and neuron-specific enolase (NSE) in brain injury patients. The purpose of this study was to see how EPO affected BDNF mRNA expression, SDF-1 serum levels, and NSE levels in experimental rats with TBI. METHODS This study was conducted using a rat head injury model. Fifteen rats were randomly assigned to one of three groups: A, B, or C. EPO was administered subcutis with a dose of 30.000 U/kg. Blood samples were taken after brain injury (H0), 12 h (H12), and 24 h (H24) after brain injury. Serum level of SDF-1 and NSE were measured using mRNA BDNF gene expression was measured with Real-Time-PCR, and ELISA. RESULTS This study found EPO increase BDNF mRNA expression in group C at H-12 (7,92 ± 0.51 vs 6.45 ± 0.33) compared to group B, and at H-24 (9.20 ± 0.56 vs 7.22 ± 0.19); increase SDF-1 levels in group C at H-12 (7,56 ± 0,54) vs 4,62 ± 0,58) compared to group B, and at H-24 (11,32 ± 4,55 vs 2,55 ± 0,70); decrease serum NSE levels in group C at H-12 (17,25 ± 2,02 vs 29,65 ± 2,33) compare to group B and at H-24 (12,14 ± 2,61 vs 37,31 ± 2,76); the values are significantly different with p < 0,05. CONCLUSION EPO may have neuroprotective and anti-inflammatory properties in TBI by increasing mRNA BDNF expression and serum SDF-1 levels, and decrease serum NSE levels.
Collapse
Affiliation(s)
- Muhammad Fadli Said
- Doctoral Program of Biomedical Sciences, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Andi Asadul Islam
- Department of Neurosurgery, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Muhammad Nasrum Massi
- Department of Clinical Microbiology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Prihantono
- Department of Surgery, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Mochammad Hatta
- Department of Clinical Microbiology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Ilham jaya Patellongi
- Department of Physiology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Husni Cangara
- Department of Pathology Anatomy, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Willy Adhimarta
- Department of Neurosurgery, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Nasrullah
- Department of Neurosurgery, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | | |
Collapse
|
8
|
Caba E, Sherman MD, Farizatto KLG, Alcira B, Wang HW, Giardina C, Shin DG, Sandefur CI, Bahr BA. Excitotoxic stimulation activates distinct pathogenic and protective expression signatures in the hippocampus. J Cell Mol Med 2021; 25:9011-9027. [PMID: 34414662 PMCID: PMC8435451 DOI: 10.1111/jcmm.16864] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 07/26/2021] [Accepted: 08/04/2021] [Indexed: 12/20/2022] Open
Abstract
Excitotoxic events underlying ischaemic and traumatic brain injuries activate degenerative and protective pathways, particularly in the hippocampus. To understand opposing pathways that determine the brain's response to excitotoxicity, we used hippocampal explants, thereby eliminating systemic variables during a precise protocol of excitatory stimulation. N‐methyl‐d‐aspartate (NMDA) was applied for 20 min and total RNA isolated one and 24 h later for neurobiology‐specific microarrays. Distinct groups of genes exhibited early vs. delayed induction, with 63 genes exclusively reduced 24‐h post‐insult. Egr‐1 and NOR‐1 displayed biphasic transcriptional modulation: early induction followed by delayed suppression. Opposing events of NMDA‐induced genes linked to pathogenesis and cell survival constituted the early expression signature. Delayed degenerative indicators (up‐regulated pathogenic genes, down‐regulated pro‐survival genes) and opposing compensatory responses (down‐regulated pathogenic genes, up‐regulated pro‐survival genes) generated networks with temporal gene profiles mirroring coexpression network clustering. We then used the expression profiles to test whether NF‐κB, a potent transcription factor implicated in both degenerative and protective pathways, is involved in the opposing responses. The NF‐κB inhibitor MG‐132 indeed altered NMDA‐mediated transcriptional changes, revealing components of opposing expression signatures that converge on the single response element. Overall, this study identified counteracting avenues among the distinct responses to excitotoxicity, thereby suggesting multi‐target treatment strategies and implications for predictive medicine.
Collapse
Affiliation(s)
- Ebru Caba
- Vertex Pharmaceuticals, Cambridge, MA, USA.,Department of Pharmaceutical Sciences and the Neurosciences Program, University of Connecticut, Storrs, CT, USA
| | - Marcus D Sherman
- Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC, USA.,Department of Biology, University of North Carolina-Pembroke, Pembroke, NC, USA
| | - Karen L G Farizatto
- Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC, USA.,Department of Biology, University of North Carolina-Pembroke, Pembroke, NC, USA
| | - Britney Alcira
- Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC, USA.,Department of Biology, University of North Carolina-Pembroke, Pembroke, NC, USA
| | - Hsin-Wei Wang
- Bioinformatics and Biocomputing Institute, University of Connecticut, Storrs, CT, USA.,Department of Computer Science and Engineering, University of Connecticut, Storrs, CT, USA
| | - Charles Giardina
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Dong-Guk Shin
- Bioinformatics and Biocomputing Institute, University of Connecticut, Storrs, CT, USA.,Department of Computer Science and Engineering, University of Connecticut, Storrs, CT, USA
| | - Conner I Sandefur
- Department of Biology, University of North Carolina-Pembroke, Pembroke, NC, USA.,Department of Pharmacology and the Cystic Fibrosis and Pulmonary Diseases Research and Treatment Center, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA.,Sandefur Modeling, Pittsboro, NC, USA
| | - Ben A Bahr
- Department of Pharmaceutical Sciences and the Neurosciences Program, University of Connecticut, Storrs, CT, USA.,Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC, USA.,Department of Biology, University of North Carolina-Pembroke, Pembroke, NC, USA.,Department of Chemistry and Physics, University of North Carolina-Pembroke, Pembroke, NC, USA
| |
Collapse
|
9
|
The Role of BDNF in Experimental and Clinical Traumatic Brain Injury. Int J Mol Sci 2021; 22:ijms22073582. [PMID: 33808272 PMCID: PMC8037220 DOI: 10.3390/ijms22073582] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 02/07/2023] Open
Abstract
Traumatic brain injury is one of the leading causes of mortality and morbidity in the world with no current pharmacological treatment. The role of BDNF in neural repair and regeneration is well established and has also been the focus of TBI research. Here, we review experimental animal models assessing BDNF expression following injury as well as clinical studies in humans including the role of BDNF polymorphism in TBI. There is a large heterogeneity in experimental setups and hence the results with different regional and temporal changes in BDNF expression. Several studies have also assessed different interventions to affect the BDNF expression following injury. Clinical studies highlight the importance of BDNF polymorphism in the outcome and indicate a protective role of BDNF polymorphism following injury. Considering the possibility of affecting the BDNF pathway with available substances, we discuss future studies using transgenic mice as well as iPSC in order to understand the underlying mechanism of BDNF polymorphism in TBI and develop a possible pharmacological treatment.
Collapse
|
10
|
Duran RCD, Wei H, Kim DH, Wu JQ. Invited Review: Long non-coding RNAs: important regulators in the development, function and disorders of the central nervous system. Neuropathol Appl Neurobiol 2019; 45:538-556. [PMID: 30636336 PMCID: PMC6626588 DOI: 10.1111/nan.12541] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/19/2018] [Indexed: 02/06/2023]
Abstract
Genome-wide transcriptional studies have demonstrated that tens of thousands of long non-coding RNAs (lncRNA) genes are expressed in the central nervous system (CNS) and that they exhibit tissue- and cell-type specificity. Their regulated and dynamic expression and their co-expression with protein-coding gene neighbours have led to the study of the functions of lncRNAs in CNS development and disorders. In this review, we describe the general characteristics, localization and classification of lncRNAs. We also elucidate the examples of the molecular mechanisms of nuclear and cytoplasmic lncRNA actions in the CNS and discuss common experimental approaches used to identify and unveil the functions of lncRNAs. Additionally, we provide examples of lncRNA studies of cell differentiation and CNS disorders including CNS injuries and neurodegenerative diseases. Finally, we review novel lncRNA-based therapies. Overall, this review highlights the important biological roles of lncRNAs in CNS functions and disorders.
Collapse
Affiliation(s)
- Raquel Cuevas-Diaz Duran
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey, N.L., 64710, Mexico
| | - Haichao Wei
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA
| | - Dong H. Kim
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jia Qian Wu
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA
| |
Collapse
|
11
|
Altshuler DB, Wang L, Zhao L, Miklja Z, Linzey J, Brezzell A, Kakaizada S, Krishna S, Orringer DA, Briceño EM, Gabel N, Hervey-Jumper SL. BDNF, COMT, and DRD2 polymorphisms and ability to return to work in adult patients with low- and high-grade glioma. Neurooncol Pract 2019; 6:375-385. [PMID: 31555452 PMCID: PMC6753359 DOI: 10.1093/nop/npy059] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Cognitive and language dysfunction is common among patients with glioma and has a significant impact on survival and health-related quality of life (HRQOL). Little is known about the factors that make individual patients more or less susceptible to the cognitive sequelae of the disease. A better understanding of the individual and population characteristics related to cognitive function in glioma patients is required to appropriately stratify patients, prognosticate, and develop more efficacious treatment regimens. There is evidence that allelic variation among genes involved in neurotransmission and synaptic plasticity are related to neurocognitive performance in states of health and neurologic disease. METHODS We studied the association of single-nucleotide polymorphism variations in brain-derived neurotrophic factor (BDNF, rs6265), dopamine receptor 2 (DRD2, rs1076560), and catechol-O-methyltransferase (COMT, rs4680) with neurocognitive function and ability to return to work in glioma patients at diagnosis and at 3 months. We developed a functional score based on the number of high-performance alleles that correlates with the capacity for patients to return to work. RESULTS Patients with higher-performing alleles have better scores on neurocognitive testing with the Repeatable Battery for the Assessment of Neuropsychological Status and Stroop test, but not the Trail Making Test. CONCLUSIONS A better understanding of the genetic contributors to neurocognitive performance in glioma patients and capacity for functional recovery is necessary to develop improved treatment strategies based on patient-specific factors.
