1
|
Takada Y, Yasuda S, Sumioka T, Okada Y, Tamura T, Yamanaka O, Saika S. Effects of Ripasudil Hydrochloride on Epithelial Repair in a Mouse Cornea. Curr Eye Res 2024; 49:1215-1222. [PMID: 39034645 DOI: 10.1080/02713683.2024.2378018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/03/2024] [Indexed: 07/23/2024]
Abstract
PURPOSE Effect of topical administration of a Rho kinase inhibitor, ripasudil, on epithelial wound healing in a mouse cornea was investigated. Effects of treatment of cultured human corneal epithelial cell (HCEC) line and organ-cultured corneal epithelium with ripasudil on expression of p-ERK was also examined. METHODS Epithelial defects with a diameter of 2.0 mm were prepared in the central corneas of C57BL/6 mice with or without 1-week travoprost pre-treatment, to which ripasudil or PBS as a control was instilled every 6 h immediately after preparation. The mice eyes were cultured with or without travoprost for 24-hrs. The expression levels of p-ERK in epithelium of mice eyes were compared by immunostaining after further 24-hrs culture with or without ripasudil for 24-hrs. HCEC were cultured with or without ripasudil and processed for examination for proliferation activity and protein expression of p-ERK by either immunostaining or Western blotting. The cells were also treated with or without travoprost for 24-hrs, and were further cultured with or without ripasudil. Expression levels of p-ERK were examined by Western blotting. RESULTS Ripasudil treatment suppressed post-debridement epithelial healing in association with reduced proliferation activity in peripheral (limbal) epithelium in cornea with or without pre-treatment with travoprost. Ripasudil treatment accelerated p-ERK expression. Ripasudil supplementation upregulated proliferation with increased p-ERK in HCEC. CONCLUSION Ripasudil treatment promotes wound healing of the mouse corneal epithelium by enhancing cell proliferation on peripheral (limbal) epithelium.
Collapse
Affiliation(s)
- Yukihisa Takada
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama, Japan
| | - Shingo Yasuda
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama, Japan
| | - Takayoshi Sumioka
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama, Japan
| | - Yuka Okada
- Department of Ophthalmology, Kihoku Hospital, Wakayama Medical University School of Medicine, Wakayama, Japan
| | - Tadahiko Tamura
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama, Japan
| | - Osamu Yamanaka
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama, Japan
| | - Shizuya Saika
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama, Japan
| |
Collapse
|
2
|
Raman-Nair J, Cron G, MacLeod K, Lacoste B. Sex-Specific Acute Cerebrovascular Responses to Photothrombotic Stroke in Mice. eNeuro 2024; 11:ENEURO.0400-22.2023. [PMID: 38164600 PMCID: PMC10849032 DOI: 10.1523/eneuro.0400-22.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/11/2023] [Accepted: 11/25/2023] [Indexed: 01/03/2024] Open
Abstract
Mechanisms underlying cerebrovascular stroke outcomes are poorly understood, and the effects of biological sex on cerebrovascular regulation post-stroke have yet to be fully comprehended. Here, we explore the overlapping roles of gonadal sex hormones and rho-kinase (ROCK), two important modulators of cerebrovascular tone, on the acute cerebrovascular response to photothrombotic (PT) focal ischemia in mice. Male mice were gonadectomized and female mice were ovariectomized to remove gonadal hormones, whereas control ("intact") animals received a sham surgery prior to stroke induction. Intact wild-type (WT) males showed a delayed drop in cerebral blood flow (CBF) compared with intact WT females, whereby maximal CBF drop was observed 48 h following stroke. Gonadectomy in males did not alter this response. However, ovariectomy in WT females produced a "male-like" phenotype. Intact Rock2+/- males also showed the same phenotypic response, which was not altered by gonadectomy. Alternatively, intact Rock2+/- females showed a significant difference in CBF values compared with intact WT females, displaying higher CBF values immediately post-stroke and showing a maximal CBF drop 48 h post-stroke. This pattern was not altered by ovariectomy. Altogether, these data illustrate sex differences in acute CBF responses to PT stroke, which seem to involve gonadal female sex hormones and ROCK2. Overall, this study provides a framework for exploring sex differences in acute CBF responses to focal ischemic stroke in mice.
Collapse
Affiliation(s)
- Joanna Raman-Nair
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Gregory Cron
- Neurology Department, Stanford University, Stanford 94305, California
| | - Kathleen MacLeod
- Pharmaceutical Sciences, University of British Colombia, Vancouver V6T 1Z3, British Columbia, Canada
| | - Baptiste Lacoste
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
3
|
Chen B, Jin W. A comprehensive review of stroke-related signaling pathways and treatment in western medicine and traditional Chinese medicine. Front Neurosci 2023; 17:1200061. [PMID: 37351420 PMCID: PMC10282194 DOI: 10.3389/fnins.2023.1200061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/19/2023] [Indexed: 06/24/2023] Open
Abstract
This review provides insight into the complex network of signaling pathways and mechanisms involved in stroke pathophysiology. It summarizes the historical progress of stroke-related signaling pathways, identifying potential interactions between them and emphasizing that stroke is a complex network disease. Of particular interest are the Hippo signaling pathway and ferroptosis signaling pathway, which remain understudied areas of research, and are therefore a focus of the review. The involvement of multiple signaling pathways, including Sonic Hedgehog (SHH), nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE), hypoxia-inducible factor-1α (HIF-1α), PI3K/AKT, JAK/STAT, and AMPK in pathophysiological mechanisms such as oxidative stress and apoptosis, highlights the complexity of stroke. The review also delves into the details of traditional Chinese medicine (TCM) therapies such as Rehmanniae and Astragalus, providing an analysis of the recent status of western medicine in the treatment of stroke and the advantages and disadvantages of TCM and western medicine in stroke treatment. The review proposes that since stroke is a network disease, TCM has the potential and advantages of a multi-target and multi-pathway mechanism of action in the treatment of stroke. Therefore, it is suggested that future research should explore more treasures of TCM and develop new therapies from the perspective of stroke as a network disease.
Collapse
Affiliation(s)
- Binhao Chen
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Weifeng Jin
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
4
|
Sato K, Nakagawa S, Morofuji Y, Matsunaga Y, Fujimoto T, Watanabe D, Izumo T, Niwa M, Walter FR, Vigh JP, Santa-Maria AR, Deli MA, Matsuo T. Effects of fasudil on blood-brain barrier integrity. Fluids Barriers CNS 2022; 19:43. [PMID: 35659272 PMCID: PMC9166508 DOI: 10.1186/s12987-022-00336-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 05/04/2022] [Indexed: 11/17/2022] Open
Abstract
Background Cerebral infarction accounts for 85% of all stroke cases. Even in an era of rapid and effective recanalization using an intravascular approach, the majority of patients have poor functional outcomes. Thus, there is an urgent need for the development of therapeutic agents to treat acute ischemic stroke. We evaluated the effect of fasudil, a Rho kinase inhibitor, on blood brain barrier (BBB) functions under normoxia or oxygen–glucose deprivation (OGD) conditions using a primary cell-based in vitro BBB model. Methods BBB models from rat primary cultures (brain capillary endothelial cells, astrocytes, and pericytes) were subjected to either normoxia or 6 h OGD/24 h reoxygenation. To assess the effects of fasudil on BBB functions, we evaluated real time impedance, transendothelial electrical resistance (TEER), sodium fluorescein permeability, and tight junction protein expression using western blotting. Lastly, to understand the observed protective mechanism on BBB functions by fasudil we examined the role of cyclooxygenase-2 and thromboxane A2 receptor agonist U-46619 in BBB-forming cells. Results We found that treatment with 0.3–30 µM of fasudil increased cellular impedance. Fasudil enhanced barrier properties in a concentration-dependent manner, as measured by an increased (TEER) and decreased permeability. Fasudil also increased the expression of tight junction protein claudin-5. Reductions in TEER and increased permeability were observed after OGD/reoxygenation exposure in mono- and co-culture models. The improvement in BBB integrity by fasudil was confirmed in both of the models, but was significantly higher in the co-culture than in the monoculture model. Treatment with U-46619 did not show significant changes in TEER in the monoculture model, whereas it showed a significant reduction in TEER in the co-culture model. Fasudil significantly improved the U-46619-induced TEER reduction in the co-culture models. Pericytes and astrocytes have opposite effects on endothelial cells and may contribute to endothelial injury in hyperacute ischemic stroke. Overall, fasudil protects the integrity of BBB both by a direct protective effect on endothelial cells and by a pathway mediated via pericytes and astrocytes. Conclusions Our findings suggest that fasudil is a BBB-protective agent against acute ischemic stroke. Supplementary Information The online version contains supplementary material available at 10.1186/s12987-022-00336-w.
Collapse
Affiliation(s)
- Kei Sato
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Shinsuke Nakagawa
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Yoichi Morofuji
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan.
| | - Yuki Matsunaga
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Takashi Fujimoto
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Daisuke Watanabe
- BBB Laboratory, PharmaCo-Cell Company Ltd, Nagasaki, 852-8135, Japan
| | - Tsuyoshi Izumo
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Masami Niwa
- BBB Laboratory, PharmaCo-Cell Company Ltd, Nagasaki, 852-8135, Japan
| | - Fruzsina R Walter
- Biological Barriers Research Group, Institute of Biophysics, Biological Research Centre, Szeged, 6726, Hungary
| | - Judit P Vigh
- Biological Barriers Research Group, Institute of Biophysics, Biological Research Centre, Szeged, 6726, Hungary
| | - Ana Raquel Santa-Maria
- Biological Barriers Research Group, Institute of Biophysics, Biological Research Centre, Szeged, 6726, Hungary.,Wyss Institute for Biologically Inspired Engineering at Harvard University, 3 Blackfan Circle, Boston, MA, 02115, USA
| | - Maria A Deli
- Biological Barriers Research Group, Institute of Biophysics, Biological Research Centre, Szeged, 6726, Hungary
| | - Takayuki Matsuo
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| |
Collapse
|
5
|
Kimura T, Horikoshi Y, Kuriyagawa C, Niiyama Y. Rho/ROCK Pathway and Noncoding RNAs: Implications in Ischemic Stroke and Spinal Cord Injury. Int J Mol Sci 2021; 22:ijms222111573. [PMID: 34769004 PMCID: PMC8584200 DOI: 10.3390/ijms222111573] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/21/2021] [Accepted: 10/24/2021] [Indexed: 01/18/2023] Open
Abstract
Ischemic strokes (IS) and spinal cord injuries (SCI) are major causes of disability. RhoA is a small GTPase protein that activates a downstream effector, ROCK. The up-regulation of the RhoA/ROCK pathway contributes to neuronal apoptosis, neuroinflammation, blood-brain barrier dysfunction, astrogliosis, and axon growth inhibition in IS and SCI. Noncoding RNAs (ncRNAs), such as microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), were previously considered to be non-functional. However, they have attracted much attention because they play an essential role in regulating gene expression in physiological and pathological conditions. There is growing evidence that ROCK inhibitors, such as fasudil and VX-210, can reduce injury in IS and SCI in animal models and clinical trials. Recently, it has been reported that miRNAs are decreased in IS and SCI, while lncRNAs are increased. Inhibiting the Rho/ROCK pathway with miRNAs alleviates apoptosis, neuroinflammation, oxidative stress, and axon growth inhibition in IS and SCI. Further studies are required to explore the significance of ncRNAs in IS and SCI and to establish new strategies for preventing and treating these devastating diseases.
