1
|
Yang YQ, Zhang M, Hua Q, Ma RJ, Wang XY, Yuan HJ, Luo MJ, Tan JH. Role and action mechanisms of tPA in CRH-induced apoptosis of mouse oviductal epithelial and mural granulosa cells. J Reprod Dev 2024; 70:238-246. [PMID: 38910127 PMCID: PMC11310383 DOI: 10.1262/jrd.2024-028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/31/2024] [Indexed: 06/25/2024] Open
Abstract
Understanding how stress hormones induce apoptosis in oviductal epithelial cells (OECs) and mural granulosa cells (MGCs) can reveal the mechanisms by which female stress impairs embryonic development and oocyte competence. A recent study showed that tissue plasminogen activator (tPA) ameliorates corticosterone-induced apoptosis in MGCs and OECs by acting on its receptors low-density lipoprotein receptor-related protein 1 (LRP1) and Annexin A2 (ANXA2), respectively. However, whether tPA is involved in corticotropin-releasing hormone (CRH)-induced apoptosis and whether it uses the same or different receptors to inhibit apoptosis induced by different hormones in the same cell type remains unknown. This study showed that CRH triggered apoptosis in both OECs and MGCs and significantly downregulated tPA expression. Moreover, tPA inhibits CRH-induced apoptosis by acting on ANXA2 in both OECs and MGCs. While ANXA2 inhibits apoptosis via phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling, LRP1 reduces apoptosis via mitogen-activated protein kinase (MAPK) signaling. Thus, tPA used the same receptor to inhibit CRH-induced apoptosis in both OECs and MGCs, however used different receptors to inhibit corticosterone-induced apoptosis in MGCs and OECs. These data helps understand the mechanism by which female stress impairs embryo/oocyte competence and proapoptotic factors trigger apoptosis in different cell types.
Collapse
Affiliation(s)
- Yong-Qing Yang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| | - Min Zhang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| | - Qi Hua
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| | - Rui-Jie Ma
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| | - Xiao-Yan Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| | - Hong-Jie Yuan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| | - Ming-Jiu Luo
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| | - Jing-He Tan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| |
Collapse
|
2
|
Xu Y, Wen L, Tang Y, Zhao Z, Xu M, Wang T, Chen Z. Sodium butyrate activates the K ATP channels to regulate the mechanism of Parkinson's disease microglia model inflammation. Immun Inflamm Dis 2024; 12:e1194. [PMID: 38501544 PMCID: PMC10949401 DOI: 10.1002/iid3.1194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a common neurodegenerative disorder. Microglia-mediated neuroinflammation has emerged as an involving mechanism at the initiation and development of PD. Activation of adenosine triphosphate (ATP)-sensitive potassium (KATP ) channels can protect dopaminergic neurons from damage. Sodium butyrate (NaB) shows anti-inflammatory and neuroprotective effects in some animal models of brain injury and regulates the KATP channels in islet β cells. In this study, we aimed to verify the anti-inflammatory effect of NaB on PD and further explored potential molecular mechanisms. METHODS We established an in vitro PD model in BV2 cells using 1-methyl-4-phenylpyridinium (MPP+ ). The effects of MPP+ and NaB on BV2 cell viability were detected by cell counting kit-8 assays. The morphology of BV2 cells with or without MPP+ treatment was imaged via an optical microscope. The expression of Iba-1 was examined by the immunofluorescence staining. The intracellular ATP content was estimated through the colorimetric method, and Griess assay was conducted to measure the nitric oxide production. The expression levels of pro-inflammatory cytokines and KATP channel subunits were evaluated by reverse transcription-quantitative polymerase chain reaction and western blot analysis. RESULTS NaB (5 mM) activated the KATP channels through elevating Kir6.1 and Kir6.1 expression in MPP+ -challenged BV2 cells. Both NaB and pinacidil (a KATP opener) suppressed the MPP+ -induced activation of BV2 cells and reduced the production of nitrite and pro-inflammatory cytokines in MPP+ -challenged BV2 cells. CONCLUSION NaB treatment alleviates the MPP+ -induced inflammatory responses in microglia via activation of KATP channels.
