1
|
Papp ZT, Ribiczey P, Kató E, Tóth ZE, Varga ZV, Giricz Z, Hanuska A, Al-Khrasani M, Zsembery Á, Zelles T, Harsing LG, Köles L. Angiotensin IV Receptors in the Rat Prefrontal Cortex: Neuronal Expression and NMDA Inhibition. Biomedicines 2024; 13:71. [PMID: 39857655 PMCID: PMC11760436 DOI: 10.3390/biomedicines13010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/20/2024] [Accepted: 12/28/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND N-methyl-D-aspartate type glutamate receptors (NMDARs) are fundamental to neuronal physiology and pathophysiology. The prefrontal cortex (PFC), a key region for cognitive function, is heavily implicated in neuropsychiatric disorders, positioning the modulation of its glutamatergic neurotransmission as a promising therapeutic target. Our recently published findings indicate that AT1 receptor activation enhances NMDAR activity in layer V pyramidal neurons of the rat PFC. At the same time, it suggests that alternative angiotensin pathways, presumably involving AT4 receptors (AT4Rs), might exert inhibitory effects. Angiotensin IV (Ang IV) and its analogs have demonstrated cognitive benefits in animal models of learning and memory deficits. METHODS Immunohistochemistry and whole-cell patch-clamp techniques were used to map the cell-type-specific localization of AT4R, identical to insulin-regulated aminopeptidase (IRAP), and to investigate the modulatory effects of Ang IV on NMDAR function in layer V pyramidal cells of the rat PFC. RESULTS AT4R/IRAP expression was detected in pyramidal cells and GABAergic interneurons, but not in microglia or astrocytes, in layer V of the PFC in 9-12-day-old and 6-month-old rats. NMDA (30 μM) induced stable inward cation currents, significantly inhibited by Ang IV (1 nM-1 µM) in a subset of pyramidal neurons. This inhibition was reproduced by the IRAP inhibitor LVVYP-H7 (10-100 nM). Synaptic isolation of pyramidal neurons did not affect the Ang IV-mediated inhibition of NMDA currents. CONCLUSIONS Ang IV/IRAP-mediated inhibition of NMDA currents in layer V pyramidal neurons of the PFC may represent a way of regulating cognitive functions and thus a potential pharmacological target for cognitive impairments and related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Zsolt Tamás Papp
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (Z.T.P.); (P.R.); (A.H.); (Á.Z.); (T.Z.)
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (E.K.); (Z.V.V.); (Z.G.); (M.A.-K.); (L.G.H.J.)
| | - Polett Ribiczey
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (Z.T.P.); (P.R.); (A.H.); (Á.Z.); (T.Z.)
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (E.K.); (Z.V.V.); (Z.G.); (M.A.-K.); (L.G.H.J.)
| | - Erzsébet Kató
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (E.K.); (Z.V.V.); (Z.G.); (M.A.-K.); (L.G.H.J.)
| | - Zsuzsanna E. Tóth
- Laboratory of Neuroendocrinology and In Situ Hybridization, Department of Anatomy, Histology and Embryology, Semmelweis University, H-1094 Budapest, Hungary;
| | - Zoltán V. Varga
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (E.K.); (Z.V.V.); (Z.G.); (M.A.-K.); (L.G.H.J.)
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (E.K.); (Z.V.V.); (Z.G.); (M.A.-K.); (L.G.H.J.)
| | - Adrienn Hanuska
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (Z.T.P.); (P.R.); (A.H.); (Á.Z.); (T.Z.)
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (E.K.); (Z.V.V.); (Z.G.); (M.A.-K.); (L.G.H.J.)
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (E.K.); (Z.V.V.); (Z.G.); (M.A.-K.); (L.G.H.J.)
| | - Ákos Zsembery
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (Z.T.P.); (P.R.); (A.H.); (Á.Z.); (T.Z.)
| | - Tibor Zelles
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (Z.T.P.); (P.R.); (A.H.); (Á.Z.); (T.Z.)
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (E.K.); (Z.V.V.); (Z.G.); (M.A.-K.); (L.G.H.J.)
