1
|
Formica ML, Paz MC, Vaglienti MV, Subirada PV, Fernández Y, Joray MB, Luna JD, Barcelona PF, Palma SD, Sánchez MC. Doxycycline inhibits MMP-2 retinal activity and modulates the angiogenic process in vitro and in vivo. Front Cell Dev Biol 2025; 13:1561250. [PMID: 40230413 PMCID: PMC11994896 DOI: 10.3389/fcell.2025.1561250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/18/2025] [Indexed: 04/16/2025] Open
Abstract
Introduction Vascular endothelial growth factor (VEGF) inhibition is currently the first-line therapy for various retinal vascular disorders, however there is a strong need to develop novel therapies to target other molecules involved in the angiogenic process. In addition to well-known antibiotic properties, Doxycycline (DXC) has versatile non-antibiotic properties, therefore, our goal was to evaluate the effect of DXC on matrix metalloproteinase-2 (MMP-2) as a potential therapeutic alternative for retinal neovascularization (NV), using vascular and glial cells and the oxygen-induced retinopathy (OIR) mouse model. Methods MGC and BAEC viability under DXC treatment was evaluated using an MTT assay. Changes of Pro MMP-2 and MMP-2 activity were measured by gelatin zymography assay in MIO-M1 cells incubated with DXC under normoxia and hypoxic conditions. VEGF-induced angiogenesis was assessed by tube formation assay in BAEC incubated with DXC for 24 h C57BL/6 mice exposed to OIR model, were intravitreally injected with a single dose of DXC at post-natal day (P)12 and retinas evaluated at P17. Results DXC significantly decreased pro MMP-2 and MMP-2 activity in MIO-M1 supernatants and increased hypoxic-induced mRNA expression of pigmentary epithelium-derived factor (PEDF). Moreover, DXC inhibited the VEGF-induced tube formation in endothelial cells. A single intraocular administration of DXC at postnatal day (P) 12 showed a significant decrease of pro MMP-2 and MMP-2 activity together with a reduced NV and vaso-obliteration in P17 mouse retinas of OIR eyes, while no significant difference was observed neither in MMP-2 nor in VEGF protein expression. Discussion Our results lead to propose a possible DXC mechanism for inhibition of angiogenesis through the modulation of MMPs involving the VEGF/PEDF balance. These findings underscore the potential repositioning of DXC as a new possibility for treating ocular proliferative diseases.
Collapse
Affiliation(s)
- María Lina Formica
- Conicet y Departamento de Ciencias Farmacéuticas, Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María Constanza Paz
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
- Departamento de Bioquímica Clínica, Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Córdoba, Argentina
| | - María Victoria Vaglienti
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
- Departamento de Bioquímica Clínica, Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Córdoba, Argentina
| | - Paula Virginia Subirada
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
- Departamento de Bioquímica Clínica, Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Córdoba, Argentina
| | - Yamila Fernández
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
- Departamento de Bioquímica Clínica, Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Córdoba, Argentina
| | - Mariana Belén Joray
- Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas (CIDIE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Católica de Córdoba (UCC), Córdoba, Argentina
| | - José Domingo Luna
- Departamento de Vitreo-Retina, Centro Privado de Ojos Romagosa S.A, Córdoba, Argentina
| | - Pablo Federico Barcelona
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
- Departamento de Bioquímica Clínica, Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Córdoba, Argentina
| | - Santiago Daniel Palma
- Conicet y Departamento de Ciencias Farmacéuticas, Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María Cecilia Sánchez
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
- Departamento de Bioquímica Clínica, Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Córdoba, Argentina
| |
Collapse
|
2
|
Zhang SM, Fan B, Li YL, Zuo ZY, Li GY. Oxidative Stress-Involved Mitophagy of Retinal Pigment Epithelium and Retinal Degenerative Diseases. Cell Mol Neurobiol 2023; 43:3265-3276. [PMID: 37391574 PMCID: PMC10477140 DOI: 10.1007/s10571-023-01383-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/22/2023] [Indexed: 07/02/2023]
Abstract
The retinal pigment epithelium (RPE) is a highly specialized and polarized epithelial cell layer that plays an important role in sustaining the structural and functional integrity of photoreceptors. However, the death of RPE is a common pathological feature in various retinal diseases, especially in age-related macular degeneration (AMD) and diabetic retinopathy (DR). Mitophagy, as a programmed self-degradation of dysfunctional mitochondria, is crucial for maintaining cellular homeostasis and cell survival under stress. RPE contains a high density of mitochondria necessary for it to meet energy demands, so severe stimuli can cause mitochondrial dysfunction and the excess generation of intracellular reactive oxygen species (ROS), which can further trigger oxidative stress-involved mitophagy. In this review, we summarize the classical pathways of oxidative stress-involved mitophagy in RPE and investigate its role in the progression of retinal diseases, aiming to provide a new therapeutic strategy for treating retinal degenerative diseases. The role of mitophagy in AMD and DR. In AMD, excessive ROS production promotes mitophagy in the RPE by activating the Nrf2/p62 pathway, while in DR, ROS may suppress mitophagy by the FOXO3-PINK1/parkin signaling pathway or the TXNIP-mitochondria-lysosome-mediated mitophagy.