Collapse
Affiliation(s)
- Tetsu Kimura
- Correspondence: ; Tel.: +81-18-884-6175; Fax: +81-18-884-6448
| | | | | | | |
Collapse
|
6
|
Zhou D, Cen K, Liu W, Liu F, Liu R, Sun Y, Zhao Y, Chang J, Zhu L. Xuesaitong exerts long-term neuroprotection for stroke recovery by inhibiting the ROCKII pathway, in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2021; 272:113943. [PMID: 33617967 DOI: 10.1016/j.jep.2021.113943] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/17/2021] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xuesaitong (XST) is a traditional Chinese medicine injection with neuroprotective properties and has been extensively used to treat stroke for many years. The main component of XST is Panax notoginseng saponins (PNS), which is the main extract of the Chinese herbal medicine Panax notoginseng. AIM OF THE STUDY In this study, we investigated whether XST provided long-term neuroprotection by inhibiting neurite outgrowth inhibitor-A (Nogo-A) and the ROCKII pathway in experimental rats after middle cerebral artery occlusion (MCAO) and in SH-SY5Y cells exposed to oxygen-glucose deprivation/reperfusion (OGD/R). MATERIALS AND METHODS Rats with permanent MCAO were administered XST, Y27632, XST plus Y27632, and nimodipine for 14 and 28 days. Successful MCAO onset was confirmed by 2,3,5-triphenyl tetrazolium chloride (TTC) staining. Neurological deficit score (NDS) was used to assess neurological impairment. Hematoxylin-eosin (HE) staining and immunohistochemical (IHC) analysis of synaptophysin (SYN) and postsynaptic density protein-95 (PSD-95) were performed to evaluate cerebral ischemic injury and the neuroprotective capability of XST. Nogo-A levels and the ROCKII pathway were detected by IHC analysis, western blotting, and quantitative real-time polymerase chain reaction (qRT-PCR) to explore the protective mechanism of XST. OGD/R model was established in SH-SY5Y cells. Cell counting kit 8 (CCK8) was applied to detect the optimum OGD time and XST concentration. The expression levels Nogo-A and ROCKII pathway were determined using western blotting. RESULTS Our results showed that XST reduced neurological dysfunction and pathological damage, promoted weight gain and synaptic regeneration, reduced Nogo-A mRNA and protein levels, and inhibited the ROCKII pathway in MCAO rats. CCK8 assay displayed that the optimal OGD time and optimal XST concentration were 7 h and 20 μg/mL respectively in SH-SY5Y cells. XST could evidently inhibit OGD/R-induced Nogo-A protein expression and ROCKII pathway activation in SH-SY5Y cells. CONCLUSIONS The present study suggested that XST exerted long-term neuroprotective effects that assisted in stroke recovery, possibly through inhibition of the ROCKII pathway.
Collapse
Affiliation(s)
- Dongrui Zhou
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, 100700, Beijing, China.
| | - Kai Cen
- Department of Stomatology, Dongzhimen Hospital, Beijing University of Chinese Medicine, 100700, Beijing, China.
| | - Wei Liu
- Department of Rehabilitation, Beijing Children's Hospital, Capital Medical University, 100045, Beijing, China.
| | - Fengzhi Liu
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, 100700, Beijing, China.
| | - Ruijia Liu
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, 100700, Beijing, China.
| | - Yikun Sun
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, 100700, Beijing, China.
| | - Yizhou Zhao
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, 100700, Beijing, China.
| | - Jingling Chang
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, 100700, Beijing, China.
| | - Lingqun Zhu
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, 100700, Beijing, China; Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, 100700, Beijing, China.
| |
Collapse
|
7
|
CREB Coactivator CRTC2 Plays a Crucial Role in Endothelial Function. J Neurosci 2020; 40:9533-9546. [PMID: 33127851 DOI: 10.1523/jneurosci.0407-20.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 11/21/2022] Open
Abstract
The cAMP pathway is known to stabilize endothelial barrier function and maintain vascular physiology. The family of cAMP-response element binding (CREB)-regulated transcription coactivators (CRTC)1-3 activate transcription by targeting the basic leucine zipper domain of CREB. CRTC2 is a master regulator of glucose metabolism in liver and adipose tissue. However, the role of CRTC2 in endothelium remains unknown. The aim of this study was to evaluate the effect of CRTC2 on endothelial function. We focused the effect of CRTC2 in endothelial cells and its relationship with p190RhoGAP-A. We examined the effect of CRTC2 on endothelial function using a mouse aorta ring assay ex vivo and with photothrombotic stroke in endothelial cell-specific CRTC2-knock-out male mice in vivo CRTC2 was highly expressed in endothelial cells and related to angiogenesis. Among CRTC1-3, only CRTC2 was activated under ischemic conditions at endothelial cells, and CRTC2 maintained endothelial barrier function through p190RhoGAP-A expression. Ser171 was a pivotal regulatory site for CRTC2 intracellular localization, and Ser307 functioned as a crucial phosphorylation site. Endothelial cell-specific CRTC2-knock-out mice showed reduced angiogenesis ex vivo, exacerbated stroke via endothelial dysfunction, and impaired neurologic recovery via reduced vascular beds in vivo These findings suggest that CRTC2 plays a crucial protective role in vascular integrity of the endothelium via p190RhoGAP-A under ischemic conditions.SIGNIFICANCE STATEMENT Previously, the role of CRTC2 in endothelial cells was unknown. In this study, we firstly clarified that CRTC2 was expressed in endothelial cells and among CRTC1-3, only CRTC2 was related to endothelial function. Most importantly, only CRTC2 was activated under ischemic conditions at endothelial cells and maintained endothelial barrier function through p190RhoGAP-A expression. Ser307 in CRTC2 functioned as a crucial phosphorylation site. Endothelial cell-specific CRTC2-knock-out mice showed reduced angiogenesis ex vivo, exacerbated stroke via endothelial dysfunction, and impaired neurologic recovery via reduced vascular beds in vivo These results suggested that CRTC2 maybe a potential therapeutic target for reducing blood-brain barrier (BBB) damage and improving recovery.
Collapse
|
8
|
Zera KA, Buckwalter MS. The Local and Peripheral Immune Responses to Stroke: Implications for Therapeutic Development. Neurotherapeutics 2020; 17:414-435. [PMID: 32193840 PMCID: PMC7283378 DOI: 10.1007/s13311-020-00844-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The immune response to stroke is an exciting target for future stroke therapies. Stroke is a leading cause of morbidity and mortality worldwide, and clot removal (mechanical or pharmacological) to achieve tissue reperfusion is the only therapy currently approved for patient use. Due to a short therapeutic window and incomplete effectiveness, however, many patients are left with infarcted tissue that stimulates inflammation. Although this is critical to promote repair, it can also damage surrounding healthy brain tissue. In addition, acute immunodepression and subsequent infections are common and are associated with worse patient outcomes. Thus, the acute immune response is a major focus of researchers attempting to identify ways to amplify its benefits and suppress its negative effects to improve short-term recovery of patients. Here we review what is known about this powerful process. This includes the role of brain resident cells such as microglia, peripherally activated cells such as macrophages and neutrophils, and activated endothelium. The role of systemic immune activation and subsequent immunodepression in the days after stroke is also discussed, as is the chronic immune responses and its effects on cognitive function. The biphasic role of inflammation, as well as complex timelines of cell production, differentiation, and trafficking, suggests that the relationship between the acute and chronic phases of stroke recovery is complex. Gaining a more complete understanding of this intricate process by which inflammation is initiated, propagated, and terminated may potentially lead to therapeutics that can treat a larger population of stroke patients than what is currently available. The immune response plays a critical role in patient recovery in both the acute and chronic phases after stroke. In patients, the immune response can be beneficial by promoting repair and recovery, and also detrimental by propagating a pro-inflammatory microenvironment. Thus, it is critical to understand the mechanisms of immune activation following stroke in order to successfully design therapeutics.
Collapse
Affiliation(s)
- Kristy A Zera
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Marion S Buckwalter
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
- Department of Neurosurgery, Stanford Univeristy School of Medicine, Stanford, CA, USA.
| |
Collapse
|
9
|
Ng SY, Lee AYW. Traumatic Brain Injuries: Pathophysiology and Potential Therapeutic Targets. Front Cell Neurosci 2019; 13:528. [PMID: 31827423 PMCID: PMC6890857 DOI: 10.3389/fncel.2019.00528] [Citation(s) in RCA: 439] [Impact Index Per Article: 73.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injury (TBI) remains one of the leading causes of morbidity and mortality amongst civilians and military personnel globally. Despite advances in our knowledge of the complex pathophysiology of TBI, the underlying mechanisms are yet to be fully elucidated. While initial brain insult involves acute and irreversible primary damage to the parenchyma, the ensuing secondary brain injuries often progress slowly over months to years, hence providing a window for therapeutic interventions. To date, hallmark events during delayed secondary CNS damage include Wallerian degeneration of axons, mitochondrial dysfunction, excitotoxicity, oxidative stress and apoptotic cell death of neurons and glia. Extensive research has been directed to the identification of druggable targets associated with these processes. Furthermore, tremendous effort has been put forth to improve the bioavailability of therapeutics to CNS by devising strategies for efficient, specific and controlled delivery of bioactive agents to cellular targets. Here, we give an overview of the pathophysiology of TBI and the underlying molecular mechanisms, followed by an update on novel therapeutic targets and agents. Recent development of various approaches of drug delivery to the CNS is also discussed.