- Laboratory of Molecular Pharmacology, HUN-REN Institute of Experimental Medicine, H-1083 Budapest, Hungary
| | - Laszlo G. Harsing
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (E.K.); (Z.V.V.); (Z.G.); (M.A.-K.); (L.G.H.J.)
| | - László Köles
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary; (Z.T.P.); (P.R.); (A.H.); (Á.Z.); (T.Z.)
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (E.K.); (Z.V.V.); (Z.G.); (M.A.-K.); (L.G.H.J.)
| |
Collapse
|
2
|
Zhang T, Yue Y, Li C, Wu X, Park S. Vagus Nerve Suppression in Ischemic Stroke by Carotid Artery Occlusion: Implications for Metabolic Regulation, Cognitive Function, and Gut Microbiome in a Gerbil Model. Int J Mol Sci 2024; 25:7831. [PMID: 39063072 PMCID: PMC11276658 DOI: 10.3390/ijms25147831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/07/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
The vagus nerve regulates metabolic homeostasis and mediates gut-brain communication. We hypothesized that vagus nerve dysfunction, induced by truncated vagotomy (VGX) or carotid artery occlusion (AO), would disrupt gut-brain communication and exacerbate metabolic dysregulation, neuroinflammation, and cognitive impairment. This study aimed to test the hypothesis in gerbils fed a high-fat diet. The gerbils were divided into four groups: AO with VGX (AO_VGX), AO without VGX (AO_NVGX), no AO with VGX (NAO_VGX), and no AO without VGX (NAO_NVGX). After 5 weeks on a high-fat diet, the neuronal cell death, neurological severity, hippocampal lipids and inflammation, energy/glucose metabolism, intestinal morphology, and fecal microbiome composition were assessed. AO and VGX increased the neuronal cell death and neurological severity scores associated with increased hippocampal lipid profiles and lipid peroxidation, as well as changes in the inflammatory cytokine expression and brain-derived neurotrophic factor (BDNF) levels. AO and VGX also increased the body weight, visceral fat mass, and insulin resistance and decreased the skeletal muscle mass. The intestinal morphology and microbiome composition were altered, with an increase in the abundance of Bifidobacterium and a decrease in Akkermansia and Ruminococcus. Microbial metagenome functions were also impacted, including glutamatergic synaptic activity, glycogen synthesis, and amino acid biosynthesis. Interestingly, the effects of VGX were not significantly additive with AO, suggesting that AO inhibited the vagus nerve activity, partly offsetting the effects of VGX. In conclusion, AO and VGX exacerbated the dysregulation of energy, glucose, and lipid metabolism, neuroinflammation, and memory deficits, potentially through the modulation of the gut-brain axis. Targeting the gut-brain axis by inhibiting vagus nerve suppression represents a potential therapeutic strategy for ischemic stroke.
Collapse
Affiliation(s)
- Ting Zhang
- Korea Department of Bioconvergence, Hoseo University, Asan 31499, Republic of Korea; (T.Z.); (Y.Y.); (C.L.); (X.W.)
| | - Yu Yue
- Korea Department of Bioconvergence, Hoseo University, Asan 31499, Republic of Korea; (T.Z.); (Y.Y.); (C.L.); (X.W.)
| | - Chen Li
- Korea Department of Bioconvergence, Hoseo University, Asan 31499, Republic of Korea; (T.Z.); (Y.Y.); (C.L.); (X.W.)
| | - Xuangao Wu
- Korea Department of Bioconvergence, Hoseo University, Asan 31499, Republic of Korea; (T.Z.); (Y.Y.); (C.L.); (X.W.)
| | - Sunmin Park
- Korea Department of Bioconvergence, Hoseo University, Asan 31499, Republic of Korea; (T.Z.); (Y.Y.); (C.L.); (X.W.)