Collapse
Affiliation(s)
- Si-Ming Zhang
- Department of Ophthalmology, Second Norman Bethune Hospital of Jilin University, Changchun, 130000, China
| | - Bin Fan
- Department of Ophthalmology, Second Norman Bethune Hospital of Jilin University, Changchun, 130000, China
| | - Yu- Lin Li
- Department of Ophthalmology, Second Norman Bethune Hospital of Jilin University, Changchun, 130000, China
| | - Zhao-Yang Zuo
- Department of Ophthalmology, Second Norman Bethune Hospital of Jilin University, Changchun, 130000, China
| | - Guang-Yu Li
- Department of Ophthalmology, Second Norman Bethune Hospital of Jilin University, Changchun, 130000, China.
| |
Collapse
|
3
|
Tian Y, Sheng S, Gao W, Yao J, Tian Y. Sonodynamic therapy suppresses matrix collagen degradation in vulnerable atherosclerotic plaque by modulating caspase 3 - PEDF/HIF-1α - MMP-2/MMP-9 signaling in macrophages. PLoS One 2022; 17:e0279191. [PMID: 36574366 PMCID: PMC9794047 DOI: 10.1371/journal.pone.0279191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 12/01/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The rupture of vulnerable atherosclerotic plaque is the main cause of acute ischemic vascular events, and is characterized by pathological degradation of matrix collagen in the fibrous cap. In a previous study, we reported that 5-aminolevulinic acid-mediated sonodynamic therapy suppressed collagen degradation in rabbit plaque. However, the underlying molecular mechanism has yet to be fully elucidated. METHODS We applied sinoporphyrin sodium-mediated sonodynamic therapy (DVDMS-SDT) to balloon-denuded rabbit and apolipoprotein E-deficient (ApoE-/-) mouse models to observe collagen content in plaque. Cultured human THP-1 and mouse peritoneal macrophage-derived foam cells were used for in vitro mechanistic studies. RESULTS We observed that DVDMS-SDT decreased plaque area and increased the percentages of collagen and smooth muscle cells and reduced the percentage of macrophages in rabbit and ApoE-/- mouse advanced plaques. In vitro, DVDMS-SDT modulated the caspase 3-pigment epithelium-derived factor/hypoxia-inducible factor-1α (PEDF/HIF-1α)-matrix metalloprotease-2/9 (MMP-2/MMP-9) signaling in macrophage foam cells. CONCLUSIONS Our findings show that DVDMS-SDT effectively inhibits matrix collagen degradation in advanced atherosclerotic plaque by modulating caspase 3-PEDF/HIF-1α-MMP-2/MMP-9 signaling in macrophage foam cells and therefore represents a suitable and promising clinical regimen to stabilize vulnerable plaques.
Collapse
Affiliation(s)
- Yanfeng Tian
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, China
| | - Siqi Sheng
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, China
| | - Weiwei Gao
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, China
| | - Jianting Yao
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, China
- * E-mail: , (YT); (JY)
| | - Ye Tian
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, China
- The Second Affiliated Hospital of Southern University of Science and Technology (The Third People’s Hospital of Shenzhen), Southern University of Science and Technology, Shenzhen, China
- * E-mail: , (YT); (JY)
| |
Collapse
|
4
|
Wang Y, Liu X, Quan X, Qin X, Zhou Y, Liu Z, Chao Z, Jia C, Qin H, Zhang H. Pigment epithelium-derived factor and its role in microvascular-related diseases. Biochimie 2022; 200:153-171. [DOI: 10.1016/j.biochi.2022.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 05/19/2022] [Accepted: 05/30/2022] [Indexed: 01/02/2023]
|
5
|
Subirada PV, Vaglienti MV, Joray MB, Paz MC, Barcelona PF, Sánchez MC. Rapamycin and Resveratrol Modulate the Gliotic and Pro-Angiogenic Response in Müller Glial Cells Under Hypoxia. Front Cell Dev Biol 2022; 10:855178. [PMID: 35300418 PMCID: PMC8921868 DOI: 10.3389/fcell.2022.855178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/14/2022] [Indexed: 01/18/2023] Open
Abstract
Hypoxia and hypoxia-reoxygenation are frequently developed through the course of many retinal diseases of different etiologies. Müller glial cells (MGCs), together with microglia and astrocytes, participate firstly in response to the injury and later in the repair of tissue damage. New pharmacological strategies tend to modulate MGCs ability to induce angiogenesis and gliosis in order to accelerate the recovery stage. In this article, we investigated the variation in autophagy flux under hypoxia during 4 h, employing both gas culture chamber (1% O2) and chemical (CoCl2) hypoxia, and also in hypoxia-reoxygenation. Then, we delineated a strategy to induce autophagy with Rapamycin and Resveratrol and analysed the gliotic and pro-angiogenic response of MGCs under hypoxic conditions. Our results showed an increase in LC3B II and p62 protein levels after both hypoxic exposure respect to normoxia. Moreover, 1 h of reoxygenation after gas hypoxia upregulated LC3B II levels respect to hypoxia although a decreased cell survival was observed. Exposure to low oxygen levels increased the protein expression of the glial fibrillary acid protein (GFAP) in MGCs, whereas Vimentin levels remained constant. In our experimental conditions, Rapamycin but not Resveratrol decreased GFAP protein levels in hypoxia. Finally, supernatants of MGCs incubated in hypoxic conditions and in presence of the autophagy inductors inhibited endothelial cells (ECs) tubulogenesis. In agreement with these results, reduced expression of vascular endothelial growth factor (VEGF) mRNA was observed in MGCs with Rapamycin, whereas pigment epithelium-derived factor (PEDF) mRNA levels significantly increased in MGCs incubated with Resveratrol. In conclusion, this research provides evidence about the variation of autophagy flux under hypoxia and hypoxia-reoxygenation as a protective mechanism activated in response to the injury. In addition, beneficial effects were observed with Rapamycin treatment as it decreased the gliotic response and prevented the development of newly formed blood vessels.