Collapse
Affiliation(s)
- Si Yun Ng
- Neurobiology/Ageing Program, Centre for Life Sciences, Department of Physiology, Yong Loo Lin School of Medicine, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Alan Yiu Wah Lee
- Neurobiology/Ageing Program, Centre for Life Sciences, Department of Physiology, Yong Loo Lin School of Medicine, Life Sciences Institute, National University of Singapore, Singapore, Singapore.,School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
10
|
Hirunpattarasilp C, Attwell D, Freitas F. The role of pericytes in brain disorders: from the periphery to the brain. J Neurochem 2019; 150:648-665. [PMID: 31106417 DOI: 10.1111/jnc.14725] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/15/2019] [Accepted: 05/15/2019] [Indexed: 12/13/2022]
Abstract
It is becoming increasingly apparent that disorders of the brain microvasculature contribute to many neurological disorders. In recent years it has become clear that a major player in these events is the capillary pericyte which, in the brain, is now known to control the blood-brain barrier, regulate blood flow, influence immune cell entry and be crucial for angiogenesis. In this review we consider the under-explored possibility that peripheral diseases which affect the microvasculature, such as hypertension, kidney disease and diabetes, produce central nervous system (CNS) dysfunction by mechanisms affecting capillary pericytes within the CNS. We highlight how cellular messengers produced peripherally can act via signalling pathways within CNS pericytes to reshape blood vessels, restrict blood flow or compromise blood-brain barrier function, thus causing neuronal dysfunction. Increased understanding of how renin-angiotensin, Rho-kinase and PDGFRβ signalling affect CNS pericytes may suggest novel therapeutic approaches to reducing the CNS effects of peripheral disorders.
Collapse
Affiliation(s)
- Chanawee Hirunpattarasilp
- Department of Neuroscience, Andrew Huxley Building, University College London, Physiology & Pharmacology, Gower Street, London, UK
| | - David Attwell
- Department of Neuroscience, Andrew Huxley Building, University College London, Physiology & Pharmacology, Gower Street, London, UK
| | - Felipe Freitas
- Department of Neuroscience, Andrew Huxley Building, University College London, Physiology & Pharmacology, Gower Street, London, UK
| |
Collapse
|
11
|
Serum Rheumatoid Factor Levels at Acute Phase of Ischemic Stroke are Associated with Poststroke Cognitive Impairment. J Stroke Cerebrovasc Dis 2019; 28:1133-1140. [DOI: 10.1016/j.jstrokecerebrovasdis.2018.12.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/28/2018] [Accepted: 12/31/2018] [Indexed: 12/22/2022] Open
|
12
|
Ozaki T, Nakamura H, Kishima H. Therapeutic strategy against ischemic stroke with the concept of neurovascular unit. Neurochem Int 2019; 126:246-251. [PMID: 30946849 DOI: 10.1016/j.neuint.2019.03.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/05/2019] [Accepted: 03/28/2019] [Indexed: 01/01/2023]
Abstract
Stroke is one of the leading causes of death and disability globally. Although thrombolytic therapy by t-PA and mechanical thrombectomy have improved outcomes of ischemic stroke patients, both of these approaches are applicable to limited numbers of patients owing to their time constraints. Therefore, development of other treatment approaches such as developing neuroprotective drugs and nerve regeneration therapy is required to overcome ischemic stroke. The concept of the neurovascular unit (NVU) was formalized by the Stroke Progress Review Group of the National Institute of Neurological Disorders and Stroke in 2001. This concept emphasizes the importance not just of neurons but of the interactions between neurons, endothelial cells, astroglia, microglia and associated tissue matrix proteins to investigate the pathological condition of ischemic stroke. Many reports have been published about these interactions. This review focuses on the roles of cells that surround cerebral vasculature, especially endothelial cells, and reports therapeutic strategies against ischemic stroke from four points of view including angiogenesis, neurotrophic effects, protection of NVU components and regenerative therapy.
Collapse
Affiliation(s)
- Tomohiko Ozaki
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Japan; Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Japan.
| | - Hajime Nakamura
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Japan
| | - Haruhiko Kishima
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Japan
| |
Collapse
|
13
|
β-arrestin-2 in PAR-1-biased signaling has a crucial role in endothelial function via PDGF-β in stroke. Cell Death Dis 2019; 10:100. [PMID: 30718498 PMCID: PMC6361911 DOI: 10.1038/s41419-019-1375-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 01/07/2019] [Accepted: 01/15/2019] [Indexed: 12/28/2022]
Abstract
Thrombin aggravates ischemic stroke and activated protein C (APC) has a neuroprotective effect. Both proteases interact with protease-activated receptor 1, which exhibits functional selectivity and leads to G-protein- and β-arrestin-mediated-biased signal transduction. We focused on the effect of β-arrestin in PAR-1-biased signaling on endothelial function after stroke or high-fat diet (HFD). Thrombin had a rapid disruptive effect on endothelial function, but APC had a slow protective effect. Paralleled by prolonged MAPK 42/44 signaling activation by APC via β-arrestin-2, a lower cleavage rate of PAR-1 for APC than thrombin was quantitatively visualized by bioluminescence video imaging. HFD-fed mice showed lower β-arrestin-2 levels and more severe ischemic injury. The expression of β-arrestin-2 in capillaries and PDGF-β secretion in HFD-fed mice were reduced in penumbra lesions. These results suggested that β-arrestin-2-MAPK-PDGF-β signaling enhanced protection of endothelial function and barrier integrity after stroke.
Collapse
|
14
|
Han X, Wen X, Wang Y, Wang S, Shen M, Zhang Z, Fan S, Shan Q, Wang L, Li M, Hu B, Sun C, Wu D, Lu J, Zheng Y. Retracted
: Protective effects of microRNA‐431 against cerebral ischemia‐reperfusion injury in rats by targeting the Rho/Rho‐kinase signaling pathway. J Cell Physiol 2018; 233:5895-5907. [DOI: 10.1002/jcp.26394] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/04/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Xin‐Rui Han
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouJiangsu ProvinceP.R. China
| | - Xin Wen
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouJiangsu ProvinceP.R. China
| | - Yong‐Jian Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouJiangsu ProvinceP.R. China
| | - Shan Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouJiangsu ProvinceP.R. China
| | - Min Shen
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouJiangsu ProvinceP.R. China
| | - Zi‐Feng Zhang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouJiangsu ProvinceP.R. China
| | - Shao‐Hua Fan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouJiangsu ProvinceP.R. China
| | - Qun Shan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouJiangsu ProvinceP.R. China
| | - Liang Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouJiangsu ProvinceP.R. China
| | - Meng‐Qiu Li
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouJiangsu ProvinceP.R. China
| | - Bin Hu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouJiangsu ProvinceP.R. China
| | - Chun‐Hui Sun
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouJiangsu ProvinceP.R. China
| | - Dong‐Mei Wu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouJiangsu ProvinceP.R. China
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouJiangsu ProvinceP.R. China
| | - Yuan‐Lin Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouJiangsu ProvinceP.R. China
| |
Collapse
|
15
|
Ohbuchi M, Kimura T, Nishikawa T, Horiguchi T, Fukuda M, Masaki Y. Neuroprotective Effects of Fasudil, a Rho-Kinase Inhibitor, After Spinal Cord Ischemia and Reperfusion in Rats. Anesth Analg 2018; 126:815-823. [DOI: 10.1213/ane.0000000000002602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
Zhu Z, Xu T, Guo D, Huangfu X, Zhong C, Yang J, Wang A, Chen CS, Peng Y, Xu T, Wang J, Sun Y, Peng H, Li Q, Ju Z, Geng D, Chen J, Zhang Y, He J. Serum Hepatocyte Growth Factor Is Probably Associated With 3-Month Prognosis of Acute Ischemic Stroke. Stroke 2018; 49:377-383. [PMID: 29321335 PMCID: PMC5780195 DOI: 10.1161/strokeaha.117.019476] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/23/2017] [Accepted: 12/13/2017] [Indexed: 01/19/2023]
Abstract
BACKGROUND AND PURPOSE Serum hepatocyte growth factor (HGF) is positively associated with poor prognosis of heart failure and myocardial infarction, and it can also predict the risk of ischemic stroke in population. The goal of this study was to investigate the association between serum HGF and prognosis of ischemic stroke. METHODS A total of 3027 acute ischemic stroke patients were included in this post hoc analysis of the CATIS (China Antihypertensive Trial in Acute Ischemic Stroke). The primary outcome was composite outcome of death or major disability (modified Rankin Scale score ≥3) within 3 months. RESULTS After multivariate adjustment, elevated HGF levels were associated with an increased risk of primary outcome (odds ratio, 1.50; 95% confidence interval, 1.10-2.03; Ptrend=0.015) when 2 extreme quartiles were compared. Each SD increase of log-transformed HGF was associated with 14% (95% confidence interval, 2%-27%) increased risk of primary outcome. Adding HGF quartiles to a model containing conventional risk factors improved the predictive power for primary outcome (net reclassification improvement: 17.50%, P<0.001; integrated discrimination index: 0.23%, P=0.022). The association between serum HGF and primary outcome could be modified by heparin pre-treatment (Pinteraction=0.001), and a positive linear dose-response relationship between HGF and primary outcome was observed in patients without heparin pre-treatment (Plinearity<0.001) but not in those with heparin pre-treatment. CONCLUSIONS Serum HGF levels were higher in the more severe stroke at baseline, and elevated HGF levels were probably associated with 3-month poor prognosis independently of stroke severity among ischemic stroke patients, especially in those without heparin pre-treatment. Further studies from other samples of ischemic stroke patients are needed to validate our findings.
