1
|
Lee HJ, Choi HJ, Jeong YJ, Na YH, Hong JT, Han JM, Hoe HS, Lim KH. Developing theragnostics for Alzheimer's disease: Insights from cancer treatment. Int J Biol Macromol 2024; 269:131925. [PMID: 38685540 DOI: 10.1016/j.ijbiomac.2024.131925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
The prevalence of Alzheimer's disease (AD) and its associated economic and societal burdens are on the rise, but there are no curative treatments for AD. Interestingly, this neurodegenerative disease shares several biological and pathophysiological features with cancer, including cell-cycle dysregulation, angiogenesis, mitochondrial dysfunction, protein misfolding, and DNA damage. However, the genetic factors contributing to the overlap in biological processes between cancer and AD have not been actively studied. In this review, we discuss the shared biological features of cancer and AD, the molecular targets of anticancer drugs, and therapeutic approaches. First, we outline the common biological features of cancer and AD. Second, we describe several anticancer drugs, their molecular targets, and their effects on AD pathology. Finally, we discuss how protein-protein interactions (PPIs), receptor inhibition, immunotherapy, and gene therapy can be exploited for the cure and management of both cancer and AD. Collectively, this review provides insights for the development of AD theragnostics based on cancer drugs and molecular targets.
Collapse
Affiliation(s)
- Hyun-Ju Lee
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea
| | - Hee-Jeong Choi
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea
| | - Yoo Joo Jeong
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea; Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333, Techno jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Yoon-Hee Na
- College of Pharmacy, Chungbuk National University, Cheongju-si 28160, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy, Chungbuk National University, Cheongju-si 28160, Republic of Korea
| | - Ji Min Han
- College of Pharmacy, Chungbuk National University, Cheongju-si 28160, Republic of Korea.
| | - Hyang-Sook Hoe
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea; Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333, Techno jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Republic of Korea.
| | - Key-Hwan Lim
- College of Pharmacy, Chungbuk National University, Cheongju-si 28160, Republic of Korea.
| |
Collapse
|
2
|
Andronie-Cioara FL, Ardelean AI, Nistor-Cseppento CD, Jurcau A, Jurcau MC, Pascalau N, Marcu F. Molecular Mechanisms of Neuroinflammation in Aging and Alzheimer's Disease Progression. Int J Mol Sci 2023; 24:ijms24031869. [PMID: 36768235 PMCID: PMC9915182 DOI: 10.3390/ijms24031869] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/01/2023] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
Aging is the most prominent risk factor for late-onset Alzheimer's disease. Aging associates with a chronic inflammatory state both in the periphery and in the central nervous system, the evidence thereof and the mechanisms leading to chronic neuroinflammation being discussed. Nonetheless, neuroinflammation is significantly enhanced by the accumulation of amyloid beta and accelerates the progression of Alzheimer's disease through various pathways discussed in the present review. Decades of clinical trials targeting the 2 abnormal proteins in Alzheimer's disease, amyloid beta and tau, led to many failures. As such, targeting neuroinflammation via different strategies could prove a valuable therapeutic strategy, although much research is still needed to identify the appropriate time window. Active research focusing on identifying early biomarkers could help translating these novel strategies from bench to bedside.
Collapse
Affiliation(s)
- Felicia Liana Andronie-Cioara
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Adriana Ioana Ardelean
- Department of Preclinical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Carmen Delia Nistor-Cseppento
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
- Correspondence: (C.D.N.-C.); (N.P.)
| | - Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | | | - Nicoleta Pascalau
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
- Correspondence: (C.D.N.-C.); (N.P.)
| | - Florin Marcu
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| |
Collapse
|
3
|
Khezri MR, Yousefi K, Esmaeili A, Ghasemnejad-Berenji M. The Role of ERK1/2 Pathway in the Pathophysiology of Alzheimer's Disease: An Overview and Update on New Developments. Cell Mol Neurobiol 2023; 43:177-191. [PMID: 35038057 PMCID: PMC11415193 DOI: 10.1007/s10571-022-01191-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/06/2022] [Indexed: 01/07/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder worldwide. Several findings suggest that correcting the dysregulated signaling pathways may offer a potential therapeutic approach in this disease. Extracellular signal-regulated kinase 1/2 (ERK1/2), a member of the mitogen-activated protein kinase family, plays a major role in regulation of cell proliferation, autophagy process, and protein synthesis. The available literature suggests dysregulated ERK1/2 in AD patients with potential implications in the multifaceted underlying pathologies of AD, including amyloid-β plaque formation, tau phosphorylation, and neuroinflammation. In this regard, in the current review, we aim to summarize the reports on the potential roles of ERK1/2 in AD pathophysiology.
Collapse
Affiliation(s)
- Mohammad Rafi Khezri
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Keyvan Yousefi
- Department of Molecular and Cellular Pharmacology, University of Miami-Miller School of Medicine, Miami, FL, USA.
| | - Ayda Esmaeili
- Clinical Pharmacy Department, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Morteza Ghasemnejad-Berenji
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran.
- Experimental and Applied Pharmaceutical Research Center, Urmia University of Medical Sciences, Urmia, Iran.
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, PO Box: 5715799313, Urmia, Iran.
| |
Collapse
|
4
|
Abondio P, Bruno F, Bruni AC, Luiselli D. Rare Amyloid Precursor Protein Point Mutations Recapitulate Worldwide Migration and Admixture in Healthy Individuals: Implications for the Study of Neurodegeneration. Int J Mol Sci 2022; 23:ijms232415871. [PMID: 36555510 PMCID: PMC9781461 DOI: 10.3390/ijms232415871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/30/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
Genetic discoveries related to Alzheimer's disease and other dementias have been performed using either large cohorts of affected subjects or multiple individuals from the same pedigree, therefore disregarding mutations in the context of healthy groups. Moreover, a large portion of studies so far have been performed on individuals of European ancestry, with a remarkable lack of epidemiological and genomic data from underrepresented populations. In the present study, 70 single-point mutations on the APP gene in a publicly available genetic dataset that included 2504 healthy individuals from 26 populations were scanned, and their distribution was analyzed. Furthermore, after gametic phase reconstruction, a pairwise comparison of the segments surrounding the mutations was performed to reveal patterns of haplotype sharing that could point to specific cross-population and cross-ancestry admixture events. Eight mutations were detected in the worldwide dataset, with several of them being specific for a single individual, population, or macroarea. Patterns of segment sharing reflected recent historical events of migration and admixture possibly linked to colonization campaigns. These observations reveal the population dynamics of the considered APP mutations in worldwide human groups and support the development of ancestry-informed screening practices for the improvement of precision and personalized approaches to neurodegeneration and dementia.
Collapse
Affiliation(s)
- Paolo Abondio
- Laboratory of Ancient DNA, Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121 Ravenna, Italy
- Laboratory of Molecular Anthropology and Center for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Francesco Bruno
- Regional Neurogenetic Center (CRN), Department of Primary Care, ASP Catanzaro, 88046 Lamezia Terme, Italy
- Association for Neurogenetic Research (ARN), 88046 Lamezia Terme, Italy
- Correspondence:
| | - Amalia Cecilia Bruni
- Regional Neurogenetic Center (CRN), Department of Primary Care, ASP Catanzaro, 88046 Lamezia Terme, Italy
| | - Donata Luiselli
- Laboratory of Ancient DNA, Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121 Ravenna, Italy
| |
Collapse
|
5
|
Elsworthy RJ, Hill EJ, Dunleavy C, Aldred S. The role of ADAM10 in astrocytes: Implications for Alzheimer's disease. Front Aging Neurosci 2022; 14:1056507. [PMID: 36533182 PMCID: PMC9748279 DOI: 10.3389/fnagi.2022.1056507] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/14/2022] [Indexed: 01/27/2025] Open
Abstract
Much of the early research into AD relies on a neuron-centric view of the brain, however, evidence of multiple altered cellular interactions between glial cells and the vasculature early in AD has been demonstrated. As such, alterations in astrocyte function are widely recognized a contributing factor in the pathogenesis of AD. The processes by which astrocytes may be involved in AD make them an interesting target for therapeutic intervention, but in order for this to be most effective, there is a need for the specific mechanisms involving astrocyte dysfunction to be investigated. "α disintegrin and metalloproteinase" 10 (ADAM10) is capable of proteolytic cleavage of the amyloid precursor protein which prevents amyloid-β generation. As such ADAM10 has been identified as an interesting enzyme in AD pathology. ADAM10 is also known to play a role in a significant number of cellular processes, most notable in notch signaling and in inflammatory processes. There is a growing research base for the involvement of ADAM10 in regulating astrocytic function, primarily from an immune perspective. This review aims to bring together available evidence for ADAM10 activity in astrocytes, and how this relates to AD pathology.
Collapse
Affiliation(s)
- Richard J. Elsworthy
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| | - Eric J. Hill
- School of Biosciences, Aston University, Birmingham, United Kingdom
| | - Connor Dunleavy
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Sarah Aldred
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
6
|
The Potential Role of Cytokines and Growth Factors in the Pathogenesis of Alzheimer's Disease. Cells 2021; 10:cells10102790. [PMID: 34685770 PMCID: PMC8534363 DOI: 10.3390/cells10102790] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/06/2021] [Accepted: 10/10/2021] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most prominent neurodegenerative diseases, which impairs cognitive function in afflicted individuals. AD results in gradual decay of neuronal function as a consequence of diverse degenerating events. Several neuroimmune players (such as cytokines and growth factors that are key players in maintaining CNS homeostasis) turn aberrant during crosstalk between the innate and adaptive immunities. This aberrance underlies neuroinflammation and drives neuronal cells toward apoptotic decline. Neuroinflammation involves microglial activation and has been shown to exacerbate AD. This review attempted to elucidate the role of cytokines, growth factors, and associated mechanisms implicated in the course of AD, especially with neuroinflammation. We also evaluated the propensities and specific mechanism(s) of cytokines and growth factors impacting neuron upon apoptotic decline and further shed light on the availability and accessibility of cytokines across the blood-brain barrier and choroid plexus in AD pathophysiology. The pathogenic and the protective roles of macrophage migration and inhibitory factors, neurotrophic factors, hematopoietic-related growth factors, TAU phosphorylation, advanced glycation end products, complement system, and glial cells in AD and neuropsychiatric pathology were also discussed. Taken together, the emerging roles of these factors in AD pathology emphasize the importance of building novel strategies for an effective therapeutic/neuropsychiatric management of AD in clinics.