Collapse
Affiliation(s)
- Paula V Subirada
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
| | - María V Vaglienti
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
| | - Mariana B Joray
- Universidad Católica de Córdoba, Facultad de Ciencias Químicas, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Recursos Naturales y Sustentabilidad José Sánchez Labrador J. S., Córdoba, Argentina
| | - María C Paz
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
| | - Pablo F Barcelona
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
| | - María C Sánchez
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
| |
Collapse
|
6
|
Zhang Y, Yu Z, Lei L, Song Y, Liu S, Cui J, Dong C, Ding J, Cheng X, Su Y, Ma X. Secreted PEDF modulates fibroblast collagen synthesis through M1 macrophage polarization under expanded condition. Biomed Pharmacother 2021; 142:111951. [PMID: 34333290 DOI: 10.1016/j.biopha.2021.111951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 07/08/2021] [Accepted: 07/15/2021] [Indexed: 11/19/2022] Open
Abstract
Tissue expansion is widely used to obtain new skin tissue for repairing defects in the clinical practice of plastic surgery. One major complication can be dermal thinning during expansion, which usually leads to skin rupture. Collagen synthesis can determine dermal thickness and can be influenced by macrophage polarization during expansion. The aim of the study was to test whether pigment epithelium-derived factor (PEDF) could be a modulator of collagen synthesis in fibroblasts by regulating macrophage polarization during skin expansion. Our results showed that PEDF mRNA expression was increased in expanded human and mouse epidermis. PEDF protein levels were elevated in the subcutaneous exudates of a rat skin expansion model. Increased PEDF mRNA expression was accompanied by dermal thinning during a three-week expansion protocol. Subcutaneous injection of PEDF in vivo further resulted in dermal thinning and cell number increase of M1 macrophage in the expanded skin. PEDF also promoted macrophage polarization in vitro to the M1 subtype under hypoxic conditions. PEDF did not influence collagen gene expression in fibroblasts directly, but attenuated collagen synthesis in a macrophage-mediated manner. Additionally, blockage of PEDF receptors on macrophages with inhibitors rescued collagen synthesis in fibroblasts. Our research demonstrated PEDF elevation in expanded skin leads to dermal thinning through M1 macrophage-mediated collagen synthesis inhibition in fibroblasts. Our results could form a basis for the development of novel strategies to improve skin integrity in expanded skin by using PEDF.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi'an, Shaanxi Province 710032, China
| | - Zhou Yu
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi'an, Shaanxi Province 710032, China
| | - Lei Lei
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi'an, Shaanxi Province 710032, China
| | - Yajuan Song
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi'an, Shaanxi Province 710032, China
| | - Shiqiang Liu
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi'an, Shaanxi Province 710032, China
| | - Jiangbo Cui
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi'an, Shaanxi Province 710032, China
| | - Chen Dong
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi'an, Shaanxi Province 710032, China
| | - Jianke Ding
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi'an, Shaanxi Province 710032, China
| | - Xiaoxi Cheng
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi'an, Shaanxi Province 710032, China
| | - Yingjun Su
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi'an, Shaanxi Province 710032, China.
| | - Xianjie Ma
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi'an, Shaanxi Province 710032, China.
| |
Collapse
|
7
|
Li X, Liu J, Hoh J, Liu J. Müller cells in pathological retinal angiogenesis. Transl Res 2019; 207:96-106. [PMID: 30639368 DOI: 10.1016/j.trsl.2018.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 12/06/2018] [Accepted: 12/21/2018] [Indexed: 02/07/2023]
Abstract
Müller cells are the major glial cells spanning the entire layer of the retina and maintaining retinal structure. Under pathological conditions, Müller cells are involved in retinal angiogenesis, a process of growing new blood vessels from pre-existing capillaries. In response to hypoxia, high glucose, and inflammation conditions, multiple signaling pathways are activated in Müller cells, followed by the increased production of proangiogenic factors including vascular endothelial growth factor, basic fibroblast growth factor, matrix metalloproteinases, Netrin-4, and angiopoietin-like 4. Expression of antiangiogenic factors is also downregulated in Müller cells. Besides, proliferation and dedifferentiation of Müller cells facilitates retinal angiogenesis. In this review, we summarized molecular mechanisms of Müller cells-related retinal angiogenesis. The potential of Müller cells as a therapeutic target for retinal angiogenesis was also discussed.