Collapse
Affiliation(s)
- Ye Xu
- Department of NeurologyThe First Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
| | - Laofu Wen
- Department of NeurologyThe First Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
| | - Yunyi Tang
- Department of NeurologyThe First Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
| | - Zhenqiang Zhao
- Department of NeurologyThe First Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
| | - Miaojing Xu
- Department of NeurologyThe First Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
- Department of Neurology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Tan Wang
- Department of NeurologyThe First Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
| | - Zhibin Chen
- Department of NeurologyThe First Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
| |
Collapse
|
3
|
Hua Q, Cheng H, Yang YQ, An JS, Zhang M, Gong S, Luo MJ, Tan JH. Role of tPA in Corticosterone-Induced Apoptosis of Mouse Mural Granulosa and Oviductal Epithelial Cells. Cells 2023; 12:cells12030455. [PMID: 36766799 PMCID: PMC9914103 DOI: 10.3390/cells12030455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/13/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Although studies indicate that female stress-increased secretion of glucocorticoids impairs oocyte competence and embryo development, by inducing apoptosis of ovarian and oviductal cells, respectively, the mechanisms by which glucocorticoids induce apoptosis of ovarian and oviductal cells are largely unclear. Tissue plasminogen activator (tPA) has been involved in apoptosis of different cell types. However, while some studies indicate that tPA is proapoptotic, others demonstrate its antiapoptotic effects. This study has explored the role and action mechanisms of tPA in corticosterone-induced apoptosis of mouse mural granulosa cells (MGCs) and oviductal epithelial cells (OECs). The results demonstrate that culture with corticosterone significantly increased apoptosis, while decreasing levels of tPA (Plat) mRNA and tPA protein in both MGCs and OECs. Culture with tPA ameliorated corticosterone-induced apoptosis of MGCs and OECs. Furthermore, while tPA protected MGCs from corticosterone-induced apoptosis by interacting with low-density lipoprotein receptor-related protein 1 (LRP1), it protected OECs from the apoptosis by acting on Annexin 2 (ANXA2). In conclusion, tPA is antiapoptotic in both MGCs and OECs, and it protects MGCs and OECs from corticosterone-induced apoptosis by interacting with LRP1 and ANXA2, respectively, suggesting that tPA may use different receptors to inhibit apoptosis in different cell types.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ming-Jiu Luo
- Correspondence: (M.-J.L.); (J.-H.T.); Tel.: +86-0538-8249616 (M.-J.L. & J.-H.T.); Fax: +86-0538-8241419 (M.-J.L. & J.-H.T.)
| | - Jing-He Tan
- Correspondence: (M.-J.L.); (J.-H.T.); Tel.: +86-0538-8249616 (M.-J.L. & J.-H.T.); Fax: +86-0538-8241419 (M.-J.L. & J.-H.T.)