Collapse
|
7
|
Bandyopadhyay S. Role of Neuron and Glia in Alzheimer's Disease and Associated Vascular Dysfunction. Front Aging Neurosci 2021; 13:653334. [PMID: 34211387 PMCID: PMC8239194 DOI: 10.3389/fnagi.2021.653334] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/05/2021] [Indexed: 12/14/2022] Open
Abstract
Amyloidogenicity and vascular dysfunction are the key players in the pathogenesis of Alzheimer’s disease (AD), involving dysregulated cellular interactions. An intricate balance between neurons, astrocytes, microglia, oligodendrocytes and vascular cells sustains the normal neuronal circuits. Conversely, cerebrovascular diseases overlap neuropathologically with AD, and glial dyshomeostasis promotes AD-associated neurodegenerative cascade. While pathological hallmarks of AD primarily include amyloid-β (Aβ) plaques and neurofibrillary tangles, microvascular disorders, altered cerebral blood flow (CBF), and blood-brain barrier (BBB) permeability induce neuronal loss and synaptic atrophy. Accordingly, microglia-mediated inflammation and astrogliosis disrupt the homeostasis of the neuro-vascular unit and stimulate infiltration of circulating leukocytes into the brain. Large-scale genetic and epidemiological studies demonstrate a critical role of cellular crosstalk for altered immune response, metabolism, and vasculature in AD. The glia associated genetic risk factors include APOE, TREM2, CD33, PGRN, CR1, and NLRP3, which correlate with the deposition and altered phagocytosis of Aβ. Moreover, aging-dependent downregulation of astrocyte and microglial Aβ-degrading enzymes limits the neurotrophic and neurogenic role of glial cells and inhibits lysosomal degradation and clearance of Aβ. Microglial cells secrete IGF-1, and neurons show a reduced responsiveness to the neurotrophic IGF-1R/IRS-2/PI3K signaling pathway, generating amyloidogenic and vascular dyshomeostasis in AD. Glial signals connect to neural stem cells, and a shift in glial phenotype over the AD trajectory even affects adult neurogenesis and the neurovascular niche. Overall, the current review informs about the interaction of neuronal and glial cell types in AD pathogenesis and its critical association with cerebrovascular dysfunction.
Collapse
Affiliation(s)
- Sanghamitra Bandyopadhyay
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
8
|
Wang H, Peng G, Wang B, Yin H, Fang X, He F, Zhao D, Liu Q, Shi L. IL-1R -/- alleviates cognitive deficits through microglial M2 polarization in AD mice. Brain Res Bull 2020; 157:10-17. [PMID: 32004659 DOI: 10.1016/j.brainresbull.2019.11.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 01/25/2023]
Abstract
The neuroinflammatory response is considered a crucial event in the pathology of Alzheimer's disease (AD). Neurotoxic amyloid β (Aβ) oligomers activate neuronal glial cells, leading to the elevated generation of a large variety of inflammatory factors. Therefore, the regulation of interleukin-1 receptor (IL-1R) activity is believed to be a potential target for AD therapy. However, previous evidence of the role of IL-1R in AD-related neuroinflammation is ambiguous. To reveal the exact role of IL-1R in AD and related inflammatory reactions, we generated IL-1R-/- AD mice. Based on the Morris water maze results, 4-month-old IL-1R-/- AD mice showed better learning and memory ability than that of AD mice. However, IL-1R-/- had little influence on amyloid precursor protein proteolysis, while IL-1R-/- increased ADAM17 expression level. Surprisingly, IL-1R-/- even enhanced glial activation. IL-1R-/- indeed attenuated inflammatory cytokine secretion, especially that of cytokins associated with M1 polarization, while it led to increased levels of some cytokins associated with M2 polarization. Finally, we found that IL-1R-/- reduced the phagocytic ability of microglia. Taken together, these results suggest that IL-1R deficiency may alleviate cognitive deficits in AD mice in a manner that is partially dependent on ADAM17 regulation and microglia M2 repolarization.
Collapse
Affiliation(s)
- Huanhuan Wang
- School of Medicine; Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China.
| | - Guoping Peng
- Department of Neurology, The 1stAffiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bing Wang
- College of Life Science, Hangzhou Normal University, Hangzhou, China; Department of Clinical Laboratory, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Hongping Yin
- School of Medicine; Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Xingyue Fang
- The 1stAffiliated Hospital, Hainan Medical School, Haikou, China
| | - Fangping He
- Department of Neurology, The 1stAffiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Dongjiu Zhao
- School of Medicine; Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Qibing Liu
- College of Science, Hainan Medical School, Haikou, China
| | - Liyun Shi
- Department of Immunology, Nanjing University of Traditional Chinese Medicine, Nanjing, China.
| |
Collapse
|
9
|
Ray B, Maloney B, Sambamurti K, Karnati HK, Nelson PT, Greig NH, Lahiri DK. Rivastigmine modifies the α-secretase pathway and potentially early Alzheimer's disease. Transl Psychiatry 2020; 10:47. [PMID: 32066688 PMCID: PMC7026402 DOI: 10.1038/s41398-020-0709-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/25/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022] Open
Abstract
Rivastigmine (or Exelon) is a cholinesterase inhibitor, currently used as a symptomatic treatment for mild-to-moderate Alzheimer's disease (AD). Amyloid-β peptide (Aβ) generated from its precursor protein (APP) by β-secretase (or BACE1) and γ-secretase endoproteolysis. Alternative APP cleavage by α-secretase (a family of membrane-bound metalloproteases- Adamalysins) precludes the generation of toxic Aβ and yields a neuroprotective and neurotrophic secreted sAPPα fragment. Several signal transduction pathways, including protein kinase C and MAP kinase, stimulate α-secretase. We present data to suggest that rivastigmine, in addition to anticholinesterase activity, directs APP processing away from BACE1 and towards α-secretases. We treated rat neuronal PC12 cells and primary human brain (PHB) cultures with rivastigmine and the α-secretase inhibitor TAPI and assayed for levels of APP processing products and α-secretases. We subsequently treated 3×Tg (transgenic) mice with rivastigmine and harvested hippocampi to assay for levels of APP processing products. We also assayed postmortem human control, AD, and AD brains from subjects treated with rivastigmine for levels of APP metabolites. Rivastigmine dose-dependently promoted α-secretase activity by upregulating levels of ADAM-9, -10, and -17 α-secretases in PHB cultures. Co-treatment with TAPI eliminated rivastigmine-induced sAPPα elevation. Rivastigmine treatment elevated levels of sAPPα in 3×Tg mice. Consistent with these results, we also found elevated sAPPα in postmortem brain samples from AD patients treated with rivastigmine. Rivastigmine can modify the levels of several shedding proteins and directs APP processing toward the non-amyloidogenic pathway. This novel property of rivastigmine can be therapeutically exploited for disease-modifying intervention that goes beyond symptomatic treatment for AD.
Collapse
Affiliation(s)
- Balmiki Ray
- grid.257413.60000 0001 2287 3919Department of Psychiatry, Laboratory of Molecular Neurogenetics, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Bryan Maloney
- grid.257413.60000 0001 2287 3919Department of Psychiatry, Laboratory of Molecular Neurogenetics, Indiana University School of Medicine, Indianapolis, IN 46202 USA ,grid.257413.60000 0001 2287 3919Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Kumar Sambamurti
- grid.259828.c0000 0001 2189 3475Department of Neurosciences, Medical University of South Carolina, Charleston, 29425 SC USA
| | - Hanuma K. Karnati
- grid.419475.a0000 0000 9372 4913National Institute on Aging, Drug Design and Development Section, Bethesda, MD 20892 USA
| | - Peter T. Nelson
- grid.266539.d0000 0004 1936 8438Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536 USA
| | - Nigel H. Greig
- grid.419475.a0000 0000 9372 4913National Institute on Aging, Drug Design and Development Section, Bethesda, MD 20892 USA
| | - Debomoy K. Lahiri
- grid.257413.60000 0001 2287 3919Department of Psychiatry, Laboratory of Molecular Neurogenetics, Indiana University School of Medicine, Indianapolis, IN 46202 USA ,grid.257413.60000 0001 2287 3919Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN 46202 USA ,grid.257413.60000 0001 2287 3919Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| |
Collapse
|
10
|
Iron Pathophysiology in Alzheimer’s Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1173:67-104. [DOI: 10.1007/978-981-13-9589-5_5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Targeting the Iron-Response Elements of the mRNAs for the Alzheimer's Amyloid Precursor Protein and Ferritin to Treat Acute Lead and Manganese Neurotoxicity. Int J Mol Sci 2019; 20:ijms20040994. [PMID: 30823541 PMCID: PMC6412244 DOI: 10.3390/ijms20040994] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 02/08/2019] [Accepted: 02/10/2019] [Indexed: 12/29/2022] Open
Abstract
The therapeutic value of inhibiting translation of the amyloid precursor protein (APP) offers the possibility to reduce neurotoxic amyloid formation, particularly in cases of familial Alzheimer’s disease (AD) caused by APP gene duplications (Dup–APP) and in aging Down syndrome individuals. APP mRNA translation inhibitors such as the anticholinesterase phenserine, and high throughput screened molecules, selectively inhibited the uniquely folded iron-response element (IRE) sequences in the 5’untranslated region (5’UTR) of APP mRNA and this class of drug continues to be tested in a clinical trial as an anti-amyloid treatment for AD. By contrast, in younger age groups, APP expression is not associated with amyloidosis, instead it acts solely as a neuroprotectant while facilitating cellular ferroportin-dependent iron efflux. We have reported that the environmental metallotoxins Lead (Pb) and manganese (Mn) cause neuronal death by interfering with IRE dependent translation of APP and ferritin. The loss of these iron homeostatic neuroprotectants thereby caused an embargo of iron (Fe) export from neurons as associated with excess unstored intracellular iron and the formation of toxic reactive oxidative species (ROS). We propose that APP 5’UTR directed translation activators can be employed therapeutically to protect neurons exposed to high acute Pb and/or Mn exposure. Certainly, high potency APP translation activators, exemplified by the Food and Drug Administration (FDA) pre-approved M1 muscarinic agonist AF102B and high throughput-screened APP 5’UTR translation activators, are available for drug development to treat acute toxicity caused by Pb/Mn exposure to neurons. We conclude that APP translation activators can be predicted to prevent acute metal toxicity to neurons by a mechanism related to the 5’UTR specific yohimbine which binds and targets the canonical IRE RNA stem loop as an H-ferritin translation activator.