Collapse
Affiliation(s)
- Xiaorui Li
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China; Taishan Medical College, Taian, China
| | - Jing Liu
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Josephine Hoh
- Department of Epidemiology and Public Health, Department of Ophthalmology and Visual Science, Yale University, New Haven, Connecticut
| | - Ju Liu
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
8
|
Zhou P, Xie W, Meng X, Zhai Y, Dong X, Zhang X, Sun G, Sun X. Notoginsenoside R1 Ameliorates Diabetic Retinopathy through PINK1-Dependent Activation of Mitophagy. Cells 2019; 8:E213. [PMID: 30832367 PMCID: PMC6468581 DOI: 10.3390/cells8030213] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 02/23/2019] [Accepted: 02/26/2019] [Indexed: 01/09/2023] Open
Abstract
: Accumulating evidence has indicated that inflammation, oxidative stress, apoptosis, and autophagy in retinal Müller cells are involved in diabetic retinopathy (DR). Notoginsenoside R1 (NGR1), a novel saponin extracted from Panax notoginseng, posesses pharmacological properties, including treating diabetic encephalopathy and improving microcirculatory disorders. Nevertheless, its beneficial effects on DR and the potential mechanism remain to be elucidated. In this study, we found retinal vascular degeneration, reduced retinal thickness, and impaired retinal function in db/db mice were all dramatically attenuated by oral treatment with NGR1 (30 mg/kg) for 12 weeks. NGR1 pretreatment also significantly inhibited apoptosis, markedly suppressed the VEGF expression, markedly increased PEDF expression and markedly inhibited oxidative stress and inflammation in rat retinal Müller cells (rMC-1) subjected to high glucose (HG) and in the retinas of db/db mice. Furthermore, NGR1 pre-treatment upregulated the level of PINK1 and Parkin, increased the LC3-II/LC3-I ratio, and downregulated the level of p62/SQSTM1 in rMC-1 cells induced by HG and in the retinas of db/db mice. Moreover, NGR1 administration enhanced the co-localization of GFP-LC3 puncta and MitoTracker in rMC-1 cells. Importantly, knockdown of PINK1 abolished the protective effects of NGR1. In conclusion, these phenomena suggested that NGR1 prevented DR via PINK1-dependent enhancement of mitophagy.
Collapse
Affiliation(s)
- Ping Zhou
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
- Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Weijie Xie
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
- Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Xiangbao Meng
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
- Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Yadong Zhai
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
- Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Xi Dong
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
- Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Xuelian Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
- Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Guibo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
- Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
- Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Beijing 100193, China.
| |
Collapse
|
9
|
Ioanna Z, Christian S, Christian G, Daniel B. Plasma levels of hypoxia-regulated factors in patients with age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 2017; 256:325-332. [PMID: 29177891 PMCID: PMC5790859 DOI: 10.1007/s00417-017-3846-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/18/2017] [Accepted: 11/04/2017] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Various hypoxia-related proteins are differentially expressed in the retina and secreted to the vitreous and/or aqueous humor of patients affected by dry or neovascular age-related macular degeneration (nAMD). To determine whether these conditions alter concentrations of cytokines also in the systemic circulation, we measured plasma levels of six hypoxia-related proteins. METHODS Plasma was prepared from EDTA blood that was collected from patients affected by dry AMD (n = 5), nAMD (n = 11), proliferative diabetic retinopathy (PDR; n = 9), and patients with an epiretinal membrane (ERM; n = 11). ERM samples served as negative controls, PDR samples as positive controls. Protein concentrations of vascular endothelial growth factor (VEGF), erythropoietin (EPO), angiopoietin-like 4 (ANGPTL4), placental growth factor (PlGF), tumor necrosis factor alpha (TNF-α), and pigment epithelium-derived factor (PEDF) were determined by enzyme-linked immunosorbent assay (ELISA). RESULTS The concentration of PlGF was significantly increased in plasma of patients affected by nAMD. Although no statistically significant differences were found for EPO, ANGPTL4, PlGF, TNF-α, and PEDF, the mean concentration of VEGF was lowest in the nAMD group. Plasma concentrations of the six factors did not correlate with gender or age of patients. CONCLUSIONS nAMD may increase plasma concentrations of PlGF, making it a candidate as a biomarker for the neovascular form of AMD. Other factors, however, were not differentially regulated, suggesting that their systemic concentrations are not generally increased in hypoxia-related retinal diseases.