Collapse
Affiliation(s)
| | - Lin Wang
- Department of Neurosurgery, University of Michigan, Ann Arbor, USA
| | - Lili Zhao
- Department of Biostatistics, University of Michigan, Ann Arbor, USA
| | - Zachary Miklja
- Department of Neurosurgery, University of Michigan, Ann Arbor, USA
| | - Joey Linzey
- Department of Neurosurgery, University of Michigan, Ann Arbor, USA
| | - Amanda Brezzell
- Department of Neurosurgery, University of Michigan, Ann Arbor, USA
| | - Sofia Kakaizada
- Department of Neurosurgery, University of California San Francisco, USA
| | - Saritha Krishna
- Department of Neurosurgery, University of California San Francisco, USA
| | - Daniel A Orringer
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, USA
| | - Emily M Briceño
- Department of Neurosurgery, Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, USA
| | - Nicolette Gabel
- Department of Neurosurgery, Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, USA
| | - Shawn L Hervey-Jumper
- Department of Neurosurgery, University of Michigan, Ann Arbor, USA
- Department of Neurosurgery, University of California San Francisco, USA
| |
Collapse
|
12
|
Izzy S, Liu Q, Fang Z, Lule S, Wu L, Chung JY, Sarro-Schwartz A, Brown-Whalen A, Perner C, Hickman SE, Kaplan DL, Patsopoulos NA, El Khoury J, Whalen MJ. Time-Dependent Changes in Microglia Transcriptional Networks Following Traumatic Brain Injury. Front Cell Neurosci 2019; 13:307. [PMID: 31440141 PMCID: PMC6694299 DOI: 10.3389/fncel.2019.00307] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/24/2019] [Indexed: 12/21/2022] Open
Abstract
The neuroinflammatory response to traumatic brain injury (TBI) is critical to both neurotoxicity and neuroprotection, and has been proposed as a potentially modifiable driver of secondary injury in animal and human studies. Attempts to broadly target immune activation have been unsuccessful in improving outcomes, in part because the precise cellular and molecular mechanisms driving injury and outcome at acute, subacute, and chronic time points after TBI remain poorly defined. Microglia play a critical role in neuroinflammation and their persistent activation may contribute to long-term functional deficits. Activated microglia are characterized by morphological transformation and transcriptomic changes associated with specific inflammatory states. We analyzed the temporal course of changes in inflammatory genes of microglia isolated from injured brains at 2, 14, and 60 days after controlled cortical impact (CCI) in mice, a well-established model of focal cerebral contusion. We identified a time dependent, injury-associated change in the microglial gene expression profile toward a reduced ability to sense tissue damage, perform housekeeping, and maintain homeostasis in the early stages following CCI, with recovery and transition to a specialized inflammatory state over time. This later state starts at 14 days post-injury and is characterized by a biphasic pattern of IFNγ, IL-4, and IL-10 gene expression changes, with concurrent proinflammatory and anti-inflammatory gene changes. Our transcriptomic data sets are an important step to understand microglial role in TBI pathogenesis at the molecular level and identify common pathways that affect outcome. More studies to evaluate gene expression at the single cell level and focusing on subacute and chronic timepoint are warranted.
Collapse
Affiliation(s)
- Saef Izzy
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Qiong Liu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, Shanghai, China
| | - Zhou Fang
- Harvard Medical School, Boston, MA, United States.,Systems Biology and Computer Science Program, Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Boston, MA, United States.,Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Sevda Lule
- Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States.,Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Limin Wu
- Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States.,Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Joon Yong Chung
- Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States.,Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Aliyah Sarro-Schwartz
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Alexander Brown-Whalen
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Caroline Perner
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Suzanne E Hickman
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Nikolaos A Patsopoulos
- Harvard Medical School, Boston, MA, United States.,Systems Biology and Computer Science Program, Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Boston, MA, United States.,Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Joseph El Khoury
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Michael J Whalen
- Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States.,Harvard Medical School, Boston, MA, United States.,Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
13
|
Sagarkar S, Balasubramanian N, Mishra S, Choudhary AG, Kokare DM, Sakharkar AJ. Repeated mild traumatic brain injury causes persistent changes in histone deacetylase function in hippocampus: Implications in learning and memory deficits in rats. Brain Res 2019; 1711:183-192. [DOI: 10.1016/j.brainres.2019.01.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 12/25/2022]
|
14
|
Vaickus M, Hsieh T, Kintsurashvili E, Kim J, Kirsch D, Kasotakis G, Remick DG. Mild Traumatic Brain Injury in Mice Beneficially Alters Lung NK1R and Structural Protein Expression to Enhance Survival after Pseudomonas aeruginosa Infection. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 189:295-307. [PMID: 30472211 DOI: 10.1016/j.ajpath.2018.10.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/04/2018] [Accepted: 10/23/2018] [Indexed: 12/11/2022]
Abstract
Mild traumatic brain injury (mTBI) in a murine model increases survival to a bacterial pulmonary challenge compared with blunt tail trauma (TT). We hypothesize substance P and its receptor, the neurokinin 1 receptor (NK1R; official name TACR1), play a role in the increased survival of mTBI mice. Mice were subjected to mTBI or TT, and 48 hours after trauma, the levels of NK1R mRNA and protein were significantly up-regulated in mTBI lungs. Examination of the lung 48 hours after injury by microarray showed significant differences in the expression of 433 gene sets between groups, most notably genes related to intercellular proteins. Despite down-regulated gene expression of connective proteins, the presence of an intact pulmonary vasculature was supported by normal histology and bronchoalveolar lavage protein levels. To determine whether these mTBI-induced lung changes benefited in vivo responses, two chemotactic stimuli (a CXCL1 chemokine and a live Pseudomonas aeruginosa infection) were administered 48 hours after trauma. For both stimuli, mTBI mice recruited more neutrophils to the lung 4 hours after instillation (CXCL1: mTBI = 6.3 ± 1.3 versus TT = 3.3 ± 0.7 neutrophils/mL; Pseudomonas aeruginosa: mTBI = 9.4 ± 1.4 versus TT = 5.3 ± 1.1 neutrophils/mL). This study demonstrates that the downstream consequences of mTBI on lung NK1R levels and connective protein expression enhance neutrophil recruitment to a stimulus that may contribute to increased survival.
Collapse
Affiliation(s)
- Max Vaickus
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Terry Hsieh
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Ekaterina Kintsurashvili
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Jiyoun Kim
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Daniel Kirsch
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - George Kasotakis
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Daniel G Remick
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts.
| |
Collapse
|
15
|
Scaled traumatic brain injury results in unique metabolomic signatures between gray matter, white matter, and serum in a piglet model. PLoS One 2018; 13:e0206481. [PMID: 30379914 PMCID: PMC6209298 DOI: 10.1371/journal.pone.0206481] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 10/12/2018] [Indexed: 01/08/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and long-term disability in the United States. The heterogeneity of the disease coupled with the lack of comprehensive, standardized scales to adequately characterize multiple types of TBI remain to be major challenges facing effective therapeutic development. A systems level approach to TBI diagnosis through the use of metabolomics could lead to a better understanding of cellular changes post-TBI and potential therapeutic targets. In the current study, we utilize a GC-MS untargeted metabolomics approach to demonstrate altered metabolism in response to TBI in a translational pig model, which possesses many neuroanatomical and pathophysiologic similarities to humans. TBI was produced by controlled cortical impact (CCI) in Landrace piglets with impact velocity and depth of depression set to 2m/s;6mm, 4m/s;6mm, 4m/s;12mm, or 4m/s;15mm resulting in graded neural injury. Serum samples were collected pre-TBI, 24 hours post-TBI, and 7 days post-TBI. Partial least squares discriminant analysis (PLS-DA) revealed that each impact parameter uniquely influenced the metabolomic profile after TBI, and gray and white matter responds differently to TBI on the biochemical level with evidence of white matter displaying greater metabolic change. Furthermore, pathway analysis revealed unique metabolic signatures that were dependent on injury severity and brain tissue type. Metabolomic signatures were also detected in serum samples which potentially captures both time after injury and injury severity. These findings provide a platform for the development of a more accurate TBI classification scale based unique metabolomic signatures.
Collapse
|
16
|
Lombardo MV, Moon HM, Su J, Palmer TD, Courchesne E, Pramparo T. Maternal immune activation dysregulation of the fetal brain transcriptome and relevance to the pathophysiology of autism spectrum disorder. Mol Psychiatry 2018; 23:1001-1013. [PMID: 28322282 PMCID: PMC5608645 DOI: 10.1038/mp.2017.15] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 12/31/2016] [Accepted: 01/09/2017] [Indexed: 12/12/2022]
Abstract
Maternal immune activation (MIA) via infection during pregnancy is known to increase risk for autism spectrum disorder (ASD). However, it is unclear how MIA disrupts fetal brain gene expression in ways that may explain this increased risk. Here we examine how MIA dysregulates rat fetal brain gene expression (at a time point analogous to the end of the first trimester of human gestation) in ways relevant to ASD-associated pathophysiology. MIA downregulates expression of ASD-associated genes, with the largest enrichments in genes known to harbor rare highly penetrant mutations. MIA also downregulates expression of many genes also known to be persistently downregulated in the ASD cortex later in life and which are canonically known for roles in affecting prenatally late developmental processes at the synapse. Transcriptional and translational programs that are downstream targets of highly ASD-penetrant FMR1 and CHD8 genes are also heavily affected by MIA. MIA strongly upregulates expression of a large number of genes involved in translation initiation, cell cycle, DNA damage and proteolysis processes that affect multiple key neural developmental functions. Upregulation of translation initiation is common to and preserved in gene network structure with the ASD cortical transcriptome throughout life and has downstream impact on cell cycle processes. The cap-dependent translation initiation gene, EIF4E, is one of the most MIA-dysregulated of all ASD-associated genes and targeted network analyses demonstrate prominent MIA-induced transcriptional dysregulation of mTOR and EIF4E-dependent signaling. This dysregulation of translation initiation via alteration of the Tsc2-mTor-Eif4e axis was further validated across MIA rodent models. MIA may confer increased risk for ASD by dysregulating key aspects of fetal brain gene expression that are highly relevant to pathophysiology affecting ASD.