Collapse
|
12
|
Paouri E, Tzara O, Zenelak S, Georgopoulos S. Genetic Deletion of Tumor Necrosis Factor-α Attenuates Amyloid-β Production and Decreases Amyloid Plaque Formation and Glial Response in the 5XFAD Model of Alzheimer's Disease. J Alzheimers Dis 2018; 60:165-181. [PMID: 28826177 DOI: 10.3233/jad-170065] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Increasing evidence suggests that neuroinflammation comprises a major characteristic of Alzheimer's disease (AD). Tumor necrosis factor-α (TNF-α) is a pleiotropic pro-inflammatory cytokine implicated in neurodegenerative diseases including AD, and has been proposed as a potent therapeutic target for AD. Although a number of studies focusing on pharmacological or genetic manipulation of TNF-α and its receptors in AD mice have provided significant knowledge regarding the role of TNF-α signaling pathway in the pathogenesis of AD, the consequences of TNF-α genetic deletion have not been thoroughly examined. Here, we focused on the effect of TNF-α deficiency on the amyloid phenotype of 5XFAD mice. Our analysis revealed that amyloid deposition, amyloid-β (Aβ) levels, and AβPP-carboxyterminal fragments are significantly reduced in the brains of 5XFAD/TNF-α-/- mice compared to the 5XFAD/TNF-α+/+. We found decreased protein levels of β- and α-secretases in the 5XFAD/TNF-α-/- brains, suggesting for an effect of TNF-α on AβPP processing and Aβ generation. We also show for the first time that TNF-α affects PS1in vivo, as 5XFAD mice lacking TNF-α expression display reduced PS1-carboxyterminal fragments implying for diminished PS1 activity. Moreover, TNF-α deficiency decreases microglial and astrocytic activation and significantly restricts the phagocytic activity of macrophages against Aβ, supporting for reduced responsiveness of phagocytes toward Aβ. Overall, our results reveal that TNF-α genetic deletion in 5XFAD mice attenuates amyloid plaque formation by lowering Aβ generation through the reduction of functionally active PS1 and β-secretase rather than promoting Aβ clearance by phagocytic cells. Our data further suggest TNF-α inhibition as a therapeutic approach for AD.
Collapse
Affiliation(s)
- Evi Paouri
- Laboratory of Cellular Neurobiology, Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Ourania Tzara
- Laboratory of Cellular Neurobiology, Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Sofia Zenelak
- Laboratory of Cellular Neurobiology, Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Spiros Georgopoulos
- Laboratory of Cellular Neurobiology, Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| |
Collapse
|
13
|
Abstract
As a member of the A Disintegrin And Metalloproteinase (ADAM) family, ADAM10 has been identified as the constitutive α-secretase in the process of amyloid-β protein precursor (AβPP) cleavage and plays a critical role in reducing the generation of the amyloid-β (Aβ) peptides. Recent studies have demonstrated its beneficial role in alleviating the pathologic impairment in Alzheimer's disease (AD) both in vitro and in vivo. However, the role of ADAM10 in AD and the underlying molecular mechanisms are still not well established. Increasing evidence indicates that ADAM10 not only reduces the generation of Aβ but may also affect the pathology of AD through potential mechanisms including reducing tau pathology, maintaining normal synaptic functions, and promoting hippocampal neurogenesis and the homeostasis of neuronal networks. Mechanistically, ADAM10 regulates these functions by interacting with postsynaptic substrates in brain, especially synaptic cell receptors and adhesion molecules. Furthermore, ADAM10 protein in platelets seems to be a promising biomarker for AD diagnosis. This review will summarize the role of ADAM10 in AD and highlight its functions besides its role as the α-secretase in AβPP cleavage. Meanwhile, we will discuss the therapeutic potential of ADAM10 in treating AD.
Collapse
Affiliation(s)
- Xiang-Zhen Yuan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Sen Sun
- Qingdao Blood Center, Qingdao, China
| | - Chen-Chen Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| |
Collapse
|
14
|
Cai Z, Liu Z, Xiao M, Wang C, Tian F. Chronic Cerebral Hypoperfusion Promotes Amyloid-Beta Pathogenesis via Activating β/γ-Secretases. Neurochem Res 2017; 42:3446-3455. [DOI: 10.1007/s11064-017-2391-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/10/2017] [Accepted: 08/16/2017] [Indexed: 10/19/2022]
|
15
|
Pandey R, Rai V, Mishra J, Mandrah K, Kumar Roy S, Bandyopadhyay S. From the Cover: Arsenic Induces Hippocampal Neuronal Apoptosis and Cognitive Impairments via an Up-Regulated BMP2/Smad-Dependent Reduced BDNF/TrkB Signaling in Rats. Toxicol Sci 2017; 159:137-158. [DOI: 10.1093/toxsci/kfx124] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
16
|
Domingues C, Cruz e Silva OA, Henriques AG. Impact of Cytokines and Chemokines on Alzheimer's Disease Neuropathological Hallmarks. Curr Alzheimer Res 2017; 14:870-882. [PMID: 28317487 PMCID: PMC5543563 DOI: 10.2174/1567205014666170317113606] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 02/08/2017] [Accepted: 03/13/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common neurodegenerative disorder, neuropathologically characterized by aggregates of β-amyloid peptides, which deposit as senile plaques, and of TAU protein, which forms neurofibrillary tangles. It is now widely accepted that neuroinflammation is implicated in AD pathogenesis. METHOD Indeed, inflammatory mediators, such as cytokines and chemokines (chemotactic cytokines) can impact on the Alzheimer´s amyloid precursor protein by affecting its expression levels and amyloidogenic processing and/or β -amyloid aggregation. Additionally, cytokines and chemokines can influence kinases' activities, leading to abnormal TAU phosphorylation. To date there is no cure for AD, but several therapeutic strategies have been directed to prevent neuroinflammation. Anti-inflammatory, but also anti-amyloidogenic compounds, such as flavonoids were shown to favourably modulate some pathological events associated with neurodegeneration. CONCLUSION This review focuses on the role of cytokines and chemokines in AD-associated pathologies, and summarizes the potential anti-inflammatory therapeutic approaches aimed at preventing or slowing down disease progression.