Collapse
Affiliation(s)
- Zygoula Ioanna
- Department of Ophthalmology, University Hospital Zurich, Frauenklinikstrasse 24, 8091, Zurich, Switzerland
| | - Schori Christian
- Lab for Retinal Cell Biology, Department of Ophthalmology, Zurich Centre for Integrative Human Physiology (ZIHP), and Neuroscience Centre (ZNZ), University of Zurich, Zurich, Switzerland
| | - Grimm Christian
- Lab for Retinal Cell Biology, Department of Ophthalmology, Zurich Centre for Integrative Human Physiology (ZIHP), and Neuroscience Centre (ZNZ), University of Zurich, Zurich, Switzerland
| | - Barthelmes Daniel
- Department of Ophthalmology, University Hospital Zurich, Frauenklinikstrasse 24, 8091, Zurich, Switzerland.
| |
Collapse
|
10
|
Shen W, Yau B, Lee SR, Zhu L, Yam M, Gillies MC. Effects of Ranibizumab and Aflibercept on Human Müller Cells and Photoreceptors under Stress Conditions. Int J Mol Sci 2017; 18:ijms18030533. [PMID: 28257068 PMCID: PMC5372549 DOI: 10.3390/ijms18030533] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 02/24/2017] [Indexed: 11/16/2022] Open
Abstract
Anti-vascular endothelial growth factor (VEGF) therapy has revolutionized the treatment of retinal vascular diseases. However, constitutive VEGF also acts as a trophic factor on retinal nonvascular cells. We have studied the effects of aflibercept and ranibizumab on human Müller cells and photoreceptors exposed to starvation media containing various concentrations of glucose, with or without CoCl2-induced hypoxia. Cell survival was assessed by calcein-AM cell viability assays. Expression of heat shock proteins (Hsp) and redox proteins thioredoxin 1 and 2 (TRX1, TRX2) was studied by Western blots. The production of neurotrophic factors in Müller cells and interphotoreceptor retinoid-binding protein (IRBP) in photoreceptors was measured by enzymelinked immunosorbent assays. Aflibercept and ranibizumab did not affect the viability of both types of cells. Neither aflibercept nor ranibizumab affected the production of neurotrophic factors or expression of Hsp60 and Hsp90 in Müller cells. However, aflibercept but not ranibizumab affected the expression of Hsp60, Hsp9, TRX1 and TRX2 in photoreceptors. Aflibercept and ranibizumab both inhibited the production of IRBP in photoreceptors, aflibercept more so than ranibizumab. Our data indicates that the potential influence of aflibercept and ranibizumab on photoreceptors should be specifically monitored in clinical studies.
Collapse
Affiliation(s)
- Weiyong Shen
- Macula Research Group, Clinical Ophthalmology and Eye Health, Save Sight Institute, The University of Sydney, Sydney, NSW 2000, Australia.
| | - Belinda Yau
- Macula Research Group, Clinical Ophthalmology and Eye Health, Save Sight Institute, The University of Sydney, Sydney, NSW 2000, Australia.
| | - So-Ra Lee
- Macula Research Group, Clinical Ophthalmology and Eye Health, Save Sight Institute, The University of Sydney, Sydney, NSW 2000, Australia.
| | - Ling Zhu
- Macula Research Group, Clinical Ophthalmology and Eye Health, Save Sight Institute, The University of Sydney, Sydney, NSW 2000, Australia.
| | - Michelle Yam
- Macula Research Group, Clinical Ophthalmology and Eye Health, Save Sight Institute, The University of Sydney, Sydney, NSW 2000, Australia.
| | - Mark C Gillies
- Macula Research Group, Clinical Ophthalmology and Eye Health, Save Sight Institute, The University of Sydney, Sydney, NSW 2000, Australia.
| |
Collapse
|
11
|
Balaratnasingam C, Dhrami-Gavazi E, McCann JT, Ghadiali Q, Freund KB. Aflibercept: a review of its use in the treatment of choroidal neovascularization due to age-related macular degeneration. Clin Ophthalmol 2015; 9:2355-71. [PMID: 26719668 PMCID: PMC4689264 DOI: 10.2147/opth.s80040] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Choroidal neovascularization (CNV) due to age-related macular degeneration (AMD) is an important cause of visual morbidity globally. Modern treatment strategies for neovascular AMD achieve regression of CNV by suppressing the activity of key growth factors that mediate angiogenesis. Vascular endothelial growth factor (VEGF) has been the major target of neovascular AMD therapy for almost two decades, and there have been several intravitreally-administered agents that have enabled anatomical restitution and improvement in visual function with continual dosing. Aflibercept (EYLEA(®)), initially named VEGF Trap-eye, is the most recent anti-VEGF agent to be granted US Food and Drug Administration approval for the treatment of neovascular AMD. Biologic advantages of aflibercept include its greater binding affinity for VEGF, a longer intravitreal half-life relative to other anti-VEGF agents, and the capacity to antagonize growth factors other than VEGF. This paper provides an up-to-date summary of the molecular mechanisms mediating CNV. The structural, pharmacodynamic, and pharmacokinetic advantages of aflibercept are also reviewed to rationalize the utility of this agent for treating CNV. Results of landmark clinical investigations, including VIEW 1 and 2 trials, and other important studies are then summarized and used to illustrate the efficacy of aflibercept for managing treatment-naïve CNV, recalcitrant CNV, and CNV due to polypoidal choroidal vasculopathy. Safety profile, patient tolerability, and quality of life measures related to aflibercept are also provided. The evidence provided in this paper suggests aflibercept to be a promising agent that can be used to reduce the treatment burden of neovascular AMD.