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan 31499, Republic of Korea
| |
Collapse
|
3
|
Pérez-Sisqués L, Bhatt SU, Matuleviciute R, Gileadi TE, Kramar E, Graham A, Garcia FG, Keiser A, Matheos DP, Cain JA, Pittman AM, Andreae LC, Fernandes C, Wood MA, Giese KP, Basson MA. The Intellectual Disability Risk Gene Kdm5b Regulates Long-Term Memory Consolidation in the Hippocampus. J Neurosci 2024; 44:e1544232024. [PMID: 38575342 PMCID: PMC11079963 DOI: 10.1523/jneurosci.1544-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/21/2024] [Accepted: 03/30/2024] [Indexed: 04/06/2024] Open
Abstract
The histone lysine demethylase KDM5B is implicated in recessive intellectual disability disorders, and heterozygous, protein-truncating variants in KDM5B are associated with reduced cognitive function in the population. The KDM5 family of lysine demethylases has developmental and homeostatic functions in the brain, some of which appear to be independent of lysine demethylase activity. To determine the functions of KDM5B in hippocampus-dependent learning and memory, we first studied male and female mice homozygous for a Kdm5b Δ ARID allele that lacks demethylase activity. Kdm5b Δ ARID/ Δ ARID mice exhibited hyperactivity and long-term memory deficits in hippocampus-dependent learning tasks. The expression of immediate early, activity-dependent genes was downregulated in these mice and hyperactivated upon a learning stimulus compared with wild-type (WT) mice. A number of other learning-associated genes were also significantly dysregulated in the Kdm5b Δ ARID/ Δ ARID hippocampus. Next, we knocked down Kdm5b specifically in the adult, WT mouse hippocampus with shRNA. Kdm5b knockdown resulted in spontaneous seizures, hyperactivity, and hippocampus-dependent long-term memory and long-term potentiation deficits. These findings identify KDM5B as a critical regulator of gene expression and synaptic plasticity in the adult hippocampus and suggest that at least some of the cognitive phenotypes associated with KDM5B gene variants are caused by direct effects on memory consolidation mechanisms.
Collapse
Affiliation(s)
- Leticia Pérez-Sisqués
- Centre for Craniofacial and Regenerative Biology, Guy's Hospital, King's College London, London SE1 9RT, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom
| | - Shail U Bhatt
- Centre for Craniofacial and Regenerative Biology, Guy's Hospital, King's College London, London SE1 9RT, United Kingdom
| | - Rugile Matuleviciute
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom
| | - Talia E Gileadi
- Centre for Craniofacial and Regenerative Biology, Guy's Hospital, King's College London, London SE1 9RT, United Kingdom
| | - Eniko Kramar
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California Irvine, Irvine, California, California 92697
| | - Andrew Graham
- Centre for Craniofacial and Regenerative Biology, Guy's Hospital, King's College London, London SE1 9RT, United Kingdom
| | - Franklin G Garcia
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California Irvine, Irvine, California, California 92697
| | - Ashley Keiser
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California Irvine, Irvine, California, California 92697
| | - Dina P Matheos
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California Irvine, Irvine, California, California 92697
| | - James A Cain
- Centre for Craniofacial and Regenerative Biology, Guy's Hospital, King's College London, London SE1 9RT, United Kingdom
| | - Alan M Pittman
- St. George's University of London, London SW17 0RE, United Kingdom
| | - Laura C Andreae
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom
| | - Cathy Fernandes
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AB, United Kingdom
| | - Marcelo A Wood
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California Irvine, Irvine, California, California 92697
| | - K Peter Giese
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London SE5 9RT, United Kingdom
| | - M Albert Basson
- Centre for Craniofacial and Regenerative Biology, Guy's Hospital, King's College London, London SE1 9RT, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Hatherly Laboratories, Exeter EX4 4PS, United Kingdom
| |
Collapse
|
4
|
Xiao H, Xu Y, Cui S, Wang JH. Neuroligin-3-Mediated Synapse Formation Strengthens Interactions between Hippocampus and Barrel Cortex in Associative Memory. Int J Mol Sci 2024; 25:711. [PMID: 38255783 PMCID: PMC10815421 DOI: 10.3390/ijms25020711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/16/2023] [Accepted: 12/17/2023] [Indexed: 01/24/2024] Open
Abstract
Memory traces are believed to be broadly allocated in cerebral cortices and the hippocampus. Mutual synapse innervations among these brain areas are presumably formed in associative memory. In the present study, we have used neuronal tracing by pAAV-carried fluorescent proteins and neuroligin-3 mRNA knockdown by shRNAs to examine the role of neuroligin-3-mediated synapse formation in the interconnection between primary associative memory cells in the sensory cortices and secondary associative memory cells in the hippocampus during the acquisition and memory of associated signals. Our studies show that mutual synapse innervations between the barrel cortex and the hippocampal CA3 region emerge and are upregulated after the memories of associated whisker and odor signals come into view. These synapse interconnections are downregulated by a knockdown of neuroligin-3-mediated synapse linkages. New synapse interconnections and the strengthening of these interconnections appear to endorse the belief in an interaction between the hippocampus and sensory cortices for memory consolidation.