Collapse
Affiliation(s)
- Catarina Domingues
- Neurosciences and Signalling Laboratory, Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193Aveiro, Portugal
| | - Odete A.B. Cruz e Silva
- Neurosciences and Signalling Laboratory, Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193Aveiro, Portugal
| | - Ana Gabriela Henriques
- Neurosciences and Signalling Laboratory, Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193Aveiro, Portugal
| |
Collapse
|
17
|
Tripathi S, Kushwaha R, Mishra J, Gupta MK, Kumar H, Sanyal S, Singh D, Sanyal S, Sahasrabuddhe AA, Kamthan M, Mudiam MKR, Bandyopadhyay S. Docosahexaenoic acid up-regulates both PI3K/AKT-dependent FABP7-PPARγ interaction and MKP3 that enhance GFAP in developing rat brain astrocytes. J Neurochem 2016; 140:96-113. [DOI: 10.1111/jnc.13879] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/24/2016] [Accepted: 10/20/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Sachin Tripathi
- Developmental Toxicology Laboratory; Systems Toxicology & Health Risk Assessment Group; CSIR-Indian Institute of Toxicology Research (IITR); Lucknow India
- Amity Institute of Biotechnology; Amity University (Lucknow campus); Lucknow India
| | - Rajesh Kushwaha
- Developmental Toxicology Laboratory; Systems Toxicology & Health Risk Assessment Group; CSIR-Indian Institute of Toxicology Research (IITR); Lucknow India
- Academy of Scientific and Innovative Research (AcSIR); CSIR-IITR campus; Lucknow India
| | - Juhi Mishra
- Developmental Toxicology Laboratory; Systems Toxicology & Health Risk Assessment Group; CSIR-Indian Institute of Toxicology Research (IITR); Lucknow India
- Babu Banarasi Das University; Lucknow India
| | - Manoj Kumar Gupta
- Academy of Scientific and Innovative Research (AcSIR); CSIR-IITR campus; Lucknow India
- Analytical Chemistry Laboratory and Regulatory Toxicology group; CSIR-IITR; Lucknow India
| | - Harish Kumar
- Division of Biochemistry; CSIR-Central Drug Research Institute (CDRI); Lucknow India
| | - Somali Sanyal
- Amity Institute of Biotechnology; Amity University (Lucknow campus); Lucknow India
| | | | - Sabyasachi Sanyal
- Division of Biochemistry; CSIR-Central Drug Research Institute (CDRI); Lucknow India
| | | | - Mohan Kamthan
- Environmental Biotechnology Laboratory; Environmental Toxicology Group; CSIR-IITR; Lucknow India
| | | | - Sanghamitra Bandyopadhyay
- Developmental Toxicology Laboratory; Systems Toxicology & Health Risk Assessment Group; CSIR-Indian Institute of Toxicology Research (IITR); Lucknow India
- Academy of Scientific and Innovative Research (AcSIR); CSIR-IITR campus; Lucknow India
| |
Collapse
|
18
|
O'Sullivan SA, Gasparini F, Mir AK, Dev KK. Fractalkine shedding is mediated by p38 and the ADAM10 protease under pro-inflammatory conditions in human astrocytes. J Neuroinflammation 2016; 13:189. [PMID: 27549131 PMCID: PMC4994207 DOI: 10.1186/s12974-016-0659-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 07/13/2016] [Indexed: 01/01/2023] Open
Abstract
Background The fractalkine (CX3CR1) ligand is expressed in astrocytes and reported to be neuroprotective. When cleaved from the membrane, soluble fractalkine (sCX3CL1) activates the receptor CX3CR1. Although somewhat controversial, CX3CR1 is reported to be expressed in neurons and microglia. The membrane-bound form of CX3CL1 additionally acts as an adhesion molecule for microglia and infiltrating white blood cells. Much research has been done on the role of fractalkine in neuronal cells; however, little is known about the regulation of the CX3CL1 ligand in astrocytes. Methods The mechanisms involved in the up-regulation and cleavage of CX3CL1 from human astrocytes were investigated using immunocytochemistry, Q-PCR and ELISA. All statistical analysis was performed using GraphPad Prism 5. Results A combination of ADAM17 (TACE) and ADAM10 protease inhibitors was found to attenuate IL-1β-, TNF-α- and IFN-γ-induced sCX3CL1 levels in astrocytes. A specific ADAM10 (but not ADAM17) inhibitor also attenuated these effects, suggesting ADAM10 proteases induce release of sCX3CL1 from stimulated human astrocytes. A p38 MAPK inhibitor also attenuated the levels of sCX3CL1 upon treatment with IL-1β, TNF-α or IFN-γ. In addition, an IKKβ inhibitor significantly reduced the levels of sCX3CL1 induced by IL-1β or TNF-α in a concentration-dependent manner, suggesting a role for the NF-kB pathway. Conclusions In conclusion, this study shows that the release of soluble astrocytic fractalkine is regulated by ADAM10 proteases with p38 MAPK also playing a role in the fractalkine shedding event. These findings are important for understanding the role of CX3CL1 in healthy and stimulated astrocytes and may benefit our understanding of this pathway in neuro-inflammatory and neurodegenerative diseases. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0659-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sinead A O'Sullivan
- Drug Development, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Fabrizio Gasparini
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Anis K Mir
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Kumlesh K Dev
- Drug Development, School of Medicine, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
19
|
Habib A, Sawmiller D, Tan J. Restoring Soluble Amyloid Precursor Protein α Functions as a Potential Treatment for Alzheimer's Disease. J Neurosci Res 2016; 95:973-991. [PMID: 27531392 DOI: 10.1002/jnr.23823] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 06/13/2016] [Accepted: 06/15/2016] [Indexed: 12/14/2022]
Abstract
Soluble amyloid precursor protein α (sAPPα), a secreted proteolytic fragment of nonamyloidogenic amyloid precursor protein (APP) processing, is known for numerous neuroprotective functions. These functions include but are not limited to proliferation, neuroprotection, synaptic plasticity, memory formation, neurogenesis, and neuritogenesis in cell culture and animal models. In addition, sAPPα influences amyloid-β (Aβ) production by direct modulation of APP β-secretase proteolysis as well as Aβ-related or unrelated tau pathology, hallmark pathologies of Alzheimer's disease (AD). Thus, the restoration of sAPPα levels and functions in the brain by increasing nonamyloidogenic APP processing and/or manipulation of its signaling could reduce AD pathology and cognitive impairment. It is likely that identification and characterization of sAPPα receptors in the brain, downstream effectors, and signaling pathways will pave the way for an attractive therapeutic target for AD prevention or intervention. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ahsan Habib
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Darrell Sawmiller
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Jun Tan
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
20
|
Ashok A, Rai NK, Raza W, Pandey R, Bandyopadhyay S. Chronic cerebral hypoperfusion-induced impairment of Aβ clearance requires HB-EGF-dependent sequential activation of HIF1α and MMP9. Neurobiol Dis 2016; 95:179-93. [PMID: 27431094 DOI: 10.1016/j.nbd.2016.07.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 07/07/2016] [Accepted: 07/13/2016] [Indexed: 01/25/2023] Open
Abstract
Chronic cerebral hypoperfusion (CCH) manifests Alzheimer's Disease (AD) neuropathology, marked by increased amyloid beta (Aβ). Besides, hypoxia stimulates Heparin-binding EGF-like growth factor (HB-EGF) mRNA expression in the hippocampus. However, involvement of HB-EGF in CCH-induced Aβ pathology remains unidentified. Here, using Bilateral Common Carotid Artery Occlusion mouse model, we explored the mechanism of HB-EGF regulated Aβ induction in CCH. We found that HB-EGF inhibition suppressed, while exogenous-HB-EGF triggered hippocampal Aβ, proving HB-EGF-dependent Aβ increase. We also detected that HB-EGF affected the expression of primary Aβ transporters, receptor for advanced glycation end-products (RAGE) and lipoprotein receptor-related protein-1 (LRP-1), indicating impaired Aβ clearance across the blood-brain barrier (BBB). An HB-EGF-dependent loss in BBB integrity supported impaired Aβ clearance. The effect of HB-EGF on Amyloid Precursor Protein pathway was relatively insignificant, suggesting a lesser effect on Aβ generation. Delving into BBB disruption mechanism demonstrated HB-EGF-mediated stimulation of Matrix metalloprotease-9 (MMP9), which affected BBB via HB-EGF-ectodomain shedding and epidermal growth factor receptor activation. Examining the intersection of HB-EGF-regulated pathway and hypoxia revealed HB-EGF-dependent increase in transcription factor, Hypoxia-inducible factor-1alpha (HIF1α). Further, via binding to hypoxia-responsive elements in MMP9 gene, HIF1α stimulated MMP9 expression, and therefore appeared as a prominent intermediary in HB-EGF-induced BBB damage. Overall, our study reveals the essential role of HB-EGF in triggering CCH-mediated Aβ accumulation. The proposed mechanism involves an HB-EGF-dependent HIF1α increase, generating MMP9 that stimulates soluble-HB-EGF/EGFR-induced BBB disintegration. Consequently, CCH-mediated hippocampal RAGE and LRP-1 deregulation together with BBB damage impair Aβ transport and clearance where HB-EGF plays a pivotal role.
Collapse
Affiliation(s)
- Anushruti Ashok
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR campus, Lucknow, India; Developmental Toxicology Laboratory, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Nagendra Kumar Rai
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR campus, Lucknow, India; Developmental Toxicology Laboratory, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Waseem Raza
- Developmental Toxicology Laboratory, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Rukmani Pandey
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR campus, Lucknow, India; Developmental Toxicology Laboratory, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Sanghamitra Bandyopadhyay
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR campus, Lucknow, India; Developmental Toxicology Laboratory, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India.
| |
Collapse
|
21
|
Qian M, Shen X, Wang H. The Distinct Role of ADAM17 in APP Proteolysis and Microglial Activation Related to Alzheimer's Disease. Cell Mol Neurobiol 2016; 36:471-82. [PMID: 26119306 PMCID: PMC11482503 DOI: 10.1007/s10571-015-0232-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/23/2015] [Indexed: 01/03/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease with the symptom of cognitive impairment. The deposition of amyloid β (Aβ) peptide is believed to be the primary cause to neuronal dystrophy and eventually dementia. Aβ is the proteolytic product from its precursor amyloid precursor protein (APP) by β- and γ- secretase. An optional cleavage by α-secretase happens inside the Aβ domain. ADAM17 is supposed to be the regulated α-secretase of APP. Enhanced activity of ADAM17 leads to the increasing secretion of neuroprotective soluble APP α fragment and reduction of Aβ generation, which may be benefit to the disease. ADAM17 is then considered the potential therapeutic target for AD. Microglia activation and neuroinflammation is another important event in AD pathogenesis. Interestingly, ADAM17 also participates in the cleavage of many other membrane-bound proteins, especially some inflammatory factors related to microglia activation. The facilitating role of ADAM17 in inflammation and further neuronal damage has also been illustrated. In results, the activation of ADAM17 as the solution to AD may be a tricky task. The comprehensive consideration and evaluation has to be carried out carefully before the final treatment. In the present review, the distinct role of ADAM17 in AD-related APP shedding and neuroinflammatory microglial activation will be carefully discussed.