Collapse
Affiliation(s)
- Zhengbao Zhu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Tan Xu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Daoxia Guo
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Xinfeng Huangfu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Chongke Zhong
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China,Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA
| | - Jingyuan Yang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China,Department of Epidemiology, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Aili Wang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Chung-Shiuan Chen
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA
| | - Yanbo Peng
- Department of Neurology, Affiliated Hospital of North China University of Science and Technology, Hebei, China
| | - Tian Xu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China,Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jinchao Wang
- Department of Neurology, Yutian County Hospital, Hebei, China
| | - Yingxian Sun
- Department of Cardiology, the First Affiliated Hospital of China Medical University, Liaoning, China
| | - Hao Peng
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Qunwei Li
- Department of Epidemiology, School of Public Health, Taishan Medical College, Shandong, China
| | - Zhong Ju
- Department of Neurology, Kerqin District First People’s Hospital of Tongliao City, Inner Mongolia, China
| | - Deqin Geng
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Jiangsu, China
| | - Jing Chen
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA,Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Yonghong Zhang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China,Correspondence: Yonghong Zhang, MD, PhD, Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, Jiangsu Province 215123, China. Tel: +86 512 6588 0078; fax: +86 512 6588 0052; Or Jiang He, MD, PhD, Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, Suite 2000, New Orleans, LA 70112, USA.
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA,Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA,Correspondence: Yonghong Zhang, MD, PhD, Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, Jiangsu Province 215123, China. Tel: +86 512 6588 0078; fax: +86 512 6588 0052; Or Jiang He, MD, PhD, Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, Suite 2000, New Orleans, LA 70112, USA.
| |
Collapse
|
17
|
Bali A, Jaggi AS. Angiotensin II-triggered kinase signaling cascade in the central nervous system. Rev Neurosci 2018; 27:301-15. [PMID: 26574890 DOI: 10.1515/revneuro-2015-0041] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 09/26/2015] [Indexed: 12/26/2022]
Abstract
Recent studies have projected the renin-angiotensin system as a central component of the physiological and pathological processes of assorted neurological disorders. Its primary effector hormone, angiotensin II (Ang II), not only mediates the physiological effects of vasoconstriction and blood pressure regulation in cardiovascular disease but is also implicated in a much wider range of neuronal activities and diseases, including Alzheimer's disease, neuronal injury, and cognitive disorders. Ang II produces different actions by acting on its two subtypes of receptors (AT1 and AT2); however, the well-known physiological actions of Ang II are mainly mediated through AT1 receptors. Moreover, recent studies also suggest the important functional role of AT2 receptor in the brain. Ang II acts on AT1 receptors and conducts its functions via MAP kinases (ERK1/2, JNK, and p38MAPK), glycogen synthase kinase, Rho/ROCK kinase, receptor tyrosine kinases (PDGF and EGFR), and nonreceptor tyrosine kinases (Src, Pyk2, and JAK/STAT). AT1R-mediated NADPH oxidase activation also leads to the generation of reactive oxygen species, widely implicated in neuroinflammation. These signaling cascades lead to glutamate excitotoxicity, apoptosis, cerebral infarction, astrocyte proliferation, nociception, neuroinflammation, and progression of other neurological disorders. The present review focuses on the Ang II-triggered signal transduction pathways in central nervous system.
Collapse
|
18
|
Chan SL, Cipolla MJ. Treatment with low dose fasudil for acute ischemic stroke in chronic hypertension. J Cereb Blood Flow Metab 2017; 37:3262-3270. [PMID: 28665172 PMCID: PMC5584704 DOI: 10.1177/0271678x17718665] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We investigated the effect of Rho kinase inhibition on changes in cerebral blood flow (CBF), brain injury and vascular function after ischemic stroke in spontaneously hypertensive rats (SHR). Changes in core MCA and collateral perfusion were measured by a validated laser Doppler method. Animals underwent 2 h tMCAO and 2 h reperfusion. Fasudil (0.1 mg/kg, i.v.) or vehicle was given at 30 min ischemia (n = 9/group; mean (SD)). Brain injury was determined by 2,3,5-triphenyltetrazolium chloride staining. To determine the effect of fasudil on vascular function, fasudil was given 10 min before reperfusion and parenchymal arterioles studied isolated (n = 6/group; mean(SD)). Collateral perfusion was low in vehicle-treated SHR (-8(32)%) that changed minimally with fasudil (6(24)%, p > 0.05, effect size: 0.47;95% CI-0.49-1.39). Reperfusion CBF was below baseline in vehicle (-27(26)%) and fasudil (-32(25)%, p > 0.05, effect size: 0.19; 95% CI-0.74-1.11) groups, suggesting incomplete reperfusion in both groups. Fasudil had little effect on brain injury volume (28(13)% vs. 36(7)% in vehicle, p > 0.05, effect size: 0.75; 95% CI-0.24-1.66). In isolated parenchymal arterioles, myogenic tone was similar between groups (37(6)% vs. 38(10)% in vehicle, p > 0.05, effect size: 0.09; 95% CI-1.05-1.21). There were no differences with fasudil treatment vs. vehicle in perfusion, brain injury and vascular function that may be related to the low dose that had minimal blood pressure lowering effect.
Collapse
Affiliation(s)
- Siu-Lung Chan
- Departments of Neurological Sciences, Obstetrics, Gynecology & Reproductive Sciences, and Pharmacology, Larner, College of Medicine, University of Vermont, Burlington, VT, USA
| | - Marilyn J Cipolla
- Departments of Neurological Sciences, Obstetrics, Gynecology & Reproductive Sciences, and Pharmacology, Larner, College of Medicine, University of Vermont, Burlington, VT, USA
| |
Collapse
|
19
|
Yang G, Qian C, Wang N, Lin C, Wang Y, Wang G, Piao X. Tetramethylpyrazine Protects Against Oxygen-Glucose Deprivation-Induced Brain Microvascular Endothelial Cells Injury via Rho/Rho-kinase Signaling Pathway. Cell Mol Neurobiol 2017; 37:619-633. [PMID: 27380043 PMCID: PMC11482156 DOI: 10.1007/s10571-016-0398-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/22/2016] [Indexed: 01/24/2023]
Abstract
Tetramethylpyrazine (TMP, also known as Ligustrazine), which is isolated from Chinese Herb Medicine Ligustium wollichii Franchat (Chuan Xiong), has been widely used in China for the treatment of ischemic stroke by Chinese herbalists. Brain microvascular endothelial cells (BMECs) are the integral parts of the blood-brain barrier (BBB), protecting BMECs against oxygen-glucose deprivation (OGD) which is important for the treatment of ischemic stroke. Here, we investigated the protective mechanisms of TMP, focusing on OGD-injured BMECs and the Rho/Rho-kinase (Rho-associated kinases, ROCK) signaling pathway. The model of OGD-injured BMECs was established in this study. BMECs were identified by von Willebrand factor III staining and exposed to fasudil, or TMP at different concentrations (14.3, 28.6, 57.3 µM) for 2 h before 24 h of OGD injury. The effect of each treatment was examined by cell viability assays, measurement of intracellular reactive oxygen species (ROS), and transendothelial electric resistance and western blot analysis (caspase-3, endothelial nitric oxide synthase (eNOS), RhoA, Rac1). Our results show that TMP significantly attenuated apoptosis and the permeability of BMECs induced by OGD. In addition, TMP could notably down-regulate the characteristic proteins in Rho/ROCK signaling pathway such as RhoA and Rac1, which triggered abnormal changes of eNOS and ROS, respectively. Altogether, our results show that TMP has a strong protective effect against OGD-induced BMECs injury and suggest that the mechanism might be related to the inhibition of the Rho/ROCK signaling pathway.
Collapse
Affiliation(s)
- Guang Yang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China
- Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Chen Qian
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China
- Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Ning Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China.
- Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China.
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China.
| | - Chenyu Lin
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China
- Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Yan Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China
- Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Guangyun Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China
- Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Xinxin Piao
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China
- Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| |
Collapse
|
20
|
Shintani N, Ishiyama T, Kotoda M, Asano N, Sessler DI, Matsukawa T. The effects of Y-27632 on pial microvessels during global brain ischemia and reperfusion in rabbits. BMC Anesthesiol 2017; 17:38. [PMID: 28270098 PMCID: PMC5341179 DOI: 10.1186/s12871-017-0331-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/24/2017] [Indexed: 11/29/2022] Open
Abstract
Background Global brain ischemia-reperfusion during propofol anesthesia provokes persistent cerebral pial constriction. Constriction is likely mediated by Rho-kinase. Cerebral vasoconstriction possibly exacerbates ischemic brain injury. Because Y-27632 is a potent Rho-kinase inhibitor, it should be necessary to evaluate its effects on cerebral pial vessels during ischemia—reperfusion period. We therefore tested the hypotheses that Y-27632 dilates cerebral pial arterioles after the ischemia-reperfusion injury, and evaluated the time-course of cerebral pial arteriolar status after the ischemia-reperfusion. Methods Japanese white rabbits were anesthetized with propofol, and a closed cranial window inserted over the left hemisphere. Global brain ischemia was produced by clamping the brachiocephalic, left common carotid, and left subclavian arteries for 15 min. Rabbits were assigned to cranial window perfusion with: (1) artificial cerebrospinal fluid (Control group, n = 7); (2) topical infusion of Y-27632 10−6 mol · L−1 for 30 min before the initiation of global brain ischemia (Pre group, n = 7); (3) topical infusion of Y-27632 10−6 mol · L−1 starting 30 min before ischemia and continuing throughout the study period (Continuous group, n = 7); and, (4) topical infusion of Y-27632 10−6 mol · L−1 starting 10 min after the ischemia and continuing until the end of the study (Post group, n = 7). Cerebral pial arterial and venule diameters were recorded 30 min before ischemia, just before arterial clamping, 10 min after clamping, and 5, 10, 20, 40, 60, 80, 100, and 120 min after unclamping. Results Mean arterial blood pressure and blood glucose concentration increased significantly after global brain ischemia except in the Continuous group. In the Pre and Continuous groups, topical application of Y-27632 produced dilation of large (mean 18–19%) and small (mean; 25–29%) pial arteries, without apparent effect on venules. Compared with the Control and Pre groups, arterioles were significantly dilated during the reperfusion period in the Continuous and Post groups (mean at 120 min: 5–8% in large arterioles and 11–12% in small arterioles). Conclusions Y-27632 dilated cerebral pial arterioles during reperfusion. Y-27632 may enhance recovery from ischemia by preventing arteriolar vasoconstriction during reperfusion.