Collapse
Affiliation(s)
- Chandrakumar Balaratnasingam
- Vitreous-Retina-Macula Consultants of New York, NY, USA
- LuEsther T Mertz Retinal Research Center, Manhattan Eye, Ear and Throat Hospital, New York, NY, USA
- Centre for Ophthalmology and Visual Sciences, Lions Eye Institute, University of Western Australia, Perth, WA, Australia
| | - Elona Dhrami-Gavazi
- Vitreous-Retina-Macula Consultants of New York, NY, USA
- LuEsther T Mertz Retinal Research Center, Manhattan Eye, Ear and Throat Hospital, New York, NY, USA
- Department of Ophthalmology, Edward S Harkness Eye Institute, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Jesse T McCann
- Vitreous-Retina-Macula Consultants of New York, NY, USA
- LuEsther T Mertz Retinal Research Center, Manhattan Eye, Ear and Throat Hospital, New York, NY, USA
- Department of Ophthalmology, Edward S Harkness Eye Institute, Columbia University College of Physicians and Surgeons, New York, NY, USA
- Department of Ophthalmology, New York University School of Medicine, New York, NY, USA
| | - Quraish Ghadiali
- Vitreous-Retina-Macula Consultants of New York, NY, USA
- LuEsther T Mertz Retinal Research Center, Manhattan Eye, Ear and Throat Hospital, New York, NY, USA
| | - K Bailey Freund
- Vitreous-Retina-Macula Consultants of New York, NY, USA
- LuEsther T Mertz Retinal Research Center, Manhattan Eye, Ear and Throat Hospital, New York, NY, USA
- Department of Ophthalmology, Edward S Harkness Eye Institute, Columbia University College of Physicians and Surgeons, New York, NY, USA
- Department of Ophthalmology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
12
|
|
13
|
Julian GS, Oliveira RWD, Favaro VM, Oliveira MGMD, Perry JC, Tufik S, Chagas JR. Chronic intermittent hypoxia increases encoding pigment epithelium-derived factor gene expression, although not that of the protein itself, in the temporal cortex of rats. J Bras Pneumol 2015; 41:39-47. [PMID: 25750673 PMCID: PMC4350824 DOI: 10.1590/s1806-37132015000100006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 11/11/2014] [Indexed: 11/22/2022] Open
Abstract
Objective: Obstructive sleep apnea syndrome is mainly characterized by intermittent hypoxia (IH) during sleep, being associated with several complications. Exposure to IH is the most widely used animal model of sleep apnea, short-term IH exposure resulting in cognitive and neuronal impairment. Pigment epithelium-derived factor (PEDF) is a hypoxia-sensitive factor acting as a neurotrophic, neuroprotective, and antiangiogenic agent. Our study analyzed performance on learning and cognitive tasks, as well as PEDF gene expression and PEDF protein expression in specific brain structures, in rats exposed to long-term IH. Methods: Male Wistar rats were exposed to IH (oxygen concentrations of 21-5%) for 6 weeks-the chronic IH (CIH) group-or normoxia for 6 weeks-the control group. After CIH exposure, a group of rats were allowed to recover under normoxic conditions for 2 weeks (the CIH+N group). All rats underwent the Morris water maze test for learning and memory, PEDF gene expression and PEDF protein expression in the hippocampus, frontal cortex, and temporal cortex being subsequently assessed. Results: The CIH and CIH+N groups showed increased PEDF gene expression in the temporal cortex, PEDF protein expression remaining unaltered. PEDF gene expression and PEDF protein expression remained unaltered in the frontal cortex and hippocampus. Long-term exposure to IH did not affect cognitive function. Conclusions: Long-term exposure to IH selectively increases PEDF gene expression at the transcriptional level, although only in the temporal cortex. This increase is probably a protective mechanism against IH-induced injury.