Collapse
Affiliation(s)
- M V Lombardo
- Center for Applied Neuroscience, Department of Psychology, University of Cyprus, Nicosia, Cyprus,Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK,Neuroscience University of California, San Diego, 8110 La Jolla Shores Drive Suite 201, La Jolla, CA 92093, USA. E-mail: or
| | - H M Moon
- Department of Neurosurgery, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - J Su
- Department of Neurosurgery, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - T D Palmer
- Department of Neurosurgery, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - E Courchesne
- Department of Neuroscience, University of California, San Diego, San Diego, CA, USA
| | - T Pramparo
- Department of Neuroscience, University of California, San Diego, San Diego, CA, USA,Neuroscience University of California, San Diego, 8110 La Jolla Shores Drive Suite 201, La Jolla, CA 92093, USA. E-mail: or
| |
Collapse
|
17
|
Lipponen A, El-Osta A, Kaspi A, Ziemann M, Khurana I, KN H, Navarro-Ferrandis V, Puhakka N, Paananen J, Pitkänen A. Transcription factors Tp73, Cebpd, Pax6, and Spi1 rather than DNA methylation regulate chronic transcriptomics changes after experimental traumatic brain injury. Acta Neuropathol Commun 2018; 6:17. [PMID: 29482641 PMCID: PMC5828078 DOI: 10.1186/s40478-018-0519-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 02/15/2018] [Indexed: 11/10/2022] Open
Abstract
Traumatic brain injury (TBI) induces a wide variety of cellular and molecular changes that can continue for days to weeks to months, leading to functional impairments. Currently, there are no pharmacotherapies in clinical use that favorably modify the post-TBI outcome, due in part to limited understanding of the mechanisms of TBI-induced pathologies. Our system biology analysis tested the hypothesis that chronic transcriptomics changes induced by TBI are controlled by altered DNA-methylation in gene promoter areas or by transcription factors. We performed genome-wide methyl binding domain (MBD)-sequencing (seq) and RNA-seq in perilesional, thalamic, and hippocampal tissue sampled at 3 months after TBI induced by lateral fluid percussion in adult male Sprague-Dawley rats. We investigated the regulated molecular networks and mechanisms underlying the chronic regulation, particularly DNA methylation and transcription factors. Finally, we identified compounds that modulate the transcriptomics changes and could be repurposed to improve recovery. Unexpectedly, DNA methylation was not a major regulator of chronic post-TBI transcriptomics changes. On the other hand, the transcription factors Cebpd, Pax6, Spi1, and Tp73 were upregulated at 3 months after TBI (False discovery rate < 0.05), which was validated using digital droplet polymerase chain reaction. Transcription regulatory network analysis revealed that these transcription factors regulate apoptosis, inflammation, and microglia, which are well-known contributors to secondary damage after TBI. Library of Integrated Network-based Cellular Signatures (LINCS) analysis identified 118 pharmacotherapies that regulate the expression of Cebpd, Pax6, Spi1, and Tp73. Of these, the antidepressant and/or antipsychotic compounds trimipramine, rolipramine, fluspirilene, and chlorpromazine, as well as the anti-cancer therapies pimasertib, tamoxifen, and vorinostat were strong regulators of the identified transcription factors, suggesting their potential to modulate the regulated transcriptomics networks to improve post-TBI recovery.
Collapse
Affiliation(s)
- Anssi Lipponen
- Epilepsy Research Laboratory, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Assam El-Osta
- Epigenetics in Human Health and Disease Laboratory, Central Clinical School, Faculty of Medicine, Monash University, Melbourne, VIC Australia
- Prince of Wales Hospital, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR
| | - Antony Kaspi
- Epigenetics in Human Health and Disease Laboratory, Central Clinical School, Faculty of Medicine, Monash University, Melbourne, VIC Australia
| | - Mark Ziemann
- Epigenetics in Human Health and Disease Laboratory, Central Clinical School, Faculty of Medicine, Monash University, Melbourne, VIC Australia
| | - Ishant Khurana
- Epigenetics in Human Health and Disease Laboratory, Central Clinical School, Faculty of Medicine, Monash University, Melbourne, VIC Australia
| | - Harikrishnan KN
- Epigenetics in Human Health and Disease Laboratory, Central Clinical School, Faculty of Medicine, Monash University, Melbourne, VIC Australia
| | - Vicente Navarro-Ferrandis
- Epilepsy Research Laboratory, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Noora Puhakka
- Epilepsy Research Laboratory, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Jussi Paananen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
- University of Eastern Finland Bioinformatics Center, University of Eastern Finland, Kuopio, Finland
| | - Asla Pitkänen
- Epilepsy Research Laboratory, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| |
Collapse
|
18
|
The Role of MicroRNA in Traumatic Brain Injury. Neuroscience 2017; 367:189-199. [DOI: 10.1016/j.neuroscience.2017.10.046] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/26/2017] [Accepted: 10/30/2017] [Indexed: 12/13/2022]
|
19
|
Martín-Montañez E, Millon C, Boraldi F, Garcia-Guirado F, Pedraza C, Lara E, Santin LJ, Pavia J, Garcia-Fernandez M. IGF-II promotes neuroprotection and neuroplasticity recovery in a long-lasting model of oxidative damage induced by glucocorticoids. Redox Biol 2017; 13:69-81. [PMID: 28575743 PMCID: PMC5454142 DOI: 10.1016/j.redox.2017.05.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 05/23/2017] [Indexed: 11/05/2022] Open
Abstract
Insulin-like growth factor-II (IGF-II) is a naturally occurring hormone that exerts neurotrophic and neuroprotective properties in a wide range of neurodegenerative diseases and ageing. Accumulating evidence suggests that the effects of IGF-II in the brain may be explained by its binding to the specific transmembrane receptor, IGFII/M6P receptor (IGF-IIR). However, relatively little is known regarding the role of IGF-II through IGF-IIR in neuroprotection. Here, using adult cortical neuronal cultures, we investigated whether IGF-II exhibits long-term antioxidant effects and neuroprotection at the synaptic level after oxidative damage induced by high and transient levels of corticosterone (CORT). Furthermore, the involvement of the IGF-IIR was also studied to elucidate its role in the neuroprotective actions of IGF-II. We found that neurons treated with IGF-II after CORT incubation showed reduced oxidative stress damage and recovered antioxidant status (normalized total antioxidant status, lipid hydroperoxides and NAD(P) H:quinone oxidoreductase activity). Similar results were obtained when mitochondria function was analysed (cytochrome c oxidase activity, mitochondrial membrane potential and subcellular mitochondrial distribution). Furthermore, neuronal impairment and degeneration were also assessed (synaptophysin and PSD-95 expression, presynaptic function and FluoroJade B® stain). IGF-II was also able to recover the long-lasting neuronal cell damage. Finally, the effects of IGF-II were not blocked by an IGF-IR antagonist, suggesting the involvement of IGF-IIR. Altogether these results suggest that, in or model, IGF-II through IGF-IIR is able to revert the oxidative damage induced by CORT. In accordance with the neuroprotective role of the IGF-II/IGF-IIR reported in our study, pharmacotherapy approaches targeting this pathway may be useful for the treatment of diseases associated with cognitive deficits (i.e., neurodegenerative disorders, depression, etc.).
Collapse
Affiliation(s)
- E Martín-Montañez
- Department of Pharmacology and Paediatrics, Málaga University, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain
| | - C Millon
- Department of Human Physiology, Málaga University, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain
| | - F Boraldi
- Department of Life Sciences, University of Modena e Reggio Emilia, Modena, Italy
| | - F Garcia-Guirado
- Department of Human Physiology, Málaga University, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain
| | - C Pedraza
- Department of Psychobiology, Málaga University, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain
| | - E Lara
- Department of Human Physiology, Málaga University, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain
| | - L J Santin
- Department of Psychobiology, Málaga University, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain
| | - J Pavia
- Department of Pharmacology and Paediatrics, Málaga University, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain.
| | - M Garcia-Fernandez
- Department of Human Physiology, Málaga University, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain.
| |
Collapse
|
20
|
E Hirbec H, Noristani HN, Perrin FE. Microglia Responses in Acute and Chronic Neurological Diseases: What Microglia-Specific Transcriptomic Studies Taught (and did Not Teach) Us. Front Aging Neurosci 2017; 9:227. [PMID: 28785215 PMCID: PMC5519576 DOI: 10.3389/fnagi.2017.00227] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/04/2017] [Indexed: 12/11/2022] Open
Abstract
Over the last decade, microglia have been acknowledged to be key players in central nervous system (CNS) under both physiological and pathological conditions. They constantly survey the CNS environment and as immune cells, in pathological contexts, they provide the first host defense and orchestrate the immune response. It is well recognized that under pathological conditions microglia have both sequential and simultaneous, beneficial and detrimental effects. Cell-specific transcriptomics recently became popular in Neuroscience field allowing concurrent monitoring of the expression of numerous genes in a given cell population. Moreover, by comparing two or more conditions, these approaches permit to unbiasedly identify deregulated genes and pathways. A growing number of studies have thus investigated microglial transcriptome remodeling over the course of neuropathological conditions and highlighted the molecular diversity of microglial response to different diseases. In the present work, we restrict our review to microglia obtained directly from in vivo samples and not cell culture, and to studies using whole-genome strategies. We first critically review the different methods developed to decipher microglia transcriptome. In particular, we compare advantages and drawbacks of flow cytometry and laser microdissection to isolate pure microglia population as well as identification of deregulated microglial genes obtained via RNA sequencing (RNA-Seq) vs. microarrays approaches. Second, we summarize insights obtained from microglia transcriptomes in traumatic brain and spinal cord injuries, pain and more chronic neurological conditions including Amyotrophic lateral sclerosis (ALS), Alzheimer disease (AD) and Multiple sclerosis (MS). Transcriptomic responses of microglia in other non-neurodegenerative CNS disorders such as gliomas and sepsis are also addressed. Third, we present a comparison of the most activated pathways in each neuropathological condition using Gene ontology (GO) classification and highlight the diversity of microglia response to insults focusing on their pro- and anti-inflammatory signatures. Finally, we discuss the potential of the latest technological advances, in particular, single cell RNA-Seq to unravel the individual microglial response diversity in neuropathological contexts.