Collapse
Affiliation(s)
- Huajuan Xiao
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Yang Xu
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Shan Cui
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China;
| | - Jin-Hui Wang
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China;
| |
Collapse
|
5
|
Skylar-Scott IA, Sha SJ. Lewy Body Dementia: An Overview of Promising Therapeutics. Curr Neurol Neurosci Rep 2023; 23:581-592. [PMID: 37572228 DOI: 10.1007/s11910-023-01292-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2023] [Indexed: 08/14/2023]
Abstract
PURPOSE OF REVIEW Lewy body dementia (LBD) encompasses dementia with Lewy bodies (DLB) and Parkinson's disease dementia (PDD). This article will emphasize potential disease-modifying therapies as well as investigative symptomatic treatments for non-motor symptoms including cognitive impairment and psychosis that can present a tremendous burden to patients with LBD and their caregivers. RECENT FINDINGS We review 11 prospective disease-modifying therapies (DMT) including four with phase 2 data (neflamapimod, nilotinib, bosutinib, and E2027); four with some limited data in symptomatic populations including phase 1, open-label, registry, or cohort data (vodabatinib, ambroxol, clenbuterol, and terazosin); and three with phase 1 data in healthy populations (Anle138b, fosgonimeton, and CT1812). We also appraise four symptomatic therapies for cognitive impairment, but due to safety and efficacy concerns, only NYX-458 remains under active investigation. Of symptomatic therapies for psychosis recently investigated, pimavanserin shows promise in LBD, but studies of nelotanserin have been suspended. Although the discovery of novel symptomatic and disease-modifying therapeutics remains a significant challenge, recently published and upcoming trials signify promising strides toward that aim.
Collapse
Affiliation(s)
- Irina A Skylar-Scott
- Memory Disorders Division, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 213 Quarry Road, Palo Alto, CA, 94305, USA.
| | - Sharon J Sha
- Memory Disorders Division, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 213 Quarry Road, Palo Alto, CA, 94305, USA
| |
Collapse
|
6
|
Tan F, Long X, Du J, Yuan X. RNA-Seq transcriptomic landscape profiling of spontaneously hypertensive rats treated with a sodium-glucose cotransporter 2 (SGLT2) inhibitor. Biomed Pharmacother 2023; 166:115289. [PMID: 37572641 DOI: 10.1016/j.biopha.2023.115289] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/14/2023] Open
Abstract
BACKGROUND Sodium-glucose co-transporter-2 inhibitor (SGLT2i) are antihyperglycemic medications that reduce cardiovascular disease (CVD) and improve chronic kidney disease prognosis in patients with diabetes mellitus. The specific impact of SGLT2i treatment on hypertensive individuals, however, remains to be established. This underscores the need for systematic efforts to profile the molecular landscape associated with SGLT2i administration. METHODS We conducted a detailed RNA-sequencing (RNA-Seq)-based exploration of transcriptomic changes in response to empagliflozin in eight different tissues (i.e., atrium, aorta, ventricle, white adipose, brown adipose, kidney, lung, and brain) from a male rat model of spontaneously hypertension. Corresponding computational analyses (i.e., clustering, differentially-expressed genes [DEG], and functional association) were performed to analyze these data. Blood pressure measurements, tissue staining studies and RT-qPCR were performed to validate our in silico findings. RESULTS We discovered that empagliflozin exerted potent transcriptomic effects on various tissues, most notably the kidney, white adipose, and lung in spontaneously hypertension rats (SHR). The functional enrichment of DEGs indicated that empagliflozin may regulate blood pressure, blood glucose and lipid homeostasis in SHR. Consistent with our RNA-Seq findings, immunohistochemistry and qPCR analyses revealed decreased renal expression of mitogen-activated protein kinase 10 (MAPK10) and decreased pulmonary expression of the proinflammatory factors Legumain and cathepsin S (CTSS) at 1 month of empagliflozin administration. Notably, immunofluorescence experiments showed increased expression of the AMP-activated protein kinases Prkaa1 and Prkaa2 in white adipose tissue of SHR following empagliflozin therapy. Furthermore, the transcriptomic signatures of the blood pressure-lowing effect by empagliflozin were experimentally validated in SHR. CONCLUSIONS This study provided an important resource of the effects of empagliflozin on various tissues of SHRs. We identified tissue-specific and tissue-enriched transcriptomic signatures, and uncovered the beneficial effects of empagliflozin on hypertension, weight gain and inflammatory response in validated experiments.