Collapse
Affiliation(s)
- Noriyuki Shintani
- Surgical Center, University of Yamanashi Hospital, 1110 Shimokato, Chuo, 409-3898, Yamanashi, Japan.
| | - Tadahiko Ishiyama
- Surgical Center, University of Yamanashi Hospital, 1110 Shimokato, Chuo, 409-3898, Yamanashi, Japan
| | - Masakazu Kotoda
- Department of Anesthesiology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, 409-3898, Yamanashi, Japan
| | - Nobumasa Asano
- Department of Anesthesiology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, 409-3898, Yamanashi, Japan
| | - Daniel I Sessler
- Department of Outcomes Research, Cleveland Clinic, Anesthesiology Institute, Cleveland, OH, USA
| | - Takashi Matsukawa
- Department of Anesthesiology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, 409-3898, Yamanashi, Japan
| |
Collapse
|
21
|
Rho-kinase inhibitor prevents acute injury against transient focal cerebral ischemia by enhancing the expression and function of GABA receptors in rats. Eur J Pharmacol 2017; 797:134-142. [DOI: 10.1016/j.ejphar.2017.01.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/11/2017] [Accepted: 01/17/2017] [Indexed: 02/01/2023]
|
22
|
Fukuta T, Asai T, Yanagida Y, Namba M, Koide H, Shimizu K, Oku N. Combination therapy with liposomal neuroprotectants and tissue plasminogen activator for treatment of ischemic stroke. FASEB J 2017; 31:1879-1890. [PMID: 28082354 DOI: 10.1096/fj.201601209r] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/03/2017] [Indexed: 12/24/2022]
Abstract
For ischemic stroke treatment, extension of the therapeutic time window (TTW) of thrombolytic therapy with tissue plasminogen activator (tPA) and amelioration of secondary ischemia/reperfusion (I/R) injury are most desirable. Our previous studies have indicated that liposomal delivery of neuroprotectants into an ischemic region is effective for stroke treatment. In the present study, for solving the above problems in the clinical setting, the usefulness of combination therapy with tPA and liposomal fasudil (fasudil-Lip) was investigated in ischemic stroke model rats with photochemically induced thrombosis, with clots that were dissolved by tPA. Treatment with tPA 3 h after occlusion markedly increased blood-brain barrier permeability and activated matrix metalloproteinase (MMP)-2 and -9, which are involved in cerebral hemorrhage. However, an intravenous administration of fasudil-Lip before tPA markedly suppressed the increase in permeability and the MMP activation stemming from tPA. The combination treatment showed significantly larger neuroprotective effects, even in the case of delayed tPA administration compared with each treatment alone or the tPA/fasudil-treated group. These findings suggest that treatment with fasudil-Lip before tPA could decrease the risk of tPA-derived cerebral hemorrhage and extend the TTW of tPA and that the combination therapy could be a useful therapeutic option for ischemic stroke.-Fukuta, T., Asai, T., Yanagida, Y., Namba, M., Koide, H., Shimizu, K., Oku, N. Combination therapy with liposomal neuroprotectants and tissue plasminogen activator for treatment of ischemic stroke.
Collapse
Affiliation(s)
- Tatsuya Fukuta
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Japan; and.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Tomohiro Asai
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Japan; and
| | - Yosuke Yanagida
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Japan; and
| | - Mio Namba
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Japan; and
| | - Hiroyuki Koide
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Japan; and
| | - Kosuke Shimizu
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Japan; and
| | - Naoto Oku
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Japan; and
| |
Collapse
|
23
|
Effect of a Rho Kinase Inhibitor on Cognitive Impairment Induced by Chronic Cerebral Hypoperfusion in Rats. NEUROPHYSIOLOGY+ 2016. [DOI: 10.1007/s11062-016-9548-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Carbone F, Teixeira PC, Braunersreuther V, Mach F, Vuilleumier N, Montecucco F. Pathophysiology and Treatments of Oxidative Injury in Ischemic Stroke: Focus on the Phagocytic NADPH Oxidase 2. Antioxid Redox Signal 2015; 23:460-489. [PMID: 24635113 PMCID: PMC4545676 DOI: 10.1089/ars.2013.5778] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/05/2014] [Accepted: 03/16/2014] [Indexed: 12/23/2022]
Abstract
SIGNIFICANCE Phagocytes play a key role in promoting the oxidative stress after ischemic stroke occurrence. The phagocytic NADPH oxidase (NOX) 2 is a membrane-bound enzyme complex involved in the antimicrobial respiratory burst and free radical production in these cells. RECENT ADVANCES Different oxidants have been shown to induce opposite effects on neuronal homeostasis after a stroke. However, several experimental models support the detrimental effects of NOX activity (especially the phagocytic isoform) on brain recovery after stroke. Therapeutic strategies selectively targeting the neurotoxic ROS and increasing neuroprotective oxidants have recently produced promising results. CRITICAL ISSUES NOX2 might promote carotid plaque rupture and stroke occurrence. In addition, NOX2-derived reactive oxygen species (ROS) released by resident and recruited phagocytes enhance cerebral ischemic injury, activating the inflammatory apoptotic pathways. The aim of this review is to update evidence on phagocyte-related oxidative stress, focusing on the role of NOX2 as a potential therapeutic target to reduce ROS-related cerebral injury after stroke. FUTURE DIRECTIONS Radical scavenger compounds (such as Ebselen and Edaravone) are under clinical investigation as a therapeutic approach against stroke. On the other hand, NOX inhibition might represent a promising strategy to prevent the stroke-related injury. Although selective NOX inhibitors are not yet available, nonselective compounds (such as apocynin and fasudil) provided encouraging results in preclinical studies. Whereas additional studies are needed to better evaluate this therapeutic potential in human beings, the development of specific NOX inhibitors (such as monoclonal antibodies, small-molecule inhibitors, or aptamers) might further improve brain recovery after stroke.
Collapse
Affiliation(s)
- Federico Carbone
- Division of Cardiology, Foundation for Medical Researches, Department of Medical Specialties, University of Geneva, Geneva, Switzerland
- Department of Internal Medicine, University of Genoa School of Medicine, IRCCS Azienda Ospedaliera Universitaria San Martino–IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Priscila Camillo Teixeira
- Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Vincent Braunersreuther
- Division of Cardiology, Foundation for Medical Researches, Department of Medical Specialties, University of Geneva, Geneva, Switzerland
| | - François Mach
- Division of Cardiology, Foundation for Medical Researches, Department of Medical Specialties, University of Geneva, Geneva, Switzerland
| | - Nicolas Vuilleumier
- Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Fabrizio Montecucco
- Division of Cardiology, Foundation for Medical Researches, Department of Medical Specialties, University of Geneva, Geneva, Switzerland
- Department of Internal Medicine, University of Genoa School of Medicine, IRCCS Azienda Ospedaliera Universitaria San Martino–IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
- Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
25
|
Long-term inhibition of Rho-kinase restores the LTP impaired in chronic forebrain ischemia rats by regulating GABAA and GABAB receptors. Neuroscience 2014; 277:383-91. [DOI: 10.1016/j.neuroscience.2014.07.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 07/11/2014] [Accepted: 07/12/2014] [Indexed: 01/30/2023]
|
26
|
Gibson CL, Srivastava K, Sprigg N, Bath PMW, Bayraktutan U. Inhibition of Rho-kinase protects cerebral barrier from ischaemia-evoked injury through modulations of endothelial cell oxidative stress and tight junctions. J Neurochem 2014; 129:816-26. [PMID: 24528233 DOI: 10.1111/jnc.12681] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/20/2014] [Accepted: 02/07/2014] [Indexed: 12/22/2022]
Abstract
Ischaemic strokes evoke blood-brain barrier (BBB) disruption and oedema formation through a series of mechanisms involving Rho-kinase activation. Using an animal model of human focal cerebral ischaemia, this study assessed and confirmed the therapeutic potential of Rho-kinase inhibition during the acute phase of stroke by displaying significantly improved functional outcome and reduced cerebral lesion and oedema volumes in fasudil- versus vehicle-treated animals. Analyses of ipsilateral and contralateral brain samples obtained from mice treated with vehicle or fasudil at the onset of reperfusion plus 4 h post-ischaemia or 4 h post-ischaemia alone revealed these benefits to be independent of changes in the activity and expressions of oxidative stress- and tight junction-related parameters. However, closer scrutiny of the same parameters in brain microvascular endothelial cells subjected to oxygen-glucose deprivation ± reperfusion revealed marked increases in prooxidant NADPH oxidase enzyme activity, superoxide anion release and in expressions of antioxidant enzyme catalase and tight junction protein claudin-5. Cotreatment of cells with Y-27632 prevented all of these changes and protected in vitro barrier integrity and function. These findings suggest that inhibition of Rho-kinase after acute ischaemic attacks improves cerebral integrity and function through regulation of endothelial cell oxidative stress and reorganization of intercellular junctions. Inhibition of Rho-kinase (ROCK) activity in a mouse model of human ischaemic stroke significantly improved functional outcome while reducing cerebral lesion and oedema volumes compared to vehicle-treated counterparts. Studies conducted with brain microvascular endothelial cells exposed to OGD ± R in the presence of Y-27632 revealed restoration of intercellular junctions and suppression of prooxidant NADPH oxidase activity as important factors in ROCK inhibition-mediated BBB protection.