Collapse
Affiliation(s)
- Hélène E Hirbec
- Institute for Functional Genomics, CNRS UMR5203, INSERM U1191, University of MontpellierMontpellier, France.,Laboratory of Excellence in Ion Channel Science and Therapeutics (LabEx ICST)Montpellier, France
| | - Harun N Noristani
- University of Montpellier, INSERM U1198Montpellier, France.,École Pratique des Hautes Études (EPHE)Paris, France
| | - Florence E Perrin
- University of Montpellier, INSERM U1198Montpellier, France.,École Pratique des Hautes Études (EPHE)Paris, France
| |
Collapse
|
21
|
Chhor V, Moretti R, Le Charpentier T, Sigaut S, Lebon S, Schwendimann L, Oré MV, Zuiani C, Milan V, Josserand J, Vontell R, Pansiot J, Degos V, Ikonomidou C, Titomanlio L, Hagberg H, Gressens P, Fleiss B. Role of microglia in a mouse model of paediatric traumatic brain injury. Brain Behav Immun 2017; 63:197-209. [PMID: 27818218 PMCID: PMC5441571 DOI: 10.1016/j.bbi.2016.11.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/22/2016] [Accepted: 11/02/2016] [Indexed: 12/20/2022] Open
Abstract
The cognitive and behavioural deficits caused by traumatic brain injury (TBI) to the immature brain are more severe and persistent than TBI in the mature brain. Understanding this developmental sensitivity is critical as children under four years of age sustain TBI more frequently than any other age group. Microglia (MG), resident immune cells of the brain that mediate neuroinflammation, are activated following TBI in the immature brain. However, the type and temporal profile of this activation and the consequences of altering it are still largely unknown. In a mouse model of closed head weight drop paediatric brain trauma, we characterized i) the temporal course of total cortical neuroinflammation and the phenotype of ex vivo isolated CD11B-positive microglia/macrophage (MG/MΦ) using a battery of 32 markers, and ii) neuropathological outcome 1 and 5days post-injury. We also assessed the effects of targeting MG/MΦ activation directly, using minocycline a prototypical microglial activation antagonist, on these processes and outcome. TBI induced a moderate increase in both pro- and anti-inflammatory cytokines/chemokines in the ipsilateral hemisphere. Isolated cortical MG/MΦ expressed increased levels of markers of endogenous reparatory/regenerative and immunomodulatory phenotypes compared with shams. Blocking MG/MΦ activation with minocycline at the time of injury and 1 and 2days post-injury had only transient protective effects, reducing ventricular dilatation and cell death 1day post-injury but having no effect on injury severity at 5days. This study demonstrates that, unlike in adults, the role of MG/MΦ in injury mechanisms following TBI in the immature brain may not be negative. An improved understanding of MG/MΦ function in paediatric TBI could support translational efforts to design therapeutic interventions.
Collapse
Affiliation(s)
- Vibol Chhor
- PROTECT, INSERM, Unversité Paris Diderot, Sorbonne Paris Cité, Paris, France; PremUP, Paris, France; Department of Anesthesia and Intensive Care, Georges Pompidou European Hospital, Paris, France
| | - Raffaella Moretti
- PROTECT, INSERM, Unversité Paris Diderot, Sorbonne Paris Cité, Paris, France; PremUP, Paris, France; Università degli Studi di Udine, Udine, Italy
| | - Tifenn Le Charpentier
- PROTECT, INSERM, Unversité Paris Diderot, Sorbonne Paris Cité, Paris, France; PremUP, Paris, France
| | - Stephanie Sigaut
- PROTECT, INSERM, Unversité Paris Diderot, Sorbonne Paris Cité, Paris, France; PremUP, Paris, France
| | - Sophie Lebon
- PROTECT, INSERM, Unversité Paris Diderot, Sorbonne Paris Cité, Paris, France; PremUP, Paris, France
| | - Leslie Schwendimann
- PROTECT, INSERM, Unversité Paris Diderot, Sorbonne Paris Cité, Paris, France; PremUP, Paris, France
| | - Marie-Virginie Oré
- PROTECT, INSERM, Unversité Paris Diderot, Sorbonne Paris Cité, Paris, France; PremUP, Paris, France
| | - Chiara Zuiani
- PROTECT, INSERM, Unversité Paris Diderot, Sorbonne Paris Cité, Paris, France; PremUP, Paris, France
| | - Valentina Milan
- PROTECT, INSERM, Unversité Paris Diderot, Sorbonne Paris Cité, Paris, France; PremUP, Paris, France
| | - Julien Josserand
- PROTECT, INSERM, Unversité Paris Diderot, Sorbonne Paris Cité, Paris, France; PremUP, Paris, France
| | - Regina Vontell
- Department of Perinatal Imaging and Health, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London SE1 7EH, United Kingdom
| | - Julien Pansiot
- PROTECT, INSERM, Unversité Paris Diderot, Sorbonne Paris Cité, Paris, France; PremUP, Paris, France
| | - Vincent Degos
- PROTECT, INSERM, Unversité Paris Diderot, Sorbonne Paris Cité, Paris, France; PremUP, Paris, France; Department of Anesthesia and Intensive Care, Pitié Salpétrière Hospital, F-75013 Paris, France
| | | | - Luigi Titomanlio
- PROTECT, INSERM, Unversité Paris Diderot, Sorbonne Paris Cité, Paris, France; PremUP, Paris, France
| | - Henrik Hagberg
- Department of Perinatal Imaging and Health, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London SE1 7EH, United Kingdom; Department of Clinical Sciences, Sahlgrenska Academy/East Hospital, Gothenburg University, 416 85 Gothenburg, Sweden
| | - Pierre Gressens
- PROTECT, INSERM, Unversité Paris Diderot, Sorbonne Paris Cité, Paris, France; PremUP, Paris, France; Department of Perinatal Imaging and Health, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London SE1 7EH, United Kingdom
| | - Bobbi Fleiss
- PROTECT, INSERM, Unversité Paris Diderot, Sorbonne Paris Cité, Paris, France; PremUP, Paris, France; Department of Perinatal Imaging and Health, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London SE1 7EH, United Kingdom.
| |
Collapse
|
22
|
Hylin MJ, Kerr AL, Holden R. Understanding the Mechanisms of Recovery and/or Compensation following Injury. Neural Plast 2017; 2017:7125057. [PMID: 28512585 PMCID: PMC5415868 DOI: 10.1155/2017/7125057] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/24/2017] [Accepted: 03/26/2017] [Indexed: 11/30/2022] Open
Abstract
Injury due to stroke and traumatic brain injury result in significant long-term effects upon behavioral functioning. One central question to rehabilitation research is whether the nature of behavioral improvement observed is due to recovery or the development of compensatory mechanisms. The nature of functional improvement can be viewed from the perspective of behavioral changes or changes in neuroanatomical plasticity that follows. Research suggests that these changes correspond to each other in a bidirectional manner. Mechanisms surrounding phenomena like neural plasticity may offer an opportunity to explain how variables such as experience can impact improvement and influence the definition of recovery. What is more, the intensity of the rehabilitative experiences may influence the ability to recover function and support functional improvement of behavior. All of this impacts how researchers, clinicians, and medical professionals utilize rehabilitation.
Collapse
Affiliation(s)
- Michael J. Hylin
- Neurotrauma and Rehabilitation Laboratory, Department of Psychology, Southern Illinois University, Carbondale, IL, USA
| | - Abigail L. Kerr
- Department of Psychology, Illinois Wesleyan University, Bloomington, IL, USA
| | - Ryan Holden
- Neurotrauma and Rehabilitation Laboratory, Department of Psychology, Southern Illinois University, Carbondale, IL, USA
| |
Collapse
|
23
|
Lipponen A, Paananen J, Puhakka N, Pitkänen A. Analysis of Post-Traumatic Brain Injury Gene Expression Signature Reveals Tubulins, Nfe2l2, Nfkb, Cd44, and S100a4 as Treatment Targets. Sci Rep 2016; 6:31570. [PMID: 27530814 PMCID: PMC4987651 DOI: 10.1038/srep31570] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/19/2016] [Indexed: 12/15/2022] Open
Abstract
We aimed to define the chronically altered gene expression signature of traumatic brain injury (TBI-sig) to discover novel treatments to reverse pathologic gene expression or reinforce the expression of recovery-related genes. Genome-wide RNA-sequencing was performed at 3 months post-TBI induced by lateral fluid-percussion injury in rats. We found 4964 regulated genes in the perilesional cortex and 1966 in the thalamus (FDR < 0.05). TBI-sig was used for a LINCS analysis which identified 11 compounds that showed a strong connectivity with the TBI-sig in neuronal cell lines. Of these, celecoxib and sirolimus were recently reported to have a disease-modifying effect in in vivo animal models of epilepsy. Other compounds revealed by the analysis were BRD-K91844626, BRD-A11009626, NO-ASA, BRD-K55260239, SDZ-NKT-343, STK-661558, BRD-K75971499, ionomycin, and desmethylclomipramine. Network analysis of overlapping genes revealed the effects on tubulins (Tubb2a, Tubb3, Tubb4b), Nfe2l2, S100a4, Cd44, and Nfkb2, all of which are linked to TBI-relevant outcomes, including epileptogenesis and tissue repair. Desmethylclomipramine modulated most of the gene targets considered favorable for TBI outcome. Our data demonstrate long-lasting transcriptomics changes after TBI. LINCS analysis predicted that these changes could be modulated by various compounds, some of which are already in clinical use but never tested in TBI.
Collapse
Affiliation(s)
- Anssi Lipponen
- Epilepsy Research Laboratory, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Jussi Paananen
- Institute of Biomedicine, University of Eastern Finland, Finland.,University of Eastern Finland Bioinformatics Center, University of Eastern Finland, Finland
| | - Noora Puhakka
- Epilepsy Research Laboratory, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Asla Pitkänen
- Epilepsy Research Laboratory, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| |
Collapse
|
24
|
Zhong J, Jiang L, Cheng C, Huang Z, Zhang H, Liu H, He J, Cao F, Peng J, Jiang Y, Sun X. Altered expression of long non-coding RNA and mRNA in mouse cortex after traumatic brain injury. Brain Res 2016; 1646:589-600. [PMID: 27380725 DOI: 10.1016/j.brainres.2016.07.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/27/2016] [Accepted: 07/01/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND OBJECTIVE The present study aims to detect the altered lncRNA expression in the mouse cortex after traumatic brain injury (TBI). We also simultaneously detected the altered mRNA profile to further analyze the possible function of lncRNA. METHOD C57BL/6 mice (n=18) were used to construct a controlled cortical impact model. At 24h post-TBI, the cortex around injury site was collected and the total RNA was extracted to construct the cDNA library. RNA sequencing (RNA-seq) was carried out followed by RT-PCR for confirmation. Bioinformatic analysis (including GO analysis, KEGG pathway and co-expression analysis) also were performed. RESULTS A total of 64,530 transcripts were detected in the current sequencing study, in which 27,457 transcripts were identified as mRNA and 37,073 transcripts as lncRNA. A total of 1580 mRNAs (1430 up-regulated and 150 down-regulated) and 823 lncRNAs (667 up-regulated and 156 down-regulated) were significantly changed according to the criteria ( (|)log2((fold change))|>1 and P<0.05). These altered mRNAs were mainly related to inflammatory and immunological activity, metabolism, neuronal and vascular network. The expression of single lncRNA may be related with several mRNAs, and so was the mRNA. Also, a total of 360 new mRNAs and 8041 new lncRNAs were identified. The good reproducibility and reliability of RNA-seq were confirmed by RT-PCR. CONCLUSION Numerous lncRNAs and mRNAs were significantly altered in mouse cortex around the injury site 24h after TBI. Our present data may provide a promising approach for further study about TBI.