Collapse
Affiliation(s)
- Fangyan Tan
- Department of Nephrology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 4000l0, China
| | - Xianglin Long
- Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400040, China
| | - Jianlin Du
- Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400040, China
| | - Xin Yuan
- Department of Nephrology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 4000l0, China.
| |
Collapse
|
7
|
Cai HY, Chen SR, Wang Y, Jiao JJ, Qiao J, Hölscher C, Wang ZJ, Zhang SX, Wu MN. Integrated analysis of the lncRNA-associated ceRNA network in Alzheimer's disease. Gene 2023; 876:147484. [PMID: 37187245 DOI: 10.1016/j.gene.2023.147484] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 04/07/2023] [Accepted: 05/09/2023] [Indexed: 05/17/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that worsens with age. Long non-coding RNAs (lncRNAs) dysregulation and its associated competing endogenous RNA (ceRNA) network have a potential connection with the occurrence and development of AD. A total of 358 differentially expressed genes (DEGs) were screened via RNA sequencing, including 302 differentially expressed mRNAs (DEmRNAs) and 56 differential expressed lncRNAs (DElncRNAs). Anti-sense lncRNA is the main type of DElncRNA, which plays a major role in the cis and trans regulation. The constructed ceRNA network consisted of 4 lncRNAs (NEAT1, LINC00365, FBXL19-AS1, RAI1-AS1719) and 4 microRNAs (miRNAs) (HSA-Mir-27a-3p, HSA-Mir-20b-5p, HSA-Mir-17-5p, HSA-Mir-125b-5p), and 2 mRNAs (MKNK2, F3). Functional enrichment analysis revealed that DEmRNAs are involved in related biological functions of AD. The co-expressed DEmRNAs (DNAH11, HGFAC, TJP3, TAC1, SPTSSB, SOWAHB, RGS4, ADCYAP1) of humans and mice were screened and verified by real-time quantitative polymerase chain reaction (qRT-PCR). In this study, we analyzed the expression profile of human AD-related lncRNA genes, constructed a ceRNA network, and performed functional enrichment analysis of DEmRNAs between human and mice. The obtained gene regulatory networks and target genes can be used to further analyze AD-related pathological mechanisms to optimize AD diagnosis and treatment.
Collapse
Affiliation(s)
- Hong-Yan Cai
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, China; Key Laboratory of Cellular Physiology, Shanxi Province, China.
| | - Si-Ru Chen
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, China
| | - Yu Wang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, China
| | - Juan-Juan Jiao
- Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Jun Qiao
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, China; Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Christian Hölscher
- Academy of Chinese Medical Science, Henan university of Chinese medicine, Zhengzhou, China
| | - Zhao-Jun Wang
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, China; Key Laboratory of Cellular Physiology, Shanxi Province, China; Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Sheng-Xiao Zhang
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, China; Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Mei-Na Wu
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, China; Key Laboratory of Cellular Physiology, Shanxi Province, China; Department of Physiology, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
8
|
Johnston JL, Reda SM, Setti SE, Taylor RW, Berthiaume AA, Walker WE, Wu W, Moebius HJ, Church KJ. Fosgonimeton, a Novel Positive Modulator of the HGF/MET System, Promotes Neurotrophic and Procognitive Effects in Models of Dementia. Neurotherapeutics 2023; 20:431-451. [PMID: 36538176 PMCID: PMC10121968 DOI: 10.1007/s13311-022-01325-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2022] [Indexed: 12/24/2022] Open
Abstract