Collapse
Affiliation(s)
- Claire L Gibson
- School of Psychology, University of Leicester, Leicester, UK
| | | | | | | | | |
Collapse
|
27
|
Yagita Y, Kitagawa K, Oyama N, Yukami T, Watanabe A, Sasaki T, Mochizuki H. Functional deterioration of endothelial nitric oxide synthase after focal cerebral ischemia. J Cereb Blood Flow Metab 2013; 33:1532-9. [PMID: 23820645 PMCID: PMC3790927 DOI: 10.1038/jcbfm.2013.112] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 05/11/2013] [Accepted: 06/17/2013] [Indexed: 01/15/2023]
Abstract
Endothelial nitric oxide synthase (eNOS) dysfunction is related to secondary injury and lesion expansion after cerebral ischemia. To date, there are few reports about postischemic alterations in the eNOS regulatory system. The purpose of the present study was to clarify eNOS expression, Ser1177 phosphorylation, and monomer formation after cerebral ischemia. Male Wistar rats were subjected to transient focal cerebral ischemia. Endothelial nitric oxide synthase messenger RNA (mRNA) and protein expression increased ≈ 8-fold in the ischemic lesion. In the middle cerebral artery core, eNOS-Ser1177 phosphorylation increased 6 hours after ischemia; however, there was an approximately 90% decrease in eNOS-Ser1177 phosphorylation observed 24 hours after ischemia that continued until at least 7 days after ischemia. Endothelial nitric oxide synthase monomer formation also increased 24 and 48 hours after ischemia (P<0.05), and protein nitration progressed in parallel with monomerization. To assess the effect of a neuroprotective agent on eNOS dysfunction, we evaluated the effect of fasudil, a Rho-kinase inhibitor, on eNOS phosphorylation and dimerization. Postischemic treatment with fasudil suppressed lesion expansion and dephosphorylation and monomer formation of eNOS. In conclusion, functional deterioration of eNOS progressed after cerebral ischemia. Rho-kinase inhibitors can reduce ischemic lesion expansion as well as eNOS dysfunction in the ischemic brain.
Collapse
Affiliation(s)
- Yoshiki Yagita
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Ueda M, Inaba T, Nito C, Kamiya N, Katayama Y. Therapeutic impact of eicosapentaenoic acid on ischemic brain damage following transient focal cerebral ischemia in rats. Brain Res 2013; 1519:95-104. [PMID: 23643859 DOI: 10.1016/j.brainres.2013.04.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 04/02/2013] [Accepted: 04/24/2013] [Indexed: 10/26/2022]
Abstract
Long-chain n-3 polyunsaturated fatty acids, such as eicosapentaenoic acid (EPA), have been shown to reduce ischemic neuronal injury. We investigated the effects of ethyl-EPA (EPA-E) on ischemic brain damage using a rat transient focal cerebral ischemia model. Male Sprague-Dawley rats (n=105) were subjected to 90 min of focal cerebral ischemia. EPA-E (100mg/kg/day) or vehicle was administered once a day for 3, 5 or 7 days prior to ischemia. Different withdrawal intervals of 3, 5, and 7 days prior to ischemia following 7-day pretreatment with EPA-E or vehicle were also examined. In addition, post-ischemic administration of EPA-E was investigated. Pretreatment with EPA-E for 7 and 5 days, but not 3 days, showed significant infarct volume reduction and neurological improvements when compared with vehicle pretreatment. In addition, withdrawal of EPA-E administration for 3 days, but not 5 and 7 days, also demonstrated significant infarct volume reduction and neurological improvements when compared with vehicle treatment. Post-ischemic treatment of EPA-E did not show any neuroprotection. Immunohistochemistry revealed that 7-day pretreatment with EPA-E significantly reduced cortical expression of 8-hydroxydeoxyguanosine (maker for oxidative DNA damage), 4-hydroxy-2-nonenal (maker for lipid peroxidation), phosphorylated adducin (marker for Rho-kinase activation) and von Willebrand factor (endothelial marker) when compared with vehicle pretreatment. In addition, phosphorylated adducin expression co-localized with von Willebrand factor immunoreactivity. The present study established the neuroprotective effect of EPA-E on ischemic brain damage following transient focal cerebral ischemia in rats, which may be involved in the suppression of oxidative stress and endothelial Rho-kinase activation.
Collapse
Affiliation(s)
- Masayuki Ueda
- Department of Neurology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan.
| | | | | | | | | |
Collapse
|
29
|
Wang L, Fan W, Cai P, Fan M, Zhu X, Dai Y, Sun C, Cheng Y, Zheng P, Zhao BQ. Recombinant ADAMTS13 reduces tissue plasminogen activator-induced hemorrhage after stroke in mice. Ann Neurol 2012; 73:189-98. [PMID: 23280993 DOI: 10.1002/ana.23762] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Revised: 08/13/2012] [Accepted: 09/04/2012] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Tissue plasminogen activator (tPA) is approved for treatment of acute ischemic stroke, but it increases the risk of cerebral hemorrhage. Accumulating evidence suggests that von Willebrand factor (VWF) plays a pivotal role in thrombus formation and microcirculatory disturbances after ischemic stroke. By cleaving VWF, ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13) protects mice from stroke. Therefore, we hypothesized that recombinant ADAMTS13 (rADAMTS13) could increase the safety of tPA thrombolysis in stroke. METHODS We examined blood-brain barrier (BBB) permeability after intraventricular injection of tPA, VWF, and rADAMTS13 in nonischemic mice. We investigated the role of rADAMTS13 on reducing tPA-induced BBB dysfunction and cerebral hemorrhage in a mouse stroke model. RESULTS Intraventricular injection of tPA or VWF under nonischemic conditions resulted in a significant increase in BBB permeability. In contrast, rADAMTS13 blocked both tPA- and VWF-induced BBB opening. BBB disruption following stroke was exacerbated by intravenous administration of tPA, but this was attenuated by injection of rADAMTS13. Correspondingly, tPA-associated hemorrhage after stroke was significantly reduced by rADAMTS13. The antihemorrhagic effect of rADAMTS13 was reversed by injection of recombinant VWF. We also showed that rADAMTS13 inhibited tPA-mediated upregulation of vascular endothelial growth factor (VEGF) in vascular endothelium after stroke. The upregulation of VEGF was suppressed by either an Akt inhibitor wortmannin or a Rho kinase inhibitor fasudil. Furthermore, rADAMTS13 downregulated tPA-induced phosphorylation of Akt and activation of RhoA. INTERPRETATION These findings demonstrate that the VWF-cleaving protease rADAMTS13 reduced tPA-induced hemorrhage by regulating BBB integrity, and suggest that this effect may occur through the Akt/RhoA-mediated VEGF pathways.
Collapse
Affiliation(s)
- Lixiang Wang
- State Key Laboratory of Medical Neurobiology, Shanghai Medical College and Institutes of Brain Science, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Gupta NC, Davis CM, Nelson JW, Young JM, Alkayed NJ. Soluble epoxide hydrolase: sex differences and role in endothelial cell survival. Arterioscler Thromb Vasc Biol 2012; 32:1936-42. [PMID: 22723436 DOI: 10.1161/atvbaha.112.251520] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Sex differences in cerebral ischemic injury are, in part, attributable to the differences in cerebrovascular perfusion. We determined whether the brain microvascular endothelial cells (ECs) isolated from the female brain are more resistant to ischemic injury compared with male ECs, and whether the difference is attributable to lower expression of soluble epoxide hydrolase and higher levels of vasoprotective epoxyeicosatrienoic acids (EETs). We also determined whether protection by EETs is linked to the inhibition of rho-kinase (ROCK). METHODS AND RESULTS EC ischemic damage was measured after oxygen-glucose deprivation (OGD) using propidium iodide (PI) and cleaved caspase-3 labeling. Expression of soluble epoxide hydrolase was determined by quantitative polymerase chain reaction and immunocytochemistry, EETs levels by liquid chromatography-tandem mass spectrometry, and ROCK activity by ELISA. EC damage was higher in males compared with females, which correlated with higher soluble epoxide hydrolase mRNA, stronger immunoreactivity, and lower EETs compared with female ECs. Inhibition of soluble epoxide hydrolase abolished the sex difference in EC damage. ROCK activity was higher in male versus female ECs after OGD, and sex differences in EC damage and ROCK activity were abolished by 14,15-EET and ROCK inhibition. CONCLUSIONS Sex differences in ischemic brain injury are, in part, attributable to differences in EET-mediated inhibition of EC ROCK activation after ischemia.
Collapse
Affiliation(s)
- Nandita C Gupta
- Division of Cardiovascular Medicine, Oregon Health & Science University, 3181 S.W. Sam Jackson Pk. Rd, Portland, OR 97239-3098, USA
| | | | | | | | | |
Collapse
|
31
|
Atochin DN, Huang PL. Role of endothelial nitric oxide in cerebrovascular regulation. Curr Pharm Biotechnol 2012; 12:1334-42. [PMID: 21235451 DOI: 10.2174/138920111798280974] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Revised: 07/01/2010] [Accepted: 08/08/2010] [Indexed: 11/22/2022]
Abstract
Endothelial nitric oxide (NO) plays important roles in the vascular system. Animal models that show vascular dysfunction demonstrate the protective role of endothelial NO dependent pathways. This review focuses on the role of endothelial NO in the regulation of cerebral blood flow and vascular tone. We will discuss the importance of NO in cerebrovascular function using animal models with altered endothelial NO production under normal, ischemic and reperfusion conditions, as well as in hyperoxia. Pharmacological and genetic manipulations of the endothelial NO system demonstrate the essential roles of endothelial NO synthase in maintenance of vascular tone and cerebral perfusion under normal and pathological conditions.
Collapse
Affiliation(s)
- Dmitriy N Atochin
- Cardiovascular Research Center and Cardiology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA.
| | | |
Collapse
|
32
|
Fujii M, Duris K, Altay O, Soejima Y, Sherchan P, Zhang JH. Inhibition of Rho kinase by hydroxyfasudil attenuates brain edema after subarachnoid hemorrhage in rats. Neurochem Int 2011; 60:327-33. [PMID: 22226843 DOI: 10.1016/j.neuint.2011.12.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Revised: 12/14/2011] [Accepted: 12/22/2011] [Indexed: 01/27/2023]
Abstract
The blood-brain barrier (BBB) disruption and brain edema are important pathophysiologies of early brain injury after subarachnoid hemorrhage (SAH). This study is to evaluate whether Rho kinase (Rock) enhances BBB permeability via disruption of tight junction proteins during early brain injury. Adult male rats were assigned to five groups; Sham-operated, SAH treated with saline, a Rock inhibitor hydroxyfasudil (HF) (10 mg/kg) treatment at 0.5 h after SAH, HF treatment at 0.5 and 6 h (10 mg/kg, each) after SAH, and another Rock inhibitor Y27632 (10 mg/kg) treatment at 0.5 h after SAH. The perforation model of SAH was performed and neurological score and brain water content were evaluated 24 and 72 h after surgery. Evans blue extravasation, Rock activity assay, and western blotting analyses were evaluated 24 h after surgery. Treatment of HF significantly improved neurological scores 24 h after SAH. Single treatment with HF and Y27632, and two treatments with HF reduced brain water content in the ipsilateral hemisphere. HF reduced Evans blue extravasation in the ipsilateral hemisphere after SAH. Rock activity increased 24 h after SAH, and HF reversed the activity. SAH significantly decreased the levels of tight junction proteins, occludin and zonula occludens-1 (ZO-1), and HF preserved the levels of occluding and ZO-1 in ipsilateral hemisphere. In conclusion, HF attenuated BBB permeability after SAH, possibly by protection of tight junction proteins.