Collapse
Affiliation(s)
- Jianjun Zhong
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Li Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Chongjie Cheng
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zhijian Huang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Hongrong Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Han Liu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Junchi He
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Fang Cao
- Department of Cerebrovascular, the First Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 653000, China
| | - Jianhua Peng
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichaun 646000, China
| | - Yong Jiang
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichaun 646000, China
| | - Xiaochuan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
25
|
Lamprecht MR, Elkin BS, Kesavabhotla K, Crary JF, Hammers JL, Huh JW, Raghupathi R, Morrison B. Strong Correlation of Genome-Wide Expression after Traumatic Brain Injury In Vitro and In Vivo Implicates a Role for SORLA. J Neurotrauma 2016; 34:97-108. [PMID: 26919808 DOI: 10.1089/neu.2015.4306] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The utility of in vitro models of traumatic brain injury (TBI) depends on their ability to recapitulate the in vivo TBI cascade. In this study, we used a genome-wide approach to compare changes in gene expression at several time points post-injury in both an in vitro model and an in vivo model of TBI. We found a total of 2073 differentially expressed genes in our in vitro model and 877 differentially expressed genes in our in vivo model when compared to noninjured controls. We found a strong correlation in gene expression changes between the two models (r = 0.69), providing confidence that the in vitro model represented at least part of the in vivo injury cascade. From these data, we searched for genes with significant changes in expression over time (analysis of covariance) and identified sorting protein-related receptor with A-type repeats (SORLA). SORLA directs amyloid precursor protein to the recycling pathway by direct binding and away from amyloid-beta producing enzymes. Mutations of SORLA have been linked to Alzheimer's disease (AD). We confirmed downregulation of SORLA expression in organotypic hippocampal slice cultures by immunohistochemistry and Western blotting and present preliminary data from human tissue that is consistent with these experimental results. Together, these data suggest that the in vitro model of TBI used in this study strongly recapitulates the in vivo TBI pathobiology and is well suited for future mechanistic or therapeutic studies. The data also suggest the possible involvement of SORLA in the post-traumatic cascade linking TBI to AD.
Collapse
Affiliation(s)
- Michael R Lamprecht
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| | - Benjamin S Elkin
- 1 Department of Biomedical Engineering, Columbia University , New York, New York.,2 MEA Forensic Engineers & Scientists , Mississauga, Ontario, Canada
| | - Kartik Kesavabhotla
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| | - John F Crary
- 3 Department of Pathology, Fishberg Department of Neuroscience, Friedman Brain Institute , and the Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jennifer L Hammers
- 4 Office of Chief Medical Examiner , City of New York, New York, New York
| | - Jimmy W Huh
- 5 Department of Anesthesia and Critical Care, Children's Hospital of Philadelphia , Philadelphia, Pennsylvania
| | - Ramesh Raghupathi
- 6 Department of Neurobiology and Anatomy, Drexel University College of Medicine , Philadelphia, Pennsylvania
| | - Barclay Morrison
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| |
Collapse
|
26
|
Jaber Z, Aouad P, Al Medawar M, Bahmad H, Abou-Abbass H, Kobeissy F. Application of Systems Biology to Neuroproteomics: The Path to Enhanced Theranostics in Traumatic Brain Injury. Methods Mol Biol 2016; 1462:139-155. [PMID: 27604717 DOI: 10.1007/978-1-4939-3816-2_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The application of systems biology tools in analyzing heterogeneous data from multiple sources has become a necessity, especially in biomarker discovery. Such tools were developed with several approaches to address different types of research questions and hypotheses. In the field of neurotrauma and traumatic brain injury (TBI), three distinct approaches have been used so far as systems biology tools, namely functional group categorization, pathway analysis, and protein-protein interaction (PPI) networks. The databases allow for query of the system to identify candidate targets which can be further studied to elucidate potential downstream biomarkers indicative of disease progression, severity, and improvement. The various systems biology tools, databases, and strategies that can be implemented on available TBI data in neuroproteomic studies are discussed in this chapter.
Collapse
Affiliation(s)
- Zaynab Jaber
- Department of Biochemistry, Graduate School and University Center of CUNY, 365 Fifth Avenue, New York, NY, 10016, USA.
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | - Patrick Aouad
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| | - Mohamad Al Medawar
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Hisham Bahmad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Faculty of Medicine, Beirut Arab University, Beirut, Lebanon
| | - Hussein Abou-Abbass
- Faculty of Medicine, Beirut Arab University, Beirut, Lebanon
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
- Department of Psychiatry, Center for Neuroproteomics and Biomarkers Research, University of Florida, 4000 SW 23rd St., Apt. 5-204, Gainesville, FL, 32608, USA.
- Banyan Biomarkers, Inc, Alachua, FL, USA.
| |
Collapse
|
27
|
Hippocampal immediate early gene transcription in the rat fluid percussion traumatic brain injury model. Neuroreport 2015; 25:954-9. [PMID: 24978397 DOI: 10.1097/wnr.0000000000000219] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Traumatic brain injury (TBI) is one of the leading causes of neurological disability and death in the USA across all age groups, ethnicities, and incomes. In addition to the short-term morbidity and mortality, TBI leads to epilepsy and severe neurocognitive symptoms, both of which are referenced to post-traumatic hippocampal dysfunction, although the mechanisms of such hippocampal dysfunction are incompletely understood. Here, we study the temporal profile of the transcription of three select immediate early gene (IEG) markers of neuronal hyperactivation, plasticity, and injury, c-fos, brain-derived neurotrophic factor (BDNF), and Bax, in the acute period following the epileptogenic lateral fluid percussion injury in a rodent TBI model. We found that lateral fluid percussion injury leads to enhanced expression of the selected IEGs within 24 h of TBI. Specifically, BDNF and c-fos increase maximally 1-6 h after TBI in the ipsilesional hippocampus, whereas Bax increases in the hippocampus bilaterally in this time window. Antagonism of the N-methyl-D-aspartate-type glutamate receptor by MK801 attenuates the increase in BDNF and Bax, which underscores a therapeutic role for N-methyl-D-aspartate-type glutamate receptor antagonism in the acute post-traumatic time period and suggests a value to a hippocampal IEG readout as an outcome after injury or acute therapeutic intervention.
Collapse
|
28
|
Yu C, Boutté A, Yu X, Dutta B, Feala JD, Schmid K, Dave J, Tawa GJ, Wallqvist A, Reifman J. A systems biology strategy to identify molecular mechanisms of action and protein indicators of traumatic brain injury. J Neurosci Res 2014; 93:199-214. [PMID: 25399920 PMCID: PMC4305271 DOI: 10.1002/jnr.23503] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/26/2014] [Accepted: 09/24/2014] [Indexed: 01/01/2023]
Abstract
The multifactorial nature of traumatic brain injury (TBI), especially the complex secondary tissue injury involving intertwined networks of molecular pathways that mediate cellular behavior, has confounded attempts to elucidate the pathology underlying the progression of TBI. Here, systems biology strategies are exploited to identify novel molecular mechanisms and protein indicators of brain injury. To this end, we performed a meta-analysis of four distinct high-throughput gene expression studies involving different animal models of TBI. By using canonical pathways and a large human protein-interaction network as a scaffold, we separately overlaid the gene expression data from each study to identify molecular signatures that were conserved across the different studies. At 24 hr after injury, the significantly activated molecular signatures were nonspecific to TBI, whereas the significantly suppressed molecular signatures were specific to the nervous system. In particular, we identified a suppressed subnetwork consisting of 58 highly interacting, coregulated proteins associated with synaptic function. We selected three proteins from this subnetwork, postsynaptic density protein 95, nitric oxide synthase 1, and disrupted in schizophrenia 1, and hypothesized that their abundance would be significantly reduced after TBI. In a penetrating ballistic-like brain injury rat model of severe TBI, Western blot analysis confirmed our hypothesis. In addition, our analysis recovered 12 previously identified protein biomarkers of TBI. The results suggest that systems biology may provide an efficient, high-yield approach to generate testable hypotheses that can be experimentally validated to identify novel mechanisms of action and molecular indicators of TBI.
Collapse
Affiliation(s)
- Chenggang Yu
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Cantera R, Barrio R. Do the genes of the innate immune response contribute to neuroprotection in Drosophila? J Innate Immun 2014; 7:3-10. [PMID: 25115549 DOI: 10.1159/000365195] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 06/12/2014] [Indexed: 12/23/2022] Open
Abstract
A profound debate exists on the relationship between neurodegeneration and the innate immune response in humans. Although it is clear that such a relation exists, the causes and consequences of this complex association remain to be determined in detail. Drosophila is being used to investigate the mechanisms involved in neurodegeneration, and all genomic studies on this issue have generated gene catalogues enriched in genes of the innate immune response. We review the data reported in these publications and propose that the abundance of immune genes in studies of neurodegeneration reflects at least two phenomena: (i) some proteins have functions in both immune and nervous systems, and (ii) immune genes might also be of neuroprotective value in Drosophila. This review opens this debate in Drosophila, which could thus be used as an instrumental model to elucidate this question.
Collapse
Affiliation(s)
- Rafael Cantera
- Zoology Department, Stockholm University, Stockholm, Sweden
| | | |
Collapse
|
30
|
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) induces expression of p27kip1 and FoxO3a in female rat cerebral cortex and PC12 cells. Toxicol Lett 2014; 226:294-302. [DOI: 10.1016/j.toxlet.2014.02.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 02/15/2014] [Accepted: 02/22/2014] [Indexed: 12/17/2022]
|
31
|
LUO LI, LÜ LANHAI, LU YINGHONG, ZHANG LIHONG, LI BOFEI, GUO KAIHUA, CHEN LIZHI, WANG YANG, SHAO YIJIA, XU JIE. Effects of hypoxia on progranulin expression in HT22 mouse hippocampal cells. Mol Med Rep 2014; 9:1675-80. [DOI: 10.3892/mmr.2014.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 01/29/2014] [Indexed: 11/06/2022] Open
|
32
|
Feala JD, Abdulhameed MDM, Yu C, Dutta B, Yu X, Schmid K, Dave J, Tortella F, Reifman J. Systems biology approaches for discovering biomarkers for traumatic brain injury. J Neurotrauma 2014; 30:1101-16. [PMID: 23510232 DOI: 10.1089/neu.2012.2631] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The rate of traumatic brain injury (TBI) in service members with wartime injuries has risen rapidly in recent years, and complex, variable links have emerged between TBI and long-term neurological disorders. The multifactorial nature of TBI secondary cellular response has confounded attempts to find cellular biomarkers for its diagnosis and prognosis or for guiding therapy for brain injury. One possibility is to apply emerging systems biology strategies to holistically probe and analyze the complex interweaving molecular pathways and networks that mediate the secondary cellular response through computational models that integrate these diverse data sets. Here, we review available systems biology strategies, databases, and tools. In addition, we describe opportunities for applying this methodology to existing TBI data sets to identify new biomarker candidates and gain insights about the underlying molecular mechanisms of TBI response. As an exemplar, we apply network and pathway analysis to a manually compiled list of 32 protein biomarker candidates from the literature, recover known TBI-related mechanisms, and generate hypothetical new biomarker candidates.