| |
Collapse
|
4
|
Kim RE, Shin CY, Han SH, Kwon KJ. Astaxanthin Suppresses PM2.5-Induced Neuroinflammation by Regulating Akt Phosphorylation in BV-2 Microglial Cells. Int J Mol Sci 2020; 21:ijms21197227. [PMID: 33008094 PMCID: PMC7582569 DOI: 10.3390/ijms21197227] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022] Open
Abstract
Air pollution has become one of the most serious issues for human health and has been shown to be particularly concerning for neural and cognitive health. Recent studies suggest that fine particulate matter of less than 2.5 (PM2.5), common in air pollution, can reach the brain, potentially resulting in the development and acceleration of various neurological disorders including Alzheimer’s disease, Parkinson’s disease, and other forms of dementia, but the underlying pathological mechanisms are not clear. Astaxanthin is a red-colored phytonutrient carotenoid that has been known for anti-inflammatory and neuroprotective effects. In this study, we demonstrated that exposure to PM2.5 increases the neuroinflammation, the expression of proinflammatory M1, and disease-associated microglia (DAM) signature markers in microglial cells, and that treatment with astaxanthin can prevent the neurotoxic effects of this exposure through anti-inflammatory properties. Diesel particulate matter (Sigma-Aldrich) was used as a fine particulate matter 2.5 in the present study. Cultured rat glial cells and BV-2 microglial cells were treated with various concentrations of PM2.5, and then the expression of various inflammatory mediators and signaling pathways were measured using qRT-PCR and Western blot. Astaxanthin was then added and assayed as above to evaluate its effects on microglial changes, inflammation, and toxicity induced by PM2.5. PM2.5 increased the production of nitric oxide and reactive oxygen species and upregulated the transcription of various proinflammatory markers including Interleukin-1β (IL-1β), Interleukin-6 (IL-6), Tumor necrosis factor α (TNFα), inducible nitric oxide synthase (iNOS), triggering receptor expressed on myeloid cells 2 (TREM2), Toll-like receptor 2/4 (TLR2/4), and cyclooxygenase-2 (COX-2) in BV-2 microglial cells. However, the mRNA expression of IL-10 and arginase-1 decreased following PM2.5 treatment. PM2.5 treatment increased c-Jun N-terminal kinases (JNK) phosphorylation and decreased Akt phosphorylation. Astaxanthin attenuated these PM2.5-induced responses, reducing transcription of the proinflammatory markers iNOS and heme oxygenase-1 (HO-1), which prevented neuronal cell death. Our results indicate that PM2.5 exposure reformulates microglia via proinflammatory M1 and DAM phenotype, leading to neurotoxicity, and the fact that astaxanthin treatment can prevent neurotoxicity by inhibiting transition to the proinflammatory M1 and DAM phenotypes. These results demonstrate that PM2.5 exposure can induce brain damage through the change of proinflammatory M1 and DAM signatures in the microglial cells, as well as the fact that astaxanthin can have a potential beneficial effect on PM2.5 exposure of the brain.
Collapse
Affiliation(s)
- Ryeong-Eun Kim
- Department of Neuroscience, School of Medicine, Konkuk University, Seoul 05029, Korea; (R.-E.K.); (S.-H.H.)
| | - Chan Young Shin
- Department of Pharmacology, School of Medicine, Konkuk University, Seoul 05029, Korea;
| | - Seol-Heui Han
- Department of Neuroscience, School of Medicine, Konkuk University, Seoul 05029, Korea; (R.-E.K.); (S.-H.H.)
- Department of Neurology, Konkuk Hospital Medical Center, 120-1 Neungdong-ro, Gwangjin-Gu, Seoul 05030, Korea
| | - Kyoung Ja Kwon
- Department of Neuroscience, School of Medicine, Konkuk University, Seoul 05029, Korea; (R.-E.K.); (S.-H.H.)
- Department of Neurology, Konkuk Hospital Medical Center, 120-1 Neungdong-ro, Gwangjin-Gu, Seoul 05030, Korea
- Correspondence: ; Tel.: +82-2-454-5630; Fax: +82-2030-7899
| |
Collapse
|
5
|
Yan J, Lin Z, Lin B, Yang H, Zhang W, Tian L, Liu H, Zhang H, Liu X, Xi Z. Respiratory exposure to single-walled carbon nanotubes induced changes in vascular homeostasis and the expression of peripheral blood related genes in a rat model. Toxicol Res (Camb) 2015. [DOI: 10.1039/c5tx00039d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Epidemiological studies have demonstrated that nanometre particles in polluted air can increase the risk of CVD, which is dangerous to mankind.