Collapse
Affiliation(s)
- Meng Qian
- Key Lab of Inflammation and Immunoregulation, School of Medicine, Hangzhou Normal University, Xuelin Street 16, Hangzhou, 310036, China
| | - Xiaoqiang Shen
- Key Lab of Inflammation and Immunoregulation, School of Medicine, Hangzhou Normal University, Xuelin Street 16, Hangzhou, 310036, China
| | - Huanhuan Wang
- Key Lab of Inflammation and Immunoregulation, School of Medicine, Hangzhou Normal University, Xuelin Street 16, Hangzhou, 310036, China.
| |
Collapse
|
22
|
Vincent B. Regulation of the α-secretase ADAM10 at transcriptional, translational and post-translational levels. Brain Res Bull 2016; 126:154-169. [PMID: 27060611 DOI: 10.1016/j.brainresbull.2016.03.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/25/2016] [Accepted: 03/30/2016] [Indexed: 12/19/2022]
Abstract
A tremendous gain of interest in the biology of ADAM10 emerged during the past 15 years when it has first been shown that this protease was able to target the α-site of the β-amyloid precursor protein (βAPP) and later confirmed as the main physiological α-secretase activity. However, beside its well-established implication in the so-called non-amyloidogenic processing of βAPP and its probable protective role against Alzheimer's disease (AD), this metalloprotease also cleaves many other substrates, thereby being implicated in various physiological as well as pathological processes such as cancer and inflammation. Thus, in view of possible effective therapeutic interventions, a full comprehension of how ADAM10 is up and down regulated is required. This review discusses our current knowledge concerning the implication of this enzyme in AD as well as its more recently established roles in other brain disorders and provides a detailed up-date on its various transcriptional, translational and post-translational modulations.
Collapse
Affiliation(s)
- Bruno Vincent
- Mahidol University, Institute of Molecular Biosciences, Nakhon Pathom 73170, Thailand; Centre National de la Recherche Scientifique, 2 rue Michel Ange, 75016 Paris, France.
| |
Collapse
|
23
|
A. Lu M, Rajanala S, Mikkilineni SV, Cahill CM, Brown R, D. Berry J, Rogers JT. The 5’-Untranslated Region of the C9orf72 mRNA Exhibits a Phylogenetic Alignment to the Cis-Aconitase Iron-Responsive Element; Novel Therapies for Amytrophic Lateral Sclerosis. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/nm.2016.71003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Takaguri A, Morimoto M, Imai SI, Satoh K. Cilostazol inhibits interleukin-1-induced ADAM17 expression through cAMP independent signaling in vascular smooth muscle cells. Cell Biol Int 2015; 40:269-76. [PMID: 26514426 DOI: 10.1002/cbin.10559] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 10/28/2015] [Indexed: 02/05/2023]
Abstract
Increased A disintegrin and metalloprotease 17 (ADAM17) expression in vascular smooth muscle cells (VSMC) is implicated in the development of cardiovascular diseases including atherosclerosis and hypertension. Although cilostazol, type III phosphodiesterase (PDE III) inhibitor, has recently been found to inhibit VSMC proliferation, the mechanisms remain largely unclear. Here, we hypothesized that cilostazol regulates the ADAM17 expression in VSMC. In cultured VSMC, interleukin (IL)-1α and IL-1β significantly increased ADAM17 expression. MEK inhibitor U0126, NF-κB inhibitor BAY-11-7085, and siRNA targeting p65/RelA significantly inhibited IL-1α or IL-β-induced ADAM17 expression. Cilostazol significantly inhibited IL-1α or IL-1β-induced extracellular signal-regulated kinase (ERK) phosphorylation and ADAM17 expression. Unexpectedly, cilostamide, dibutryl cAMP, and forskolin did not affect IL-1-induced ADAM17 expression. Our results clearly demonstrated that IL-1 induces ADAM17 expression through ERK/NF-κB activation in VSMCs. Moreover, the inhibitory effects of cilostazol on IL-1-induced ADAM17 expression may be independent of the cAMP signaling pathway in VSMC. These novel findings may provide important clues to understanding the expression mechanisms of ADAM17 and the inhibitory mechanisms of cilostazol in VSMC proliferation.
Collapse
Affiliation(s)
- Akira Takaguri
- Department of Pharmacology, Hokkaido Pharmaceutical University School of Pharmacy, 7-15-4-1 Maeda, Teine-ku, Sapporo, 006-8590, Japan
| | - Mayumi Morimoto
- Department of Pharmacology, Hokkaido Pharmaceutical University School of Pharmacy, 7-15-4-1 Maeda, Teine-ku, Sapporo, 006-8590, Japan
| | - Shin-Ichi Imai
- Department of Pharmacology, Hokkaido Pharmaceutical University School of Pharmacy, 7-15-4-1 Maeda, Teine-ku, Sapporo, 006-8590, Japan
| | - Kumi Satoh
- Department of Pharmacology, Hokkaido Pharmaceutical University School of Pharmacy, 7-15-4-1 Maeda, Teine-ku, Sapporo, 006-8590, Japan
| |
Collapse
|
25
|
Diethyl maleate inhibits MCA+TPA transformed cell growth via modulation of GSH, MAPK, and cancer pathways. Chem Biol Interact 2014; 219:37-47. [DOI: 10.1016/j.cbi.2014.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 04/22/2014] [Accepted: 04/28/2014] [Indexed: 02/02/2023]
|
26
|
Maurya SK, Mishra J, Tripathi VK, Sharma R, Siddiqui MH. Cypermethrin induces astrocyte damage: role of aberrant Ca(2+), ROS, JNK, P38, matrix metalloproteinase 2 and migration related reelin protein. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2014; 111:51-59. [PMID: 24861934 DOI: 10.1016/j.pestbp.2014.03.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 03/25/2014] [Accepted: 03/31/2014] [Indexed: 06/03/2023]
Abstract
Cypermethrin is a synthetic type II pyrethroid, derived from a natural pyrethrin of the chrysanthemum plant. Cypermethrin-mediated neurotoxicity is well studied; however, relatively less is known of its effect on astrocyte development and migration. Astrocytes are the major components of blood brain barrier (BBB), and astrocyte damage along with BBB dysfunction impair the tight junction (TJ) proteins resulting in altered cell migration and neurodegeneration. Here, we studied the mechanism of cypermethin mediated rat astrocyte damage and BBB disruption, and determined any change in expression of proteins associated with cell migration. Through MTT assay we found that cypermethrin reduced viability of cultured rat astrocytes. Immunolabelling with astrocyte marker, glial fibrillary acidic protein, revealed alteration in astrocyte morphology. The astrocytes demonstrated an enhanced release of intracellular Ca(++) and ROS, and up-regulation in p-JNK and p-P38 levels in a time-dependent manner. Cypermethrin disrupted the BBB (in vivo) in developing rats and attenuated the expression of the extracellular matrix molecule (ECM) and claudin-5 in cultured astrocytes. We further observed an augmentation in the levels of matrix metalloproteinase 2 (MMP2), known to modulate cellular migration and disrupt the developmental ECM and BBB. We observed an increase in the levels of reelin, involved in cell migration, in cultured rat astrocytes. The reelin receptor, α3β1integrin, and a mammalian cytosolic protein Disabled1 (Dab1) were also up-regulated. Overall, our study demonstrates that cypermethrin induces astrocyte injury via modulation in Ca(++), ROS, JNK and P38 pathways, which may alter MMP expression and reelin dependent astrocyte migration during brain development.
Collapse
Affiliation(s)
- Shailendra Kumar Maurya
- Department of Biosciences, Integral University, Lucknow 226026, India; Developmental Toxicology Division, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226001, India.
| | - Juhi Mishra
- Developmental Toxicology Division, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226001, India
| | - Vinay Kumar Tripathi
- In vitro Toxicology Laboratory, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226001, India
| | - Rolee Sharma
- Department of Biosciences, Integral University, Lucknow 226026, India
| | | |
Collapse
|
27
|
Durand D, Carniglia L, Beauquis J, Caruso C, Saravia F, Lasaga M. Astroglial mGlu3 receptors promote alpha-secretase-mediated amyloid precursor protein cleavage. Neuropharmacology 2014; 79:180-9. [DOI: 10.1016/j.neuropharm.2013.11.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 09/26/2013] [Accepted: 11/20/2013] [Indexed: 12/21/2022]
|
28
|
Alzheimer's disease therapeutics targeted to the control of amyloid precursor protein translation: maintenance of brain iron homeostasis. Biochem Pharmacol 2014; 88:486-94. [PMID: 24513321 DOI: 10.1016/j.bcp.2014.01.032] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 01/16/2014] [Accepted: 01/22/2014] [Indexed: 11/20/2022]
Abstract
The neurotoxicity of amyloid beta (Aβ), a major cleavage product of the amyloid precursor protein (APP), is enhanced by iron, as found in the amyloid plaques of Alzheimer's disease (AD) patients. By contrast, the long-known neuroprotective activity of APP is evident after α-secretase cleavage of the precursor to release sAPPα, and depends on the iron export actions of APP itself. The latter underlie its neurotrophic and protective effects in facilitating the homeostatic actions of ferroportin mediated-iron export. Thus APP-dependent iron export may alleviate oxidative stress by minimizing labile iron thus protecting neurons from iron overload during stroke and hemorrhage. Consistent with this, altered phosphorylation of iron-regulatory protein-1 (IRP1) and its signaling processes play a critical role in modulating APP translation via the 5' untranslated region (5'UTR) of its transcript. The APP 5'UTR region encodes a functional iron-responsive element (IRE) RNA stem loop that represents a potential target for modulating APP production. Targeted regulation of APP gene expression via the modulation of 5'UTR sequence function represents a novel approach for the potential treatment of AD since altering APP translation can be used to improve both the protective brain iron balance and provide anti-amyloid efficacy. Approved drugs including paroxetine and desferrioxamine and several novel compounds have been identified that suppress abnormal metal-promoted Aβ accumulation with a subset of these acting via APP 5'UTR-dependent mechanisms to modulate APP translation and cleavage to generate the non-toxic sAPPα.