Collapse
Affiliation(s)
- Jacob D Feala
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Almeida-Suhett CP, Li Z, Marini AM, Braga MFM, Eiden LE. Temporal course of changes in gene expression suggests a cytokine-related mechanism for long-term hippocampal alteration after controlled cortical impact. J Neurotrauma 2014; 31:683-90. [PMID: 24344922 DOI: 10.1089/neu.2013.3029] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Mild traumatic brain injury (mTBI) often has long-term effects on cognitive function and social behavior. Altered gene expression may be predictive of long-term psychological effects of mTBI, even when acute clinical effects are minimal or transient. Controlled cortical impact (CCI), which causes concussive, but nonpenetrant, trauma to underlying (non-cortical) brain, resulting in persistent changes in hippocampal synaptic function, was used as a model of mTBI. The hippocampal transcriptomes of sham-operated or injured male rats at 1, 7, and 30 days postinjury were examined using microarrays comprising a comprehensive set of expressed genes, subsequently confirmed by quantitative reverse-transcriptase polymerase chain reaction. Transcripts encoding the chemokines, chemokine (C-C motif) ligand (Ccl)2 and Ccl7, inflammatory mediators lipocalin-2 (Lcn2) and tissue inhibitor of metalloproteinase 1 (Timp1), immunocyte activators C-C chemokine receptor type 5 (Ccr5) and Fc fragment of IgG, low affinity IIb, receptor (CD32) (Fcgr2b), the major histocompatibility complex II immune response-related genes, Cd74 and RT1 class II, locus Da (RT1-Da), the complement component, C3, and the transcription factor, Kruppel-like factor 4 (Klf4), were identified as early (Ccl2, Ccl7, Lcn2, and Timp1), intermediate (Ccr5, Fcgr2b, Cd74, RT1-Da, and C3), and late (Klf4) markers for bilateral hippocampal response to CCI. Ccl2 and Ccl7 transcripts were up-regulated within 24 h after CCI, and their elevation subsided within 1 week of injury. Other transcriptional changes occurred later and were more stable, some persisting for at least 1 month, suggesting that short-term inflammatory responses trigger longer-term alteration in the expression of genes previously associated with injury, aging, and neuronal function in the brain. These transcriptional responses to mTBI may underlie long-term changes in excitatory and inhibitory neuronal imbalance in hippocampus, leading to long-term behavioral consequences of mTBI.
Collapse
Affiliation(s)
- Camila P Almeida-Suhett
- 1 Program in Neuroscience, F. Edward Hébert School of Medicine Uniformed Services University of the Health Sciences , Bethesda, Maryland
| | | | | | | | | |
Collapse
|
34
|
Park K, Biederer T. Neuronal adhesion and synapse organization in recovery after brain injury. FUTURE NEUROLOGY 2013; 8:555-567. [PMID: 24489481 DOI: 10.2217/fnl.13.35] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Few specific therapeutic targets exist to manage brain injury, despite the prevalence of stroke or traumatic brain injury. With traumatic brain injury, characteristic neuronal changes include axonal swelling and degeneration, and the loss of synapses, the sites of communication between neurons. This is followed by axonal sprouting and alterations in synaptic markers in recovery. The resulting changes in neuronal connectivity are likely to contribute to the effects of traumatic brain injury on cognitive functions and the underlying mechanisms may represent points of therapeutic intervention. In agreement, animal studies implicate adhesion and signaling molecules that organize synapses as molecular players in neuronal recovery. In this article, the authors focus on the role of cell surface interactions in the recovery after brain injury in humans and animals. The authors review cellular and synaptic alterations that occur with injury and how changes in cell adhesion, protein expression and modification may be involved in recovery. The changes in neuronal surface interactions as potential targets and their possible value for the development of therapeutics are also discussed.
Collapse
Affiliation(s)
- Kellie Park
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT, USA
| | - Thomas Biederer
- Department of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, CT, USA ; Program in Cellular Neuroscience, Neurodegeneration & Repair, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
35
|
Ansari MA, Roberts KN, Scheff SW. Dose- and time-dependent neuroprotective effects of Pycnogenol following traumatic brain injury. J Neurotrauma 2013; 30:1542-9. [PMID: 23557184 DOI: 10.1089/neu.2013.2910] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
After traumatic brain injury (TBI), both primary and secondary injury cascades are initiated, leading to neuronal death and cognitive dysfunction. We have previously shown that the combinational bioflavonoid, Pycnogenol (PYC), alters some secondary injury cascades and protects synaptic proteins when administered immediately following trauma. The purpose of the present study was to explore further the beneficial effects of PYC and to test whether it can be used in a more clinically relevant fashion. Young adult male Sprague-Dawley rats were subjected to a unilateral moderate/severe cortical contusion. Subjects received a single intravenous (i.v.) injection of PYC (1, 5, or 10 mg/kg) or vehicle, with treatment initiated at 15 min, 2 h, or 4 h post injury. All rats were killed at 96 h post TBI. Both the cortex and hippocampus ipsilateral and contralateral to the injury were evaluated for possible changes in oxidative stress (thiobarbituric acid reactive species; TBARS) and both pre- and post-synaptic proteins (synapsin-I, synaptophysin, drebrin, post synaptic density protein-95, and synapse associated protein-97). Following TBI, TBARS were significantly increased in both the injured cortex and ipsilateral hippocampus. Regardless of the dose and delay in treatment, PYC treatment significantly lowered TBARS. PYC treatment significantly protected both the cortex and hippocampus from injury-related declines in pre- and post-synaptic proteins. These results demonstrate that a single i.v. treatment of PYC is neuroprotective after TBI with a therapeutic window of at least 4 h post trauma. The natural bioflavonoid PYC may provide a possible therapeutic intervention in neurotrauma.
Collapse
Affiliation(s)
- Mubeen A Ansari
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky 40536-0230, USA
| | | | | |
Collapse
|
36
|
Kochanek PM, Dixon CE, Shellington DK, Shin SS, Bayır H, Jackson EK, Kagan VE, Yan HQ, Swauger PV, Parks SA, Ritzel DV, Bauman R, Clark RSB, Garman RH, Bandak F, Ling G, Jenkins LW. Screening of biochemical and molecular mechanisms of secondary injury and repair in the brain after experimental blast-induced traumatic brain injury in rats. J Neurotrauma 2013; 30:920-37. [PMID: 23496248 DOI: 10.1089/neu.2013.2862] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract Explosive blast-induced traumatic brain injury (TBI) is the signature insult in modern combat casualty care and has been linked to post-traumatic stress disorder, memory loss, and chronic traumatic encephalopathy. In this article we report on blast-induced mild TBI (mTBI) characterized by fiber-tract degeneration and axonal injury revealed by cupric silver staining in adult male rats after head-only exposure to 35 psi in a helium-driven shock tube with head restraint. We now explore pathways of secondary injury and repair using biochemical/molecular strategies. Injury produced ∼25% mortality from apnea. Shams received identical anesthesia exposure. Rats were sacrificed at 2 or 24 h, and brain was sampled in the hippocampus and prefrontal cortex. Hippocampal samples were used to assess gene array (RatRef-12 Expression BeadChip; Illumina, Inc., San Diego, CA) and oxidative stress (OS; ascorbate, glutathione, low-molecular-weight thiols [LMWT], protein thiols, and 4-hydroxynonenal [HNE]). Cortical samples were used to assess neuroinflammation (cytokines, chemokines, and growth factors; Luminex Corporation, Austin, TX) and purines (adenosine triphosphate [ATP], adenosine diphosphate, adenosine, inosine, 2'-AMP [adenosine monophosphate], and 5'-AMP). Gene array revealed marked increases in astrocyte and neuroinflammatory markers at 24 h (glial fibrillary acidic protein, vimentin, and complement component 1) with expression patterns bioinformatically consistent with those noted in Alzheimer's disease and long-term potentiation. Ascorbate, LMWT, and protein thiols were reduced at 2 and 24 h; by 24 h, HNE was increased. At 2 h, multiple cytokines and chemokines (interleukin [IL]-1α, IL-6, IL-10, and macrophage inflammatory protein 1 alpha [MIP-1α]) were increased; by 24 h, only MIP-1α remained elevated. ATP was not depleted, and adenosine correlated with 2'-cyclic AMP (cAMP), and not 5'-cAMP. Our data reveal (1) gene-array alterations similar to disorders of memory processing and a marked astrocyte response, (2) OS, (3) neuroinflammation with a sustained chemokine response, and (4) adenosine production despite lack of energy failure-possibly resulting from metabolism of 2'-3'-cAMP. A robust biochemical/molecular response occurs after blast-induced mTBI, with the body protected from blast and the head constrained to limit motion.