Collapse
Affiliation(s)
- Guilherme Silva Julian
- Federal University of São Paulo, Paulista School of Medicine, Department of Psychobiology, São Paulo, Brazil. Department of Psychobiology, Federal University of São Paulo Paulista School of Medicine, São Paulo, Brazil
| | - Renato Watanabe de Oliveira
- Federal University of São Paulo, Paulista School of Medicine, Department of Psychobiology, São Paulo, Brazil. Department of Psychobiology, Federal University of São Paulo Paulista School of Medicine, São Paulo, Brazil
| | - Vanessa Manchim Favaro
- Federal University of São Paulo, Paulista School of Medicine, Department of Psychobiology, São Paulo, Brazil. Department of Psychobiology, Federal University of São Paulo Paulista School of Medicine, São Paulo, Brazil
| | - Maria Gabriela Menezes de Oliveira
- Federal University of São Paulo, Paulista School of Medicine, Department of Psychobiology, São Paulo, Brazil. Department of Psychobiology, Federal University of São Paulo Paulista School of Medicine, São Paulo, Brazil
| | - Juliana Cini Perry
- Federal University of São Paulo, Paulista School of Medicine, Department of Psychobiology, São Paulo, Brazil. Department of Psychobiology, Federal University of São Paulo Paulista School of Medicine, São Paulo, Brazil
| | - Sergio Tufik
- Federal University of São Paulo, Paulista School of Medicine, Department of Psychobiology, São Paulo, Brazil. Department of Psychobiology, Federal University of São Paulo Paulista School of Medicine, São Paulo, Brazil
| | - Jair Ribeiro Chagas
- Federal University of São Paulo, Department of Biosciences, Santos, Brazil. Department of Psychobiology, Federal University of São Paulo Paulista School of Medicine, São Paulo; and Department of Biosciences, Federal University of São Paulo, Baixada Santista Campus, Santos, Brazil
| |
Collapse
|
14
|
Trophic factors in the pathogenesis and therapy for retinal degenerative diseases. Surv Ophthalmol 2014; 59:134-65. [PMID: 24417953 DOI: 10.1016/j.survophthal.2013.09.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 09/11/2013] [Accepted: 09/17/2013] [Indexed: 12/27/2022]
Abstract
Trophic factors are endogenously secreted proteins that act in an autocrine and/or paracrine fashion to affect vital cellular processes such as proliferation, differentiation, and regeneration, thereby maintaining overall cell homeostasis. In the eye, the major contributors of these molecules are the retinal pigment epithelial (RPE) and Müller cells. The primary paracrine targets of these secreted proteins include the photoreceptors and choriocapillaris. Retinal degenerative diseases such as age-related macular degeneration and retinitis pigmentosa are characterized by aberrant function and/or eventual death of RPE cells, photoreceptors, choriocapillaris, and other retinal cells. We discuss results of in vitro and in vivo animal studies in which candidate trophic factors, either singly or in combination, were used in an attempt to ameliorate photoreceptor and/or retinal degeneration. We also examine current trophic factor therapies as they relate to the treatment of retinal degenerative diseases in clinical studies.
Collapse
|
15
|
Riddell MR, Winkler-Lowen B, Jiang Y, Guilbert LJ, Davidge ST. Fibrocyte-like cells from intrauterine growth restriction placentas have a reduced ability to stimulate angiogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:1025-33. [PMID: 23835310 DOI: 10.1016/j.ajpath.2013.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 05/27/2013] [Accepted: 06/04/2013] [Indexed: 10/26/2022]
Abstract
Intrauterine growth restriction (IUGR) is a common complication of pregnancy whereby the fetus fails to achieve its genetic growth potential. Malformation of the placental vasculature is observed in IUGR and may be due to the development of the placenta in a chronically hypoxic environment. Recently, we identified that the predominant stromal cells in the angiogenic zones of the placenta are fibrocyte-like cells. The conditioned medium from fibrocyte-like cells (FcCM) has been shown to stimulate angiogenesis in vitro. Thus, we hypothesized that FcCM from IUGR cells would have a reduced ability to stimulate angiogenesis and that chronic hypoxia would decrease the ability of both normal and IUGR fibrocyte-like cells to stimulate angiogenesis. IUGR FcCM had a reduced ability to stimulate endothelial tubule-like structure formation and an increased ability to stimulate endothelial migration compared with normal FcCM. However, normal and IUGR FcCM produced in chronic hypoxia did not alter endothelial proliferation, migration, or tubule-like structure formation. IUGR FcCM was found to have reduced levels of the pro-angiogenic cytokine IL-8 and increased levels of the anti-angiogenic factors activin-A and pigment epithelium-derived growth factor. Thus, alterations in the ability of IUGR fibrocyte-like cells to stimulate angiogenesis may contribute to the development of vascular malformation in IUGR, but in vitro these changes cannot be attributed to a chronically hypoxic environment.