Collapse
|
29
|
An effector-reduced anti-β-amyloid (Aβ) antibody with unique aβ binding properties promotes neuroprotection and glial engulfment of Aβ. J Neurosci 2012; 32:9677-89. [PMID: 22787053 DOI: 10.1523/jneurosci.4742-11.2012] [Citation(s) in RCA: 224] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Passive immunization against β-amyloid (Aβ) has become an increasingly desirable strategy as a therapeutic treatment for Alzheimer's disease (AD). However, traditional passive immunization approaches carry the risk of Fcγ receptor-mediated overactivation of microglial cells, which may contribute to an inappropriate proinflammatory response leading to vasogenic edema and cerebral microhemorrhage. Here, we describe the generation of a humanized anti-Aβ monoclonal antibody of an IgG4 isotype, known as MABT5102A (MABT). An IgG4 subclass was selected to reduce the risk of Fcγ receptor-mediated overactivation of microglia. MABT bound with high affinity to multiple forms of Aβ, protected against Aβ1-42 oligomer-induced cytotoxicity, and increased uptake of neurotoxic Aβ oligomers by microglia. Furthermore, MABT-mediated amyloid plaque removal was demonstrated using in vivo live imaging in hAPP((V717I))/PS1 transgenic mice. When compared with a human IgG1 wild-type subclass, containing the same antigen-binding variable domains and with equal binding to Aβ, MABT showed reduced activation of stress-activated p38MAPK (p38 mitogen-activated protein kinase) in microglia and induced less release of the proinflammatory cytokine TNFα. We propose that a humanized IgG4 anti-Aβ antibody that takes advantage of a unique Aβ binding profile, while also possessing reduced effector function, may provide a safer therapeutic alternative for passive immunotherapy for AD. Data from a phase I clinical trial testing MABT is consistent with this hypothesis, showing no signs of vasogenic edema, even in ApoE4 carriers.
Collapse
|
30
|
Guo C, Wang T, Zheng W, Shan ZY, Teng WP, Wang ZY. Intranasal deferoxamine reverses iron-induced memory deficits and inhibits amyloidogenic APP processing in a transgenic mouse model of Alzheimer's disease. Neurobiol Aging 2012; 34:562-75. [PMID: 22717236 DOI: 10.1016/j.neurobiolaging.2012.05.009] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 04/24/2012] [Accepted: 05/20/2012] [Indexed: 01/19/2023]
Abstract
Increasing evidence indicates that a disturbance of normal iron homeostasis and an amyloid-β (Aβ)-iron interaction may contribute to the pathology of Alzheimer's disease (AD), whereas iron chelation could be an effective therapeutic intervention. In the present study, transgenic mice expressing amyloid precursor protein (APP) and presenilin 1 and watered with high-dose iron served as a model of AD. We evaluated the effects of intranasal administration of the high-affinity iron chelator deferoxamine (DFO) on Aβ neuropathology and spatial learning and memory deficits created in this AD model. The effects of Fe, DFO, and combined treatments were also evaluated in vitro using SHSY-5Y cells overexpressing the human APP Swedish mutation. In vivo, no significant differences in the brain concentrations of iron, copper, or zinc were found among the treatment groups. We found that high-dose iron (deionized water containing 10 mg/mL FeCl(3)) administered to transgenic mice increased protein expression and phosphorylation of APP695, enhanced amyloidogenic APP cleavage and Aβ deposition, and impaired spatial learning and memory. Chelation of iron via intranasal administration of DFO (200 mg/kg once every other day for 90 days) inhibited iron-induced amyloidogenic APP processing and reversed behavioral alterations. DFO treatment reduced the expression and phosphorylation of APP protein by shifting the processing of APP to the nonamyloidogenic pathway, and the reduction was accompanied by attenuating the Aβ burden, and then significantly promoted memory retention in APP/PS1 mice. The effects of DFO on iron-induced amyloidogenic APP cleavage were further confirmed in vitro. Collectively, the present data suggest that intranasal DFO treatment may be useful in AD, and amelioration of iron homeostasis is a potential strategy for prevention and treatment of this disease.
Collapse
Affiliation(s)
- Chuang Guo
- Department of Pathophysiology, China Medical University, Shenyang, China
| | | | | | | | | | | |
Collapse
|
31
|
Warren KM, Reeves TM, Phillips LL. MT5-MMP, ADAM-10, and N-cadherin act in concert to facilitate synapse reorganization after traumatic brain injury. J Neurotrauma 2012; 29:1922-40. [PMID: 22489706 DOI: 10.1089/neu.2012.2383] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Matrix metalloproteinases (MMPs) influence synaptic recovery following traumatic brain injury (TBI). Membrane type 5-matrix metalloproteinase (MT5-MMP) and a distintegrin and metalloproteinase-10 (ADAM-10) are membrane-bound MMPs that cleave N-cadherin, a protein critical to synapse stabilization. This study examined protein and mRNA expression of MT5-MMP, ADAM-10, and N-cadherin after TBI, contrasting adaptive and maladaptive synaptogenesis. The effect of MMP inhibition on MT5-MMP, ADAM-10, and N-cadherin was assessed during maladaptive plasticity and correlated with synaptic function. Rats were subjected to adaptive unilateral entorhinal cortical lesion (UEC) or maladaptive fluid percussion TBI+bilateral entorhinal cortical lesion (TBI+BEC). Hippocampal MT5-MMP and ADAM-10 protein was significantly elevated 2 and 7 days post-injury. At 15 days after UEC, each MMP returned to control level, while TBI+BEC ADAM-10 remained elevated. At 2 and 7 days, N-cadherin protein was below control. By the 15-day synapse stabilization phase, UEC N-cadherin rose above control, a shift not seen for TBI+BEC. At 7 days, increased TBI+BEC ADAM-10 transcript correlated with protein elevation. UEC ADAM-10 mRNA did not change, and no differences in MT5-MMP or N-cadherin mRNA were detected. Confocal imaging showed MT5-MMP, ADAM-10, and N-cadherin localization within reactive astrocytes. MMP inhibition attenuated ADAM-10 protein 15 days after TBI+BEC and increased N-cadherin. This inhibition partially restored long-term potentiation induction, but did not affect paired-pulse facilitation. Our results confirm time- and injury-dependent expression of MT5-MMP, ADAM-10, and N-cadherin during reactive synaptogenesis. Persistent ADAM-10 expression was correlated with attenuated N-cadherin level and reduced functional recovery. MMP inhibition shifted ADAM-10 and N-cadherin toward adaptive expression and improved synaptic function.
Collapse
Affiliation(s)
- Kelly M Warren
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA
| | | | | |
Collapse
|
32
|
Abstract
Obesity has various deleterious effects on health largely associated with metabolic abnormalities including abnormal glucose and lipid homeostasis that are associated with vascular injury and known cardiac, renal, and cerebrovascular complications. Advanced age is also associated with increased adiposity, decreased lean mass, and increased risk for obesity-related diseases. Although many of these obesity- and age-related disease processes have long been subsumed to be secondary to metabolic or vascular dysfunction, increasing evidence indicates that obesity also modulates nonvascular diseases such as Alzheimer's disease (AD) dementia. The link between peripheral obesity and neurodegeneration will be explored, using adipokines and AD as a template. After an introduction to the neuropathology of AD, the relationship between body weight, obesity, and dementia will be reviewed. Then, population-based and experimental studies that address whether leptin modulates brain health and mitigates AD pathways will be explored. These studies will serve as a framework for understanding the role of adipokines in brain health.
Collapse
Affiliation(s)
- Edward B Lee
- Translational Neuropathology Research Laboratory, Division of Neuropathology, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
33
|
Maurya SK, Rai A, Rai NK, Deshpande S, Jain R, Mudiam MKR, Prabhakar YS, Bandyopadhyay S. Cypermethrin Induces Astrocyte Apoptosis by the Disruption of the Autocrine/Paracrine Mode of Epidermal Growth Factor Receptor Signaling. Toxicol Sci 2011; 125:473-87. [DOI: 10.1093/toxsci/kfr303] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
34
|
Wang Y, Tang XC, Zhang HY. Huperzine A alleviates synaptic deficits and modulates amyloidogenic and nonamyloidogenic pathways in APPswe/PS1dE9 transgenic mice. J Neurosci Res 2011; 90:508-17. [PMID: 22002568 DOI: 10.1002/jnr.22775] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 07/11/2011] [Accepted: 07/26/2011] [Indexed: 12/17/2022]
Abstract
Huperzine A (HupA) is a potent acetylcholinesterase inhibitor (AChEI) used in the treatment of Alzheimer's disease (AD). Recently, HupA was shown to be active in modulating the nonamyloidogenic metabolism of β-amyloid precursor protein (APP) in APP-transfected human embryonic kidney cell line (HEK293swe). However, in vivo research concerning the mechanism of HupA in APP transgenic mice has not yet been fully elucidated. The present study indicates that the loss of dendritic spine density and synaptotagmin levels in the brain of APPswe/presenilin-1 (PS1) transgenic mice was significantly ameliorated by chronic HupA treatment and provides evidence that this neuroprotection was associated with reduced amyloid plaque burden and oligomeric β-amyloid (Aβ) levels in the cortex and hippocampus of APPswe/PS1dE9 transgenic mice. Our findings further demonstrate that the amelioration effect of HupA on Aβ deposits may be mediated, at least in part, by regulation of the compromised expression of a disintegrin and metalloprotease 10 (ADAM10) and excessive membrane trafficking of β-site APP cleavage enzyme 1 (BACE1) in these transgenic mice. In addition, extracellular signal-regulated kinases 1/2 (Erk1/2) phosphorylation may also be partially involved in the effect of HupA on APP processing. In conclusion, our work for the first time demonstrates the neuroprotective effect of HupA on synaptic deficits in APPswe/PS1dE9 transgenic mice and further clarifies the potential pharmacological targets for this protective effect, in which modulation of nonamyloidogenic and amyloidogenic APP processing pathways may be both involved. These findings may provide adequate evidence for the clinical and experimental benefits gained from HupA treatment.