Collapse
Affiliation(s)
- Patrick M Kochanek
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Vasicek TW, Jackson MR, Poseno TM, Stenken JA. In vivo microdialysis sampling of cytokines from rat hippocampus: comparison of cannula implantation procedures. ACS Chem Neurosci 2013; 4:737-46. [PMID: 23480171 DOI: 10.1021/cn400025m] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Cytokines are signaling proteins that have been of significant importance in the field of immunology, since these proteins affect different cells in the immune system. In addition to their immune system significance, these proteins have recently been referred to as a third chemical communication network within the CNS. The role that cytokines play in orchestrating the immune response within tissues after a mechanical injury leads to potential complications if the source of cytokines (i.e., trauma vs disease) is of interest. Microdialysis sampling has seen wide use in collection of many different solutes within the CNS. Yet, implantation of microdialysis guide cannulas and the probes creates tissue injury. In this study, we compared the differences in cytokine levels in dialysates from 4 mm, 100 kDa molecular weight cutoff (MWCO) polyethersulfone membrane microdialysis probes implanted in the hippocampus of male Sprague-Dawley rats. Comparisons were made between animals that were dialyzed immediately after cannula implantation (day 0), 7 days post cannula implantation (day 7), and repeatedly sampled on day 0 and day 7. Multiplexed bead-based immunoassays were used to quantify CCL2 (MCP-1), CCL3 (MIP-1α), CCL5 (RANTES), CXCL1 (KC/GRO), CXCL2 (MIP-2), IL-1β, IL-6, and IL-10 in dialysates. Differences in cytokine concentrations between the different treatment groups were observed with higher levels of inflammatory cytokines measured in day 7 cannulated animals. Only CCL3 (MIP-1α), CXCL1 (KC/GRO), CXCL2 (MIP-2), and IL-10 were measured above the assay limits of detection for a majority of the dialysates, and their concentrations were typically in the low to high (10-1000) picogram per milliliter range. The work described here lays the groundwork for additional basic research studies with microdialysis sampling of cytokines in rodent CNS.
Collapse
Affiliation(s)
- Thaddeus W. Vasicek
- Department of Chemistry and Biochemistry, ‡Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Matthew R. Jackson
- Department of Chemistry and Biochemistry, ‡Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Tina M. Poseno
- Department of Chemistry and Biochemistry, ‡Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Julie A. Stenken
- Department of Chemistry and Biochemistry, ‡Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
38
|
Shin SS, Bales JW, Yan HQ, Kline AE, Wagner AK, Lyons-Weiler J, Dixon CE. The effect of environmental enrichment on substantia nigra gene expression after traumatic brain injury in rats. J Neurotrauma 2013; 30:259-70. [PMID: 23094804 DOI: 10.1089/neu.2012.2462] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Experimental investigations into the effects of traumatic brain injury (TBI) have demonstrated significant alterations in dopaminergic systems. Dopaminergic fibers originating within the substantia nigra and ventral tegmental area (VTA) are important for reward learning, addiction, movement, and behavior. However, little is known about the effect of TBI on substantia nigra and VTA function. Environmental enrichment (EE) has been shown to improve functional outcome after TBI, and a number of studies suggest that it may exert some benefits via dopaminergic signaling. To better understand the role of dopamine in chronic TBI pathophysiology and the effect of EE, we examined the mRNA expression profile within the substantia nigra and VTA at 4 weeks post-injury. Specifically, three comparisons were made: 1) TBI versus sham, 2) sham+EE versus sham+standard (STD) housing, and 3) TBI+EE versus TBI+STD. There were differential expressions of 25, 4, and 40 genes in these comparisons, respectively. Chronic alterations in genes post-injury within the substantia nigra and VTA included genes important for cellular membrane homeostasis and transcription. EE-induced gene alterations after TBI included genes important for signal transduction, in particular calcium signaling pathways, membrane homeostasis, and metabolism. Elucidation of these alterations in gene expression within the substantia nigra and VTA provides new insights into chronic changes in dopamine signaling post-TBI, and the potential role of EE in TBI rehabilitation.
Collapse
Affiliation(s)
- Samuel S Shin
- Brain Trauma Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Roth A, Kyzar E, Cachat J, Stewart AM, Green J, Gaikwad S, O’Leary TP, Tabakoff B, Brown RE, Kalueff AV. Potential translational targets revealed by linking mouse grooming behavioral phenotypes to gene expression using public databases. Prog Neuropsychopharmacol Biol Psychiatry 2013; 40:312-25. [PMID: 23123364 PMCID: PMC4141078 DOI: 10.1016/j.pnpbp.2012.10.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 10/04/2012] [Accepted: 10/23/2012] [Indexed: 11/18/2022]
Abstract
Rodent self-grooming is an important, evolutionarily conserved behavior, highly sensitive to pharmacological and genetic manipulations. Mice with aberrant grooming phenotypes are currently used to model various human disorders. Therefore, it is critical to understand the biology of grooming behavior, and to assess its translational validity to humans. The present in-silico study used publicly available gene expression and behavioral data obtained from several inbred mouse strains in the open-field, light-dark box, elevated plus- and elevated zero-maze tests. As grooming duration differed between strains, our analysis revealed several candidate genes with significant correlations between gene expression in the brain and grooming duration. The Allen Brain Atlas, STRING, GoMiner and Mouse Genome Informatics databases were used to functionally map and analyze these candidate mouse genes against their human orthologs, assessing the strain ranking of their expression and the regional distribution of expression in the mouse brain. This allowed us to identify an interconnected network of candidate genes (which have expression levels that correlate with grooming behavior), display altered patterns of expression in key brain areas related to grooming, and underlie important functions in the brain. Collectively, our results demonstrate the utility of large-scale, high-throughput data-mining and in-silico modeling for linking genomic and behavioral data, as well as their potential to identify novel neural targets for complex neurobehavioral phenotypes, including grooming.
Collapse
Affiliation(s)
- Andrew Roth
- Department of Pharmacology and Neuroscience Program, Tulane University Medical School, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - Evan Kyzar
- Department of Pharmacology and Neuroscience Program, Tulane University Medical School, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - Jonathan Cachat
- Department of Pharmacology and Neuroscience Program, Tulane University Medical School, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - Adam Michael Stewart
- Department of Pharmacology and Neuroscience Program, Tulane University Medical School, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - Jeremy Green
- Department of Pharmacology and Neuroscience Program, Tulane University Medical School, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - Siddharth Gaikwad
- Department of Pharmacology and Neuroscience Program, Tulane University Medical School, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - Timothy P. O’Leary
- Department of Psychology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Boris Tabakoff
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Richard E. Brown
- Department of Psychology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Allan V. Kalueff
- Department of Pharmacology and Neuroscience Program, Tulane University Medical School, 1430 Tulane Avenue, New Orleans, LA 70112, USA
- ZENEREI Institute, Slidell, LA 70458, USA
| |
Collapse
|
40
|
Pathway analysis reveals common pro-survival mechanisms of metyrapone and carbenoxolone after traumatic brain injury. PLoS One 2013; 8:e53230. [PMID: 23326402 PMCID: PMC3541279 DOI: 10.1371/journal.pone.0053230] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Accepted: 11/26/2012] [Indexed: 11/19/2022] Open
Abstract
Developing new pharmacotherapies for traumatic brain injury (TBI) requires elucidation of the neuroprotective mechanisms of many structurally and functionally diverse compounds. To test our hypothesis that diverse neuroprotective drugs similarly affect common gene targets after TBI, we compared the effects of two drugs, metyrapone (MT) and carbenoxolone (CB), which, though used clinically for noncognitive conditions, improved learning and memory in rats and humans. Although structurally different, both MT and CB inhibit a common molecular target, 11β hydroxysteroid dehydrogenase type 1, which converts inactive cortisone to cortisol, thereby effectively reducing glucocorticoid levels. We examined injury-induced signaling pathways to determine how the effects of these two compounds correlate with pro-survival effects in surviving neurons of the injured rat hippocampus. We found that treatment of TBI rats with MT or CB acutely induced in hippocampal neurons transcriptional profiles that were remarkably similar (i.e., a coordinated attenuation of gene expression across multiple injury-induced cell signaling networks). We also found, to a lesser extent, a coordinated increase in cell survival signals. Analysis of injury-induced gene expression altered by MT and CB provided additional insight into the protective effects of each. Both drugs attenuated expression of genes in the apoptosis, death receptor and stress signaling pathways, as well as multiple genes in the oxidative phosphorylation pathway such as subunits of NADH dehydrogenase (Complex1), cytochrome c oxidase (Complex IV) and ATP synthase (Complex V). This suggests an overall inhibition of mitochondrial function. Complex 1 is the primary source of reactive oxygen species in the mitochondrial oxidative phosphorylation pathway, thus linking the protective effects of these drugs to a reduction in oxidative stress. The net effect of the drug-induced transcriptional changes observed here indicates that suppressing expression of potentially harmful genes, and also, surprisingly, reduced expression of pro-survival genes may be a hallmark of neuroprotective therapeutic effects.
Collapse
|
41
|
Petoukhov E, Fernando S, Mills F, Shivji F, Hunter D, Krieger C, Silverman MA, Bamji SX. Activity-dependent secretion of progranulin from synapses. J Cell Sci 2013; 126:5412-21. [DOI: 10.1242/jcs.132076] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The secreted growth factor progranulin (PGRN) has been shown to be important for regulating neuronal survival and outgrowth, as well as synapse formation and function. Mutations in the PGRN gene that result in PGRN haploinsufficiency have been identified as a major cause of frontotemporal dementia (FTD). Here we demonstrate that PGRN is colocalized with dense-core vesicle markers and is co-transported with brain-derived neurotrophic factor (BDNF) within axons and dendrites of cultured hippocampal neurons in both anterograde and retrograde directions. We also show that PGRN is secreted in an activity-dependent manner from synaptic and extrasynaptic sites, and that the temporal profiles of secretion are distinct in axons and dendrites. Neuronal activity is also shown to increase the recruitment of PGRN to synapses and to enhance the density of PGRN clusters along axons. Finally, treatment of neurons with recombinant PGRN is shown to increase synapse density, while decreasing the size of the presynaptic compartment and specifically the number of synaptic vesicles per synapse. Together, this indicates that activity-dependent secretion of PGRN can regulate synapse number and structure.
Collapse
|
42
|
Lim HY, Albuquerque B, Häussler A, Myrczek T, Ding A, Tegeder I. Progranulin contributes to endogenous mechanisms of pain defense after nerve injury in mice. J Cell Mol Med 2012; 16:708-21. [PMID: 21645236 PMCID: PMC3822842 DOI: 10.1111/j.1582-4934.2011.01350.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Progranulin haploinsufficiency is associated with frontotemporal dementia in humans. Deficiency of progranulin led to exaggerated inflammation and premature aging in mice. The role of progranulin in adaptations to nerve injury and neuropathic pain are still unknown. Here we found that progranulin is up-regulated after injury of the sciatic nerve in the mouse ipsilateral dorsal root ganglia and spinal cord, most prominently in the microglia surrounding injured motor neurons. Progranulin knockdown by continuous intrathecal spinal delivery of small interfering RNA after sciatic nerve injury intensified neuropathic pain-like behaviour and delayed the recovery of motor functions. Compared to wild-type mice, progranulin-deficient mice developed more intense nociceptive hypersensitivity after nerve injury. The differences escalated with aging. Knockdown of progranulin reduced the survival of dissociated primary neurons and neurite outgrowth, whereas addition of recombinant progranulin rescued primary dorsal root ganglia neurons from cell death induced by nerve growth factor withdrawal. Thus, up-regulation of progranulin after neuronal injury may reduce neuropathic pain and help motor function recovery, at least in part, by promoting survival of injured neurons and supporting regrowth. A deficiency in this mechanism may increase the risk for injury-associated chronic pain.