All types of dementia, including Alzheimer's disease, are debilitating neurodegenerative conditions marked by compromised cognitive function for which there are few effective treatments. Positive modulation of hepatocyte growth factor (HGF)/MET, a critical neurotrophic signaling system, may promote neuronal health and function, thereby addressing neurodegeneration in dementia. Here, we evaluate a series of novel small molecules for their ability to (1) positively modulate HGF/MET activity, (2) induce neurotrophic changes and protect against neurotoxic insults in primary neuron culture, (3) promote anti-inflammatory effects in vitro and in vivo, and (4) reverse cognitive deficits in animal models of dementia. Through screening studies, the compound now known as fosgonimeton-active metabolite (fosgo-AM) was identified by use of immunocytochemistry to be the most potent positive modulator of HGF/MET and was selected for further testing. Primary hippocampal neurons treated with fosgo-AM showed enhanced synaptogenesis and neurite outgrowth, supporting the neurotrophic effects of positive modulators of HGF/MET. Additionally, fosgo-AM protected against neurotoxic insults in primary cortical neuron cultures. In vivo, treatment with fosgo-AM rescued cognitive deficits in the rat scopolamine amnesia model of dementia. Although fosgo-AM demonstrated several procognitive effects in vitro and in vivo, a prodrug strategy was used to enhance the pharmacological properties of fosgo-AM, resulting in the development of fosgonimeton (ATH-1017). The effect of fosgonimeton on cognition was confirmed in a lipopolysaccharide (LPS)-induced neuroinflammatory mouse model of dementia. Together, the results of these studies support the potential of positive modulators of HGF/MET to be used as novel therapeutics and suggest the drug candidate fosgonimeton might protect against neurodegeneration and be therapeutic in the management of Alzheimer's disease and other types of dementia.
Collapse
Affiliation(s)
- Jewel L Johnston
- Athira Pharma, Inc., 18706 North Creek Parkway, Suite 104, Bothell, WA, 98011, USA
| | - Sherif M Reda
- Athira Pharma, Inc., 18706 North Creek Parkway, Suite 104, Bothell, WA, 98011, USA
| | - Sharay E Setti
- Athira Pharma, Inc., 18706 North Creek Parkway, Suite 104, Bothell, WA, 98011, USA
| | - Robert W Taylor
- Athira Pharma, Inc., 18706 North Creek Parkway, Suite 104, Bothell, WA, 98011, USA
| | | | - William E Walker
- Athira Pharma, Inc., 18706 North Creek Parkway, Suite 104, Bothell, WA, 98011, USA
| | - Wei Wu
- Athira Pharma, Inc., 18706 North Creek Parkway, Suite 104, Bothell, WA, 98011, USA
| | - Hans J Moebius
- Athira Pharma, Inc., 18706 North Creek Parkway, Suite 104, Bothell, WA, 98011, USA
| | - Kevin J Church
- Athira Pharma, Inc., 18706 North Creek Parkway, Suite 104, Bothell, WA, 98011, USA.
| |
Collapse
|
9
|
MET Oncogene Controls Invasive Growth by Coupling with NMDA Receptor. Cancers (Basel) 2022; 14:cancers14184408. [PMID: 36139568 PMCID: PMC9496780 DOI: 10.3390/cancers14184408] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The MET oncogene, encoding the tyrosine kinase receptor for a hepatocyte growth factor (HGF), plays a key role in the onset and progression of aggressive forms of breast cancer. Recently, it was found that the glutamate receptor, which has a well-known role in the nervous system, is expressed in many types of tumors outside the nervous system and contributes to metastatic behavior in breast cancer cells. Here, we highlight that MET protein physically interacts with glutamate receptors in two highly metastatic breast cancer cell lines. HGF, which creates a supportive proinvasive microenvironment for the tumor cells, stabilizes this interaction. Pharmacological inhibition of glutamate receptors blunts the migration and invasion elicited by HGF, suggesting drug repurposing of glutamate receptor antagonists for anticancer therapy. Abstract The N-methyl-D-aspartate receptor (NMDAR) is a glutamate-gated ion channel involved in excitatory synaptic transmission. Outside the nervous system, the NMDAR is expressed in a variety of tissues and in cancers, notably in the highly invasive and metastatic triple-negative breast carcinoma. MET encodes the tyrosine kinase receptor for HGF and is a master regulator gene for “invasive growth”. In silico analysis shows that high expression of the NMDAR2B subunit is a negative prognostic factor in human invasive breast carcinoma. Here, we show that