Collapse
Affiliation(s)
- Ying Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | | | | |
Collapse
|
35
|
Bandyopadhyay S, Huang X, Lahiri DK, Rogers JT. Novel drug targets based on metallobiology of Alzheimer's disease. Expert Opin Ther Targets 2011; 14:1177-97. [PMID: 20942746 DOI: 10.1517/14728222.2010.525352] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
IMPORTANCE OF THE FIELD Increased localization of Zn, Fe, Cu and Al within the senile plaques (SP) exacerbates amyloid beta (Aβ)-mediated oxidative damage, and acts as catalyst for Aβ aggregation in Alzheimer's disease (AD). Thus, disruption of aberrant metal-peptide interactions via chelation therapy holds considerable promise as a rational therapeutic strategy against Alzheimer's amyloid pathogenesis. AREAS COVERED IN THIS REVIEW The complexities of metal-induced genesis of SP are reviewed. The recent advances in the molecular mechanism of action of metal chelating agents are discussed with critical assessment of their potential to become drugs. WHAT THE READER WILL GAIN Taking into consideration the interaction of metals with the metal-responsive elements on the Alzheimer's amyloid precursor protein (APP), readers will gain understanding of several points to bear in mind when developing a screening campaign for AD-therapeutics. TAKE HOME MESSAGE A functional iron-responsive element (IRE) RNA stem loop in the 5' untranslated region (UTR) of the APP transcript regulates neural APP translation. Desferrioxamine, clioquinol, tetrathiolmolybdate, dimercaptopropanol, VK-28, and natural antioxidants, such as curcumin and ginko biloba need critical evaluation as AD therapeutics. There is a necessity for novel screens (related to metallobiology) to identify therapeutics effective in AD.
Collapse
|
36
|
Kim T, Hinton DJ, Choi DS. Protein kinase C-regulated aβ production and clearance. Int J Alzheimers Dis 2011; 2011:857368. [PMID: 21274428 PMCID: PMC3026967 DOI: 10.4061/2011/857368] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 12/03/2010] [Accepted: 12/13/2010] [Indexed: 11/20/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia among the elderly population. AD, which is characterized as a disease of cognitive deficits, is mainly associated with an increase of amyloid β-peptide (Aβ) in the brain. A growing body of recent studies suggests that protein kinase C (PKC) promotes the production of the secretory form of amyloid precursor protein (sAPPα) via the activation of α-secretase activity, which reduces the accumulation of pathogenic Aβ levels in the brain. Moreover, activation of PKCα and mitogen-activated protein kinase (MAPK) is known to increase sAPPα. A novel type of PKC, PKCε, activates the Aβ degrading activity of endothelin converting enzyme type 1 (ECE-1), which might be mediated via the MAPK pathway as well. Furthermore, dysregulation of PKC-MAPK signaling is known to increase Aβ levels in the brain, which results in AD phenotypes. Here, we discuss roles of PKC in Aβ production and clearance and its implication in AD.
Collapse
Affiliation(s)
- Taehyun Kim
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | |
Collapse
|
37
|
Rai A, Maurya SK, Khare P, Srivastava A, Bandyopadhyay S. Characterization of developmental neurotoxicity of As, Cd, and Pb mixture: synergistic action of metal mixture in glial and neuronal functions. Toxicol Sci 2010; 118:586-601. [PMID: 20829427 DOI: 10.1093/toxsci/kfq266] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Neurotoxicity of individual metals is well investigated but that of metal mixture (MM), an environmental reality, in the developing brain is relatively obscure. We investigated the combinatorial effect of arsenic (As), cadmium (Cd), and lead (Pb) on rat brain development, spanning in utero to postnatal development. MM was administered by gavage to pregnant and lactating rats, and to postweaning pups till 2 months. The pups exhibited behavioral disturbances characterized by hyperlocomotion, increased grip strength, and learning-memory deficit. Disruption of the blood-brain barrier (BBB) was associated with dose-dependent increase in deposition of the metals in developing brain. Astrocytes were affected by MM treatment as evident from their reduced density, area, perimeter, compactness, and number of processes, and increased apoptosis in cerebral cortex and cerebellum. The metals induced synergistic reduction in glial fibrillary acidic protein (GFAP) expression during brain development; however, postweaning withdrawal of MM partially restored the levels of GFAP in adults. To characterize the toxic mechanism, we treated rat primary astrocytes with MM at concentrations ranging from lethal concentration (LC)(10) to LC(75) of the metals. We observed synergistic downregulation in viability and increase in apoptosis of the astrocytes, which were induced by proximal activation of extra cellular signal-regulated kinase (ERK) signaling and downstream activation of Jun N-terminal kinase (JNK) pathway. Furthermore, rise in intracellular calcium ion ([Ca(2+)](i)) and reactive oxygen species generation promoted apoptosis in the astrocytes. Taken together, these observations are the first to show that mixture of As, Cd, and Pb has the capacity to induce synergistic toxicity in astrocytes that may compromise the BBB and may cause behavioral dysfunction in developing rats.
Collapse
Affiliation(s)
- Asit Rai
- Developmental Toxicology Division, Indian Institute of Toxicology Research, Council of Scientific and Industrial Research, Lucknow 226001, India
| | | | | | | | | |
Collapse
|
38
|
Zheng W, Xin N, Chi ZH, Zhao BL, Zhang J, Li JY, Wang ZY. Divalent metal transporter 1 is involved in amyloid precursor protein processing and Aβ generation. FASEB J 2009; 23:4207-17. [DOI: 10.1096/fj.09-135749] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Wei Zheng
- Key Laboratory of Cell Biology Ministry of Public Health of China Laboratory of Cell Engineering and Cell Therapy China Medical University Shenyang China
| | - Na Xin
- Key Laboratory of Cell Biology Ministry of Public Health of China Laboratory of Cell Engineering and Cell Therapy China Medical University Shenyang China
| | - Zhi-Hong Chi
- Key Laboratory of Cell Biology Ministry of Public Health of China Laboratory of Cell Engineering and Cell Therapy China Medical University Shenyang China
| | - Bo-Lu Zhao
- State Key Laboratory of Brain and Cognitive Sciences Institute of Biophysics Academia Sinica Beijing China
| | - Jie Zhang
- State Key Laboratory of Brain and Cognitive Sciences Institute of Biophysics Academia Sinica Beijing China
| | - Jia-Yi Li
- Department of Experimental Medical Science Lund University Sweden
| | - Zhan-You Wang
- Key Laboratory of Cell Biology Ministry of Public Health of China Laboratory of Cell Engineering and Cell Therapy China Medical University Shenyang China
| |
Collapse
|
39
|
Cahill CM, Lahiri DK, Huang X, Rogers JT. Amyloid precursor protein and alpha synuclein translation, implications for iron and inflammation in neurodegenerative diseases. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1790:615-28. [PMID: 19166904 PMCID: PMC3981543 DOI: 10.1016/j.bbagen.2008.12.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 11/24/2008] [Accepted: 12/05/2008] [Indexed: 12/19/2022]
Abstract
Recent studies that alleles in the hemochromatosis gene may accelerate the onset of Alzheimer's disease by five years have validated interest in the model in which metals (particularly iron) accelerate disease course. Biochemical and biophysical measurements demonstrated the presence of elevated levels of neurotoxic copper zinc and iron in the brains of AD patients. Intracellular levels of APP holoprotein were shown to be modulated by iron by a mechanism that is similar to the translation control of the ferritin L- and H mRNAs by iron-responsive element (IRE) RNA stem loops in their 5' untranslated regions (5'UTRs). More recently a putative IRE-like sequence was hypothesized present in the Parkinsons's alpha synuclein (ASYN) transcript (see [A.L. Friedlich, R.E. Tanzi, J.T. Rogers, The 5'-untranslated region of Parkinson's disease alpha-synuclein messenger RNA contains a predicted iron responsive element, Mol. Psychiatry 12 (2007) 222-223. [6]]). Together with the demonstration of metal dependent translation of APP mRNA, the involvement of metals in the plaque of AD patients and of increased iron in striatal neurons in the substantia nigra (SN) of Parkinson's disease patients have stimulated the development of metal attenuating agents and iron chelators as a major new therapeutic strategy for the treatment of these neurodegenerative diseases. In the case of AD, metal based therapeutics may ultimately prove more cost effective than the use of an amyloid vaccine as the preferred anti-amyloid therapeutic strategy to ameliorate the cognitive decline of AD patients.