Collapse
Affiliation(s)
- Meghan R Riddell
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
16
|
Vigneswara V, Berry M, Logan A, Ahmed Z. Pigment epithelium-derived factor is retinal ganglion cell neuroprotective and axogenic after optic nerve crush injury. Invest Ophthalmol Vis Sci 2013; 54:2624-33. [PMID: 23513062 DOI: 10.1167/iovs.13-11803] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To investigate neuroprotective and axogenic properties of pigment epithelium-derived factor (PEDF) in retinal ganglion cells (RGC) in vitro and in vivo. METHODS Adult rat retinal cultures were treated with combinations of PBS and PEDF with or without a cell permeable analogue of cAMP, and RGC survival and neurite lengths quantified. The optic nerves of anesthetised rats were also crushed intraorbitally to transect all RGC axons followed by intravitreal injections of either PBS, PEDF, or cAMP+PEDF every 7 days. RGC were back filled with FluoroGold to quantify RGC survival and longitudinal optic nerve sections were stained with GAP43 antibodies to detect regenerating RGC axons. RESULTS An optimal dose of 2.5 × 10(-5) μg/μL, promoted 65% more RGC survival than controls in vitro, increasing by 4.4- and 5-fold the number of RGC with neurites and the mean neurite length, respectively. Addition of cAMP with or without PEDF did not potentiate RGC survival or the mean number of RGC with neurites, but enhanced RGC neurite length by 1.4-fold, compared with PEDF alone. After optic nerve crush (ONC), PEDF protected RGC from apoptosis and increased the numbers of regenerating RGC axons in the optic nerve by 4.6- and 3.4-fold, respectively when compared with controls. cAMP did not enhance PEDF-induced RGC neuroprotection, but potentiated its neuroregenerative effects by 2- to 3-fold, increasing the number of RGC axons regenerating at 500 and 1000 μm from the lesions site. CONCLUSIONS This study is the first to demonstrate that PEDF enhances both RGC survival and axon regeneration in vitro and in vivo.
Collapse
Affiliation(s)
- Vasanthy Vigneswara
- Neurotrauma and Neurodegeneration Section, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | | | | | | |
Collapse
|
17
|
Ai J, Liu Y, Sun JH. Advanced glycation end-products stimulate basic fibroblast growth factor expression in cultured Müller cells. Mol Med Rep 2012; 7:16-20. [PMID: 23129015 PMCID: PMC3572729 DOI: 10.3892/mmr.2012.1152] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 10/16/2012] [Indexed: 11/05/2022] Open
Abstract
Accumulating evidence points to a causal role for advanced glycation end-products (AGEs) in the development of diabetic vascular complications, including diabetic retinopathy (DR). To assess the reciprocal correlation between AGEs and basic fibroblast growth factor (bFGF), the effects of AGEs on the production of bFGF by Müller cells were investigated. Müller cells were cultured from adult rabbit retinas. The AGEs were prepared with highly glycated bovine serum albumin (BSA) and the control non‑glycated BSA (BSA control) was incubated under the same conditions without glucose. Cultured Müller cells were exposed to AGEs or BSA control (volume percentages were 4, 8, 16, 32 and 64%) for a time course of 1, 3, 6 and 9 days in their desired medium. The expression of bFGF in Müller cells was evaluated by immunocytochemistry. Quantification was performed by densitometry using computerized image analysis with dedicated software. AGEs in a volume percentage of 16 and 32% on day 1 and in a volume percentage of 16, 32 and 64% on days 3, 6 and 9 increased the bFGF expression in Müller cells (P<0.05). Additionally, AGEs upregulated bFGF expression in Müller cells in a time‑dependent manner. In conclusion, the treatment of Müller cells with AGEs resulted in a dose- and time‑dependent elevation of bFGF in the culture medium. The results from this study suggest that the increased formation of AGEs in the vitreous may be involved in the development of DR by inducing the production of bFGF by retinal Müller cells.
Collapse
Affiliation(s)
- Jing Ai
- Department of Ophthalmology, Second Affiliated Hospital (Binjiang Branch), School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, PR China
| | | | | |
Collapse
|
18
|
Unterlauft JD, Eichler W, Kuhne K, Yang XM, Yafai Y, Wiedemann P, Reichenbach A, Claudepierre T. Pigment epithelium-derived factor released by Müller glial cells exerts neuroprotective effects on retinal ganglion cells. Neurochem Res 2012; 37:1524-33. [PMID: 22410737 PMCID: PMC3368109 DOI: 10.1007/s11064-012-0747-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Revised: 02/22/2012] [Accepted: 02/27/2012] [Indexed: 01/25/2023]
Abstract
Survival of retinal ganglion cells (RGC) is compromised in several vision-threatening disorders such as ischemic and hypertensive retinopathies and glaucoma. Pigment epithelium-derived factor (PEDF) is a naturally occurring pleiotropic secreted factor in the retina. PEDF produced by retinal glial (Müller) cells is suspected to be an essential component of neuron-glial interactions especially for RGC, as it can protect this neuronal type from ischemia-induced cell death. Here we show that PEDF treatment can directly affect RGC survival in vitro. Using Müller cell-RGC-co-cultures we observed that activity of Müller-cell derived soluble mediators can attenuate hypoxia-induced damage and RGC loss. Finally, neutralizing the activity of PEDF in glia-conditioned media partially abolished the neuroprotective effect of glia, leading to an increased neuronal death in hypoxic condition. Altogether our results suggest that PEDF is crucially involved in the neuroprotective process of reactive Müller cells towards RGC.
Collapse
Affiliation(s)
- Jan Darius Unterlauft
- Department of Ophthalmology and Eye Hospital, University of Leipzig, Liebigstrasse 10-14, 04103, Leipzig, Germany
| | | | | | | | | | | | | | | |
Collapse
|