Collapse
Affiliation(s)
- Jun Yan
- Tianjin Institute of Health and Environmental Medicine
- China
| | - Zhiqing Lin
- Tianjin Institute of Health and Environmental Medicine
- China
| | - Bencheng Lin
- Tianjin Institute of Health and Environmental Medicine
- China
| | - Honglian Yang
- Tianjin Institute of Health and Environmental Medicine
- China
| | - Wei Zhang
- Tianjin Institute of Health and Environmental Medicine
- China
| | - Lei Tian
- Tianjin Institute of Health and Environmental Medicine
- China
| | - Huanliang Liu
- Tianjin Institute of Health and Environmental Medicine
- China
| | - Huashan Zhang
- Tianjin Institute of Health and Environmental Medicine
- China
| | - Xiaohua Liu
- Tianjin Institute of Health and Environmental Medicine
- China
| | - Zhuge Xi
- Tianjin Institute of Health and Environmental Medicine
- China
| |
Collapse
|
6
|
Bertini G, Bramanti P, Constantin G, Pellitteri M, Radu BM, Radu M, Fabene PF. New players in the neurovascular unit: insights from experimental and clinical epilepsy. Neurochem Int 2013; 63:652-9. [PMID: 23962437 DOI: 10.1016/j.neuint.2013.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 07/26/2013] [Accepted: 08/01/2013] [Indexed: 01/12/2023]
Abstract
The conventional notion that neurons are exclusively responsible for brain signaling is increasingly challenged by the idea that brain function in fact depends on a complex interplay between neurons, glial cells, vascular endothelium, and immune-related blood cells. Recent data demonstrates that neuronal activity is profoundly affected by an entire cellular and extracellular 'orchestra', the so-called neurovascular unit (NVU). Among the 'musical instruments' of this orchestra, there may be molecules long-known in biomedicine as important mediators of inflammatory and immune responses in the organism, as well as non-neuronal cells, e.g., leukocytes. We here review recent evidence on the structure and function of the NVU, both in the healthy brain and in pathological conditions, such as the abnormal NVU activation observed in epilepsy. We will argue that a better understanding of NVU function will require the addition of new players to the 'orchestra'.
Collapse
Affiliation(s)
- Giuseppe Bertini
- Department of Neurological and Movement Sciences, Section of Anatomy and Histology, University of Verona, Strada Le Grazie 8, Verona 37134, Italy
| | | | | | | | | | | | | |
Collapse
|
7
|
Maurya SK, Rai A, Rai NK, Deshpande S, Jain R, Mudiam MKR, Prabhakar YS, Bandyopadhyay S. Cypermethrin Induces Astrocyte Apoptosis by the Disruption of the Autocrine/Paracrine Mode of Epidermal Growth Factor Receptor Signaling. Toxicol Sci 2011; 125:473-87. [DOI: 10.1093/toxsci/kfr303] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
8
|
Jensen LD, Rouhi P, Cao Z, Länne T, Wahlberg E, Cao Y. Zebrafish models to study hypoxia-induced pathological angiogenesis in malignant and nonmalignant diseases. ACTA ACUST UNITED AC 2011; 93:182-93. [PMID: 21671357 DOI: 10.1002/bdrc.20203] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Most in vivo preclinical disease models are based on mouse and other mammalian systems. However, these rodent-based model systems have considerable limitations to recapitulate clinical situations in human patients. Zebrafish have been widely used to study embryonic development, behavior, tissue regeneration, and genetic defects. Additionally, zebrafish also provides an opportunity to screen chemical compounds that target a specific cell population for drug development. Owing to the availability of various genetically manipulated strains of zebrafish, immune privilege during early embryonic development, transparency of the embryos, and easy and precise setup of hypoxia equipment, we have developed several disease models in both embryonic and adult zebrafish, focusing on studying the role of angiogenesis in pathological settings. These zebrafish disease models are complementary to the existing mouse models, allowing us to study clinically relevant processes in cancer and nonmalignant diseases, which otherwise would be difficult to study in mice. For example, dissemination and invasion of single human or mouse tumor cells from the primary site in association with tumor angiogenesis can be studied under normoxia or hypoxia in zebrafish embryos. Hypoxia-induced retinopathy in the adult zebrafish recapitulates the clinical situation of retinopathy development in diabetic patients or age-related macular degeneration. These zebrafish disease models offer exciting opportunities to understand the mechanisms of disease development, progression, and development of more effective drugs for therapeutic intervention.
Collapse
Affiliation(s)
- Lasse Dahl Jensen
- Deparment of Microbiology, Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|