Collapse
Affiliation(s)
- Hee-Young Lim
- Pharmazentrum frankfurt, ZAFES, Clinical Pharmacology, Goethe-University, Frankfurt, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Sun L, Eriksen JL. Recent insights into the involvement of progranulin in frontotemporal dementia. Curr Neuropharmacol 2012; 9:632-42. [PMID: 22654721 PMCID: PMC3263457 DOI: 10.2174/157015911798376361] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 02/04/2011] [Accepted: 03/21/2011] [Indexed: 12/12/2022] Open
Abstract
Progranulin is a widely expressed protein that is involved in the regulation of multiple biological processes, including embryogenesis, host defense, and wound repair. In the central nervous system, progranulin is constitutively expressed at modest levels in neurons and microglia, but shows dramatic microglial immunoreactivity in degenerative diseases that exhibit prominent neuroinflammation. In addition to the role that PGRN plays in the periphery, its expression is of critical importance in brain health, as demonstrated by recent discovery that progranulin haploinsufficiency results in familial frontotemporal lobar degeneration. Since progranulin deficiency was first described, there has been an intense ongoing effort to decipher the mysterious role that this protein plays in dementia. This review provides an update on our understanding of the possible neuronal function and discusses the challenging problems related to progranulin expression within genetics, cell biology, and neurodegeneration.
Collapse
Affiliation(s)
- Li Sun
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA
| | | |
Collapse
|
44
|
Schober ME, Block B, Requena DF, Hale MA, Lane RH. Developmental traumatic brain injury decreased brain derived neurotrophic factor expression late after injury. Metab Brain Dis 2012; 27:167-73. [PMID: 22527999 PMCID: PMC3383795 DOI: 10.1007/s11011-012-9309-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Accepted: 04/15/2012] [Indexed: 01/06/2023]
Abstract
Pediatric traumatic brain injury (TBI) is a major cause of acquired cognitive dysfunction in children. Hippocampal Brain Derived Neurotrophic Factor (BDNF) is important for normal cognition. Little is known about the effects of TBI on BDNF levels in the developing hippocampus. We used controlled cortical impact (CCI) in the 17 day old rat pup to test the hypothesis that CCI would first increase rat hippocampal BDNF mRNA/protein levels relative to SHAM and Naïve rats by post injury day (PID) 2 and then decrease BDNF mRNA/protein by PID14. Relative to SHAM, CCI did not change BDNF mRNA/protein levels in the injured hippocampus in the first 2 days after injury but did decrease BDNF protein at PID14. Surprisingly, BDNF mRNA decreased at PID 1, 3, 7 and 14, and BDNF protein decreased at PID 2, in SHAM and CCI hippocampi relative to Naïve. In conclusion, TBI decreased BDNF protein in the injured rat pup hippocampus 14 days after injury. BDNF mRNA levels decreased in both CCI and SHAM hippocampi relative to Naïve, suggesting that certain aspects of the experimental paradigm (such as craniotomy, anesthesia, and/or maternal separation) may decrease the expression of BDNF in the developing hippocampus. While BDNF is important for normal cognition, no inferences can be made regarding the cognitive impact of any of these factors. Such findings, however, suggest that meticulous attention to the experimental paradigm, and possible inclusion of a Naïve group, is warranted in studies of BDNF expression in the developing brain after TBI.
Collapse
|
45
|
Zinc neurotoxicity to hippocampal neurons in vitro induces ubiquitin conjugation that requires p38 activation. Brain Res 2012; 1438:1-7. [DOI: 10.1016/j.brainres.2011.12.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 11/15/2011] [Accepted: 12/14/2011] [Indexed: 11/21/2022]
|
46
|
Yasui K, Oketa Y, Higashida K, Fukazawa H, Ono S. Increased progranulin in the skin of amyotrophic lateral sclerosis: an immunohistochemical study. J Neurol Sci 2011; 309:110-4. [PMID: 21802097 DOI: 10.1016/j.jns.2011.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 06/24/2011] [Accepted: 07/01/2011] [Indexed: 11/27/2022]
Abstract
It has been demonstrated that progranulin (PGRN) is a neurotrophic factor that enhances neuronal survival and axonal growth. Several lines of evidence have indicated that PGRN plays a role in the pathomechanism of amyotrophic lateral sclerosis (ALS). However, there has no study of PGRN in ALS skin. We made a quantitative immunohistochemical study of the expression of PGRN in the skin from 18 patients with sporadic ALS and 13 control subjects. Immunohistochemistry for PGRN demonstrated cytoplasmic activity in the epidermis and in some blood vessels and glands. Numerous PGRN-positive (PGRN+) cells were observed in the epidermis in ALS patients, which became more marked as ALS progressed. PGRN immunoreactivity of PGRN+cells was markedly positive in the epidermis in ALS patients. The proportion of PGRN+cells in the epidermis in ALS patients was significantly higher (p<0.001) than in controls. There was a significant positive relationship (r = 0.83, p<0.001) between the proportion and duration of illness in ALS patients. These data suggest that changes of PGRN in ALS skin are related to the disease process and that metabolic alteration of PGRN may take place in the skin of patients with ALS.
Collapse
Affiliation(s)
- Kanako Yasui
- Department of Neurology, Teikyo University Chiba Medical Center, 3426–3 Anesaki, Ichihara, Japan
| | | | | | | | | |
Collapse
|
47
|
Cellular effects of progranulin in health and disease. J Mol Neurosci 2011; 45:549-60. [PMID: 21611805 DOI: 10.1007/s12031-011-9553-z] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 05/10/2011] [Indexed: 12/12/2022]
Abstract
Progranulin is a fascinating multifunctional protein, which has been implicated in cell growth, wound repair, tumorigenesis, inflammation, neurodevelopment, and more recently in neurodegeneration. The mechanism of action of this protein is still largely unknown, but the knowledge about the cellular effects on various cell types is expanding. In the current review, we will summarize what is known about the cell biology of progranulin. A better understanding of the biology of progranulin will impact diverse areas of research.
Collapse
|
48
|
Pitkänen A, Bolkvadze T, Immonen R. Anti-epileptogenesis in rodent post-traumatic epilepsy models. Neurosci Lett 2011; 497:163-71. [PMID: 21402123 DOI: 10.1016/j.neulet.2011.02.033] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 01/25/2011] [Accepted: 02/15/2011] [Indexed: 10/18/2022]
Abstract
Post-traumatic epilepsy (PTE) accounts for 10-20% of symptomatic epilepsies. The urgency to understand the process of post-traumatic epileptogenesis and search for antiepileptogenic treatments is emphasized by a recent increase in traumatic brain injury (TBI) related to military combat or accidents in the aging population. Recent developments in modeling of PTE in rodents have provided tools for identification of novel drug targets for antiepileptogenesis and biomarkers for predicting the risk of epileptogenesis and treatment efficacy after TBI. Here we review the available data on endophenotypes of humans and rodents with TBI associated with epilepsy. Also, current understanding of the mechanisms and biomarkers for PTE as well as factors associated with preclinical study designs are discussed. Finally, we summarize the attempts to prevent PTE in experimental models.
Collapse
Affiliation(s)
- Asla Pitkänen
- Department of Neurobiology, Epilepsy Research Laboratory, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland.
| | | | | |
Collapse
|
49
|
Schober ME, Block B, Beachy JC, Statler KD, Giza CC, Lane RH. Early and sustained increase in the expression of hippocampal IGF-1, but not EPO, in a developmental rodent model of traumatic brain injury. J Neurotrauma 2011; 27:2011-20. [PMID: 20822461 DOI: 10.1089/neu.2009.1226] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Pediatric traumatic brain injury (pTBI) is the leading cause of traumatic death and disability in children in the United States. Impaired learning and memory in these young survivors imposes a heavy toll on society. In adult TBI (aTBI) models, cognitive outcome improved after administration of erythropoietin (EPO) or insulin-like growth factor-1 (IGF-1). Little is known about the production of these agents in the hippocampus, a brain region critical for learning and memory, after pTBI. Our objective was to describe hippocampal expression of EPO and IGF-1, together with their receptors (EPOR and IGF-1R, respectively), over time after pTBI in 17-day-old rats. We used the controlled cortical impact (CCI) model and measured hippocampal mRNA levels of EPO, IGF-1, EPOR, IGF-1R, and markers of caspase-dependent apoptosis (bcl2, bax, and p53) at post-injury days (PID) 1, 2, 3, 7, and 14. CCI rats performed poorly on Morris water maze testing of spatial working memory, a hippocampally-based cognitive function. Apoptotic markers were present early and persisted for the duration of the study. EPO in our pTBI model increased much later (PID7) than in aTBI models (12 h), while EPOR and IGF-1 increased at PID1 and PID2, respectively, similar to data from aTBI models. Our data indicate that EPO expression showed a delayed upregulation post-pTBI, while EPOR increased early. We speculate that administration of EPO in the first 1-2 days after pTBI would increase hippocampal neuronal survival and function.
Collapse
Affiliation(s)
- Michelle E Schober
- Department of Pediatrics, Division of Critical Care, University of Utah, Salt Lake City, Utah 84158, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Pearson-Fuhrhop KM, Cramer SC. Genetic influences on neural plasticity. PM R 2011; 2:S227-40. [PMID: 21172685 DOI: 10.1016/j.pmrj.2010.09.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Accepted: 09/13/2010] [Indexed: 01/07/2023]
Abstract
Neural plasticity refers to the capability of the brain to alter function or structure in response to a range of events and is a crucial component of both functional recovery after injury and skill learning in healthy individuals. A number of factors influence neural plasticity and recovery of function after brain injury. The current review considers the impact of genetic factors. Polymorphisms in the human genes coding for brain-derived neurotrophic factor and apolipoprotein E have been studied in the context of plasticity and stroke recovery and are discussed here in detail. Several processes involved in plasticity and stroke recovery, such as depression or pharmacotherapy effects, are modulated by other genetic polymorphisms and are also discussed. Finally, new genetic polymorphisms that have not been studied in the context of stroke are proposed as new directions for study. A better understanding of genetic influences on recovery and response to therapy might allow improved treatment after a number of forms of central nervous system injury.
Collapse
|