Collapse
Affiliation(s)
- Mutsumi Fujii
- Department of Physiology and Pharmacology, Loma Linda University, 11234 Anderson Street, Loma Linda, CA 92354, USA
| | | | | | | | | | | |
Collapse
|
33
|
Tuuminen R, Syrjälä S, Krebs R, Keränen MA, Koli K, Abo-Ramadan U, Neuvonen PJ, Tikkanen JM, Nykänen AI, Lemström KB. Donor Simvastatin Treatment Abolishes Rat Cardiac Allograft Ischemia/Reperfusion Injury and Chronic Rejection Through Microvascular Protection. Circulation 2011; 124:1138-50. [DOI: 10.1161/circulationaha.110.005249] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Raimo Tuuminen
- From the Transplantation Laboratory, Haartman Institute, University of Helsinki and HUSLAB, Helsinki University Central Hospital (R.T., S.S., R.K., M.A.I.K., J.M.T., A.I.N., K.B.L.); Department of Clinical Pharmacology, University of Helsinki and HUSLAB, Helsinki University Central Hospital (P.J.N.); Department of Cardiothoracic Surgery, Helsinki University Central Hospital (A.I.N., K.B.L.); Departments of Virology and Pathology, Haartman Institute, University of Helsinki (K.K.); and Experimental
| | - Simo Syrjälä
- From the Transplantation Laboratory, Haartman Institute, University of Helsinki and HUSLAB, Helsinki University Central Hospital (R.T., S.S., R.K., M.A.I.K., J.M.T., A.I.N., K.B.L.); Department of Clinical Pharmacology, University of Helsinki and HUSLAB, Helsinki University Central Hospital (P.J.N.); Department of Cardiothoracic Surgery, Helsinki University Central Hospital (A.I.N., K.B.L.); Departments of Virology and Pathology, Haartman Institute, University of Helsinki (K.K.); and Experimental
| | - Rainer Krebs
- From the Transplantation Laboratory, Haartman Institute, University of Helsinki and HUSLAB, Helsinki University Central Hospital (R.T., S.S., R.K., M.A.I.K., J.M.T., A.I.N., K.B.L.); Department of Clinical Pharmacology, University of Helsinki and HUSLAB, Helsinki University Central Hospital (P.J.N.); Department of Cardiothoracic Surgery, Helsinki University Central Hospital (A.I.N., K.B.L.); Departments of Virology and Pathology, Haartman Institute, University of Helsinki (K.K.); and Experimental
| | - Mikko A.I. Keränen
- From the Transplantation Laboratory, Haartman Institute, University of Helsinki and HUSLAB, Helsinki University Central Hospital (R.T., S.S., R.K., M.A.I.K., J.M.T., A.I.N., K.B.L.); Department of Clinical Pharmacology, University of Helsinki and HUSLAB, Helsinki University Central Hospital (P.J.N.); Department of Cardiothoracic Surgery, Helsinki University Central Hospital (A.I.N., K.B.L.); Departments of Virology and Pathology, Haartman Institute, University of Helsinki (K.K.); and Experimental
| | - Katri Koli
- From the Transplantation Laboratory, Haartman Institute, University of Helsinki and HUSLAB, Helsinki University Central Hospital (R.T., S.S., R.K., M.A.I.K., J.M.T., A.I.N., K.B.L.); Department of Clinical Pharmacology, University of Helsinki and HUSLAB, Helsinki University Central Hospital (P.J.N.); Department of Cardiothoracic Surgery, Helsinki University Central Hospital (A.I.N., K.B.L.); Departments of Virology and Pathology, Haartman Institute, University of Helsinki (K.K.); and Experimental
| | - Usama Abo-Ramadan
- From the Transplantation Laboratory, Haartman Institute, University of Helsinki and HUSLAB, Helsinki University Central Hospital (R.T., S.S., R.K., M.A.I.K., J.M.T., A.I.N., K.B.L.); Department of Clinical Pharmacology, University of Helsinki and HUSLAB, Helsinki University Central Hospital (P.J.N.); Department of Cardiothoracic Surgery, Helsinki University Central Hospital (A.I.N., K.B.L.); Departments of Virology and Pathology, Haartman Institute, University of Helsinki (K.K.); and Experimental
| | - Pertti J. Neuvonen
- From the Transplantation Laboratory, Haartman Institute, University of Helsinki and HUSLAB, Helsinki University Central Hospital (R.T., S.S., R.K., M.A.I.K., J.M.T., A.I.N., K.B.L.); Department of Clinical Pharmacology, University of Helsinki and HUSLAB, Helsinki University Central Hospital (P.J.N.); Department of Cardiothoracic Surgery, Helsinki University Central Hospital (A.I.N., K.B.L.); Departments of Virology and Pathology, Haartman Institute, University of Helsinki (K.K.); and Experimental
| | - Jussi M. Tikkanen
- From the Transplantation Laboratory, Haartman Institute, University of Helsinki and HUSLAB, Helsinki University Central Hospital (R.T., S.S., R.K., M.A.I.K., J.M.T., A.I.N., K.B.L.); Department of Clinical Pharmacology, University of Helsinki and HUSLAB, Helsinki University Central Hospital (P.J.N.); Department of Cardiothoracic Surgery, Helsinki University Central Hospital (A.I.N., K.B.L.); Departments of Virology and Pathology, Haartman Institute, University of Helsinki (K.K.); and Experimental
| | - Antti I. Nykänen
- From the Transplantation Laboratory, Haartman Institute, University of Helsinki and HUSLAB, Helsinki University Central Hospital (R.T., S.S., R.K., M.A.I.K., J.M.T., A.I.N., K.B.L.); Department of Clinical Pharmacology, University of Helsinki and HUSLAB, Helsinki University Central Hospital (P.J.N.); Department of Cardiothoracic Surgery, Helsinki University Central Hospital (A.I.N., K.B.L.); Departments of Virology and Pathology, Haartman Institute, University of Helsinki (K.K.); and Experimental
| | - Karl B. Lemström
- From the Transplantation Laboratory, Haartman Institute, University of Helsinki and HUSLAB, Helsinki University Central Hospital (R.T., S.S., R.K., M.A.I.K., J.M.T., A.I.N., K.B.L.); Department of Clinical Pharmacology, University of Helsinki and HUSLAB, Helsinki University Central Hospital (P.J.N.); Department of Cardiothoracic Surgery, Helsinki University Central Hospital (A.I.N., K.B.L.); Departments of Virology and Pathology, Haartman Institute, University of Helsinki (K.K.); and Experimental
| |
Collapse
|
34
|
Oyama N, Yagita Y, Kawamura M, Sugiyama Y, Terasaki Y, Omura-Matsuoka E, Sasaki T, Kitagawa K. Cilostazol, not aspirin, reduces ischemic brain injury via endothelial protection in spontaneously hypertensive rats. Stroke 2011; 42:2571-7. [PMID: 21799161 DOI: 10.1161/strokeaha.110.609834] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE It is well-established that hypertension leads to endothelial dysfunction in the cerebral artery. Recently, cilostazol has been used for the secondary prevention of ischemic stroke. Among antiplatelet drugs, phosphodiesterase inhibitors including cilostazol have been shown to have protective effects on endothelial cells. The aim of the present study is to investigate the effects of cilostazol and aspirin on endothelial nitric oxide synthase (eNOS) phosphorylation in the cerebral cortex, endothelial function, and infarct size after brain ischemia in spontaneously hypertensive rats (SHR). METHODS Five-week-old male SHR received a 5-week regimen of chow containing 0.1% aspirin, 0.1% cilostazol, 0.3% cilostazol, or the vehicle control. The levels of total and Ser(1177)-phosphorylated eNOS protein in the cerebral cortex were evaluated by Western blot. To assess the contribution of eNOS in maintaining cerebral blood flow, we monitored cerebral blood flow by laser-Doppler flowmetry after L-N(5)-(1-iminoethyl)ornithine infusion. Additionally, we evaluated residual microperfusion using fluorescence-labeled serum protein and infarct size after transient focal brain ischemia. RESULTS In SHR, the blood pressure and heart rate were similar among the groups. Cilostazol-treated SHR had a significantly higher ratio of phospho-eNOS/total eNOS protein than vehicle-treated and aspirin-treated SHR. Treating with cilostazol, but not aspirin, significantly improved cerebral blood flow response to L-N(5)-(1-iminoethyl)ornithine. Cilostazol also increased residual perfusion of the microcirculation and reduced brain damage after ischemia compared to vehicle control and aspirin. CONCLUSIONS These findings indicate that cilostazol, but not aspirin, can attenuate ischemic brain injury by maintaining endothelial function in the cerebral cortex of SHR.
Collapse
Affiliation(s)
- Naoki Oyama
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Fasudil protects cultured N1E-115 cells against lysophosphatidic acid-induced neurite retraction through inhibition of Rho-kinase. Brain Res Bull 2010; 84:174-7. [PMID: 21126559 DOI: 10.1016/j.brainresbull.2010.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 11/22/2010] [Accepted: 11/23/2010] [Indexed: 11/21/2022]
Abstract
The aim of this study was to investigate the possible effects of the Rho-kinase inhibitor, fasudil, on the lysophosphatidic acid (LPA)-induced neurite retraction in N1E-115 cells. In cultured N1E-115 cells, LPA produced a marked increase in the population of rounded cells. Fasudil or hydroxyfasudil, an active metabolite of fasudil, blocked cell rounding in a concentration-dependent manner at levels between 1 and 10 μM, with IC₅₀ values of 1.7 or 1.6 μM, respectively. Fasudil or hydroxyfasudil concentration-dependently inhibited phosphorylation of the myosin binding subunit of myosin phosphatase in N1E-115 cells. These results indicate that Rho-kinase is essential for LPA-induced neurite retraction in N1E-115 cells and that inactivation of Rho-kinase by a Rho-kinase inhibitor, such as fasudil, eliminates cell rounding and promotes neurite outgrowth, thus improving neurological function in the brain damage.