Collapse
Affiliation(s)
- Catherine M Cahill
- Neurochemistry Laboratory, Department of Psychiatry-Neuroscience, Massachusetts General Hospital (East), Harvard Medical School, CNY2, Building 149, Charlestown, MA 02129, USA
| | | | | | | |
Collapse
|
40
|
Murphy G. Regulation of the proteolytic disintegrin metalloproteinases, the ‘Sheddases’. Semin Cell Dev Biol 2009; 20:138-45. [DOI: 10.1016/j.semcdb.2008.09.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 09/12/2008] [Accepted: 09/15/2008] [Indexed: 10/21/2022]
|
41
|
Iron and the translation of the amyloid precursor protein (APP) and ferritin mRNAs: riboregulation against neural oxidative damage in Alzheimer's disease. Biochem Soc Trans 2009; 36:1282-7. [PMID: 19021541 DOI: 10.1042/bst0361282] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The essential metals iron, zinc and copper deposit near the Abeta (amyloid beta-peptide) plaques in the brain cortex of AD (Alzheimer's disease) patients. Plaque-associated iron and zinc are in neurotoxic excess at 1 mM concentrations. APP (amyloid precursor protein) is a single transmembrane metalloprotein cleaved to generate the 40-42-amino-acid Abetas, which exhibit metal-catalysed neurotoxicity. In health, ubiquitous APP is cleaved in a non-amyloidogenic pathway within its Abeta domain to release the neuroprotective APP ectodomain, APP(s). To adapt and counteract metal-catalysed oxidative stress, as during reperfusion from stroke, iron and cytokines induce the translation of both APP and ferritin (an iron storage protein) by similar mechanisms. We reported that APP was regulated at the translational level by active IL (interleukin)-1 (IL-1-responsive acute box) and IRE (iron-responsive element) RNA stem-loops in the 5' untranslated region of APP mRNA. The APP IRE is homologous with the canonical IRE RNA stem-loop that binds the iron regulatory proteins (IRP1 and IRP2) to control intracellular iron homoeostasis by modulating ferritin mRNA translation and transferrin receptor mRNA stability. The APP IRE interacts with IRP1 (cytoplasmic cis-aconitase), whereas the canonical H-ferritin IRE RNA stem-loop binds to IRP2 in neural cell lines, and in human brain cortex tissue and in human blood lysates. The same constellation of RNA-binding proteins [IRP1/IRP2/poly(C) binding protein] control ferritin and APP translation with implications for the biology of metals in AD.
Collapse
|
42
|
Lee JW, Lee YK, Yuk DY, Choi DY, Ban SB, Oh KW, Hong JT. Neuro-inflammation induced by lipopolysaccharide causes cognitive impairment through enhancement of beta-amyloid generation. J Neuroinflammation 2008; 5:37. [PMID: 18759972 PMCID: PMC2556656 DOI: 10.1186/1742-2094-5-37] [Citation(s) in RCA: 587] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2008] [Accepted: 08/29/2008] [Indexed: 12/25/2022] Open
Abstract
Background Alzheimer's disease (AD) is characterized by extensive loss of neurons in the brain of AD patients. Intracellular accumulation of beta-amyloid peptide (Aβ) has also shown to occur in AD. Neuro-inflammation has been known to play a role in the pathogenesis of AD. Methods In this study, we investigated neuro-inflammation and amyloidogenesis and memory impairment following the systemic inflammation generated by lipopolysaccharide (LPS) using immunohistochemistry, ELISA, behavioral tests and Western blotting. Results Intraperitoneal injection of LPS, (250 μg/kg) induced memory impairment determined by passive avoidance and water maze tests in mice. Repeated injection of LPS (250 μg/kg, 3 or 7 times) resulted in an accumulation of Aβ1–42 in the hippocampus and cerebralcortex of mice brains through increased β- and γ-secretase activities accompanied with the increased expression of amyloid precursor protein (APP), 99-residue carboxy-terminal fragment of APP (C99) and generation of Aβ1–42 as well as activation of astrocytes in vivo. 3 weeks of pretreatment of sulindac sulfide (3.75 and 7.5 mg/kg, orally), an anti-inflammatory agent, suppressed the LPS-induced amyloidogenesis, memory dysfunction as well as neuronal cell death in vivo. Sulindac sulfide (12.5–50 μM) also suppressed LPS (1 μg/ml)-induced amyloidogenesis in cultured neurons and astrocytes in vitro. Conclusion This study suggests that neuro-inflammatory reaction could contribute to AD pathology, and anti-inflammatory agent could be useful for the prevention of AD.
Collapse
Affiliation(s)
- Jae Woong Lee
- College of Pharmacy and CBITRC, Chungbuk National University 12, Cheongju, Chungbuk, Korea.
| | | | | | | | | | | | | |
Collapse
|
43
|
Sastre M, Walter J, Gentleman SM. Interactions between APP secretases and inflammatory mediators. J Neuroinflammation 2008; 5:25. [PMID: 18564425 PMCID: PMC2442055 DOI: 10.1186/1742-2094-5-25] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 06/18/2008] [Indexed: 02/08/2023] Open
Abstract
There is now a large body of evidence linking inflammation to Alzheimer's disease (AD). This association manifests itself neuropathologically in the presence of activated microglia and astrocytes around neuritic plaques and increased levels of inflammatory mediators in the brains of AD patients. It is considered that amyloid-β peptide (Aβ), which is derived from the processing of the longer amyloid precursor protein (APP), could be the most important stimulator of this response, and therefore determining the role of the different secretases involved in its generation is essential for a better understanding of the regulation of inflammation in AD. The finding that certain non-steroidal anti-inflammatory drugs (NSAIDs) can affect the processing of APP by inhibiting β- and γ-secretases, together with recent revelations that these enzymes may be regulated by inflammation, suggest that they could be an interesting target for anti-inflammatory drugs. In this review we will discuss some of these issues and the role of the secretases in inflammation, independent of their effect on Aβ formation.
Collapse
Affiliation(s)
- Magdalena Sastre
- Division of Neuroscience and Mental Health, Imperial College London, The Hammersmith Hospital, Du cane Road, London W12 0NN, UK.
| | | | | |
Collapse
|
44
|
Owen CA. Leukocyte cell surface proteinases: regulation of expression, functions, and mechanisms of surface localization. Int J Biochem Cell Biol 2008; 40:1246-72. [PMID: 18329945 PMCID: PMC2425676 DOI: 10.1016/j.biocel.2008.01.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 01/15/2008] [Accepted: 01/15/2008] [Indexed: 12/11/2022]
Abstract
A number of proteinases are expressed on the surface of leukocytes including members of the serine, metallo-, and cysteine proteinase superfamilies. Some proteinases are anchored to the plasma membrane of leukocytes by a transmembrane domain or a glycosyl phosphatidyl inositol (GPI) anchor. Other proteinases bind with high affinity to classical receptors, or with lower affinity to integrins, proteoglycans, or other leukocyte surface molecules. Leukocyte surface levels of proteinases are regulated by: (1) cytokines, chemokines, bacterial products, and growth factors which stimulate synthesis and/or release of proteinases by cells; (2) the availability of surface binding sites for proteinases; and/or (3) internalization or shedding of surface-bound proteinases. The binding of proteinases to leukocyte surfaces serves many functions including: (1) concentrating the activity of proteinases to the immediate pericellular environment; (2) facilitating pro-enzyme activation; (3) increasing proteinase stability and retention in the extracellular space; (4) regulating leukocyte function by proteinases signaling through cell surface binding sites or other surface proteins; and (5) protecting proteinases from inhibition by extracellular proteinase inhibitors. There is strong evidence that membrane-associated proteinases on leukocytes play critical roles in wound healing, inflammation, extracellular matrix remodeling, fibrinolysis, and coagulation. This review will outline the biology of membrane-associated proteinases expressed by leukocytes and their roles in physiologic and pathologic processes.
Collapse
Affiliation(s)
- Caroline A Owen
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, 905 Thorn Building, 75 Francis Street, Boston, MA 02115, United States.
| |
Collapse
|
45
|
Gavillet M, Allaman I, Magistretti PJ. Modulation of astrocytic metabolic phenotype by proinflammatory cytokines. Glia 2008; 56:975-89. [DOI: 10.1002/glia.20671] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
46
|
Tachida Y, Nakagawa K, Saito T, Saido TC, Honda T, Saito Y, Murayama S, Endo T, Sakaguchi G, Kato A, Kitazume S, Hashimoto Y. Interleukin-1 beta up-regulates TACE to enhance alpha-cleavage of APP in neurons: resulting decrease in Abeta production. J Neurochem 2007; 104:1387-93. [PMID: 18021299 DOI: 10.1111/j.1471-4159.2007.05127.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The proinflammatory cytokine interleukin (IL)-1beta is up-regulated in microglial cells surrounding amyloid plaques, leading to the hypothesis that IL-1beta is a risk factor for Alzheimer's disease. However, we unexpectedly found that IL-1beta significantly enhanced alpha-cleavage, indicated by increases in sAPPalpha and C83, but reduced beta-cleavage, indicated by decreases in sAPPbeta and Abeta40/42, in human neuroblastoma SK-N-SH cells. IL-1beta did not significantly alter the mRNA levels of BACE1, ADAM-9, and ADAM-10, but up-regulated that of TACE by threefold. The proform and mature form of TACE protein were also significantly up-regulated. A TACE inhibitor (TAPI-2) concomitantly reversed the IL-1beta-dependent increase in sAPPalpha and decrease in sAPPbeta, suggesting that APP consumption in the alpha-cleavage pathway reduced its consumption in the beta-cleavage pathway. IL-1Ra, a physiological antagonist for the IL-1 receptor, reversed the effects of IL-1beta, suggesting that the IL-1beta-dependent up-regulation of alpha-cleavage is mediated by the IL-1 receptor. IL-1beta also induced this concomitant increase in alpha-cleavage and decrease in beta-cleavage in mouse primary cultured neurons. Taken together we conclude that IL-1beta is an anti-amyloidogenic factor, and that enhancement of its signaling or inhibition of IL-1Ra activity could represent potential therapeutic strategies against Alzheimer's disease.
Collapse
Affiliation(s)
- Yuriko Tachida
- Glyco-chain Functions Laboratory, Supra-biomolecular System Group, Frontier Research System, The Institute of Physical and Chemical Research (RIKEN), Saitama, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|