Collapse
|
36
|
Vascular dysfunction in cerebrovascular disease: mechanisms and therapeutic intervention. Clin Sci (Lond) 2010; 119:1-17. [PMID: 20370718 DOI: 10.1042/cs20090649] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The endothelium plays a crucial role in the control of vascular homoeostasis through maintaining the synthesis of the vasoprotective molecule NO* (nitric oxide). Endothelial dysfunction of cerebral blood vessels, manifested as diminished NO* bioavailability, is a common feature of several vascular-related diseases, including hypertension, hypercholesterolaemia, stroke, subarachnoid haemorrhage and Alzheimer's disease. Over the past several years an enormous amount of research has been devoted to understanding the mechanisms underlying endothelial dysfunction. As such, it has become apparent that, although the diseases associated with impaired NO* function are diverse, the underlying causes are similar. For example, compelling evidence indicates that oxidative stress might be an important mechanism of diminished NO* signalling in diverse models of cardiovascular 'high-risk' states and cerebrovascular disease. Although there are several sources of vascular ROS (reactive oxygen species), the enzyme NADPH oxidase is emerging as a strong candidate for the excessive ROS production that is thought to lead to vascular oxidative stress. The purpose of the present review is to outline some of the mechanisms thought to contribute to endothelial dysfunction in the cerebral vasculature during disease. More specifically, we will highlight current evidence for the involvement of ROS, inflammation, the RhoA/Rho-kinase pathway and amyloid beta-peptides. In addition, we will discuss currently available therapies for improving endothelial function and highlight future therapeutic strategies.
Collapse
|
37
|
Laschke MW, Dold S, Jeppsson B, Schilling MK, Menger MD, Thorlacius H. Rho-Kinase Inhibitor Attenuates Cholestasis-Induced CXC Chemokine Formation, Leukocyte Recruitment, and Hepatocellular Damage in the Liver. J Surg Res 2010; 159:666-73. [DOI: 10.1016/j.jss.2008.08.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 08/07/2008] [Accepted: 08/18/2008] [Indexed: 12/22/2022]
|
38
|
Kitagawa K. [Anti-inflammation strategy: potential brain protection in cerebral ischemia]. Nihon Yakurigaku Zasshi 2009; 134:202-206. [PMID: 19828924 DOI: 10.1254/fpj.134.202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
|
39
|
JUAN Y, SHEN J, CHUANG S, KOGAN BA, HUANG C, WU W, LIU K, LEVIN RM. Ischemia/Reperfusion Effects on Bladder Muscle and Mucosa Cell Contractile Regulatory Proteins. Low Urin Tract Symptoms 2009. [DOI: 10.1111/j.1757-5672.2009.00011.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Omura-Matsuoka E, Yagita Y, Sasaki T, Terasaki Y, Oyama N, Sugiyama Y, Okazaki S, Sakoda S, Kitagawa K. Postischemic administration of angiotensin II type 1 receptor blocker reduces cerebral infarction size in hypertensive rats. Hypertens Res 2009; 32:548-53. [PMID: 19424281 DOI: 10.1038/hr.2009.69] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lowering the blood pressure (BP) during the acute period following ischemic stroke is still a controversial treatment. In this study, we investigated the effect of postischemic treatment using the angiotensin II type 1 receptor blocker, candesartan, on brain damage in focal cerebral ischemia. Spontaneously hypertensive rats underwent transient occlusion of the middle cerebral artery for 1 h. Candesartan (0.1, 1 and 10 mg kg(-1)) or vehicle was administered orally 3 and 24 h after ischemia. Blood pressure and neurological function were monitored, and infarct volume was evaluated 48 h after occlusion. Cerebral blood flow was measured using laser Doppler flowmetry before and after treatment with candesartan. Activation of Rho-kinase in cerebral microvessels was evaluated by immunohistochemistry. Systolic blood pressure was markedly lowered with both moderate and high doses, but it did not fall with a low dose of candesartan. The infarct volume was reduced in rats treated with the low dose of candesartan but not in those treated with the moderate or high doses. Cerebral blood flow decreased in parallel with the reduction in BP 3 h after treatment using the moderate dose, but it did not change after treatment with the low dose of candesartan, compared with vehicle. Rho-kinase was activated in the brain vessels of the ischemic cortex, but treatment with candesartan suppressed it. Our results show that oral administration of candesartan after transient focal ischemia reduced infarct volume at doses that showed little effect on BP. The neurovascular protective effects of candesartan may be caused by the inhibition of Rho-kinase in brain microvessels.
Collapse
Affiliation(s)
- Emi Omura-Matsuoka
- Stroke Division, Department of Neurology, Osaka University Graduate School of Medicine, Suita-city, Osaka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Shin HK, Salomone S, Ayata C. Targeting cerebrovascular Rho-kinase in stroke. Expert Opin Ther Targets 2009; 12:1547-64. [PMID: 19007322 DOI: 10.1517/14728220802539244] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Rho and Rho-associated kinase (ROCK) play pivotal roles in pathogenesis of vascular diseases including stroke. ROCK is expressed in all cell types relevant to stroke, and regulates a range of physiological processes. OBJECTIVE To provide an overview of ROCK as an experimental therapeutic target in cerebral ischemia, and the translational opportunities and obstacles in the prophylaxis and treatment of stroke. METHODS Relevant literature was reviewed. RESULTS ROCK activity is upregulated in chronic vascular risk factors such as diabetes, hyperlipidemia and hypertension, and more acutely by cerebral ischemia. ROCK activation is predicted to increase the risk of cerebral ischemia, and worsen the ischemic tissue outcome and functional recovery. Evidence suggests that ROCK inhibition is protective in models of cerebral ischemia. The benefit is mediated through multiple mechanisms. CONCLUSION ROCK is a promising therapeutic target in all stages of stroke.
Collapse
Affiliation(s)
- Hwa Kyoung Shin
- Pusan National University, Medical Research Center for Ischemic Tissue Regeneration, 10 Ami-dong, 1-Ga, Seo-Gu, Busan 602-739, Korea
| | | | | |
Collapse
|
42
|
Correspondence Between Neurological Deficit, Cerebral Infarct Size, and Rho-Kinase Activity in a Rat Cerebral Thrombosis Model. J Mol Neurosci 2009; 39:59-68. [DOI: 10.1007/s12031-009-9175-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Accepted: 01/07/2009] [Indexed: 12/21/2022]
|
43
|
Touyz RM. Targeting the ailing endothelium – current concepts and future prospects. Can J Cardiol 2008. [DOI: 10.1016/s0828-282x(08)71037-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
44
|
Salazar‐Colocho P, Del Río J, Frechilla D. Involvement of the vascular wall in regenerative processes after CA1 ischemic neuronal death. Int J Dev Neurosci 2008; 26:541-50. [DOI: 10.1016/j.ijdevneu.2008.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2007] [Revised: 05/28/2008] [Accepted: 05/28/2008] [Indexed: 01/28/2023] Open
Affiliation(s)
| | - Joaquín Del Río
- Division of Neuroscience, CIMAUniversity of NavarraAv. Pío XII 5531008PamplonaSpain
| | - Diana Frechilla
- Division of Neuroscience, CIMAUniversity of NavarraAv. Pío XII 5531008PamplonaSpain
| |
Collapse
|
45
|
Juan YS, Li S, Levin RM, Kogan BA, Schuler C, Leggett RE, Huang CH, Mannikarottu A. The effect of ischemia/reperfusion on rabbit bladder--role of Rho-kinase and smooth muscle regulatory proteins. Urology 2008; 73:1126-30. [PMID: 18455776 DOI: 10.1016/j.urology.2008.02.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Revised: 02/02/2008] [Accepted: 02/29/2008] [Indexed: 01/10/2023]
Abstract
OBJECTIVES To detect the effect of ischemia/reperfusion (I/R) injury on rabbit bladder, using physiological study and immunoblotting techniques. METHODS Twelve male New Zealand White rabbits were separated into three groups of 4 rabbits each. Group 1 served as control. Group 2 rabbits (ischemia-alone group) underwent in vitro bilateral ischemia surgery for 2 hours. In group 3 (I/R group), bilateral ischemia was similarly induced, and the rabbits were allowed to recover for 2 weeks. The contractile responses to electrical field stimulation, adenosine triphosphate, carbachol, and KCl were recorded. Expression levels of the signaling targets, Rho-kinase (ROK), protein kinase C potentiated inhibitor (CPI-17), caldesmon (CaD), and calponin (CaP) were analyzed by Western blotting. RESULTS Ischemia alone resulted in significant reductions in the contractile responses, whereas I/R resulted in further decreases after all forms of stimulation. In muscle layer, ROK expression increased immediately after ischemia and recovered to the control level after 2 weeks' recovery. However, in mucosa layer, ROK expression showed no significant change after ischemia but significantly increased after reperfusion. After ischemic damage, CPI-17, the functional protein involved in smooth-muscle Ca(2+) sensitization, was significantly increased and then decreased after 2 weeks of reperfusion. The expression of CaP significantly increased after ischemia and decreased after reperfusion. Levels of high-molecular-weight CaD significantly decreased after ischemia and remained very low after reperfusion. CONCLUSIONS This study provides further understanding of the role of regulatory proteins in detrusor muscle after ischemia and I/R-induced contractile dysfunction.
Collapse
Affiliation(s)
- Yung-Shun Juan
- Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Sugiura S, Yagita Y, Sasaki T, Todo K, Terasaki Y, Ohyama N, Hori M, Kitagawa K. Postischemic administration of HMG CoA reductase inhibitor inhibits infarct expansion after transient middle cerebral artery occlusion. Brain Res 2007; 1181:125-9. [DOI: 10.1016/j.brainres.2007.08.069] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2007] [Revised: 08/17/2007] [Accepted: 08/25/2007] [Indexed: 01/28/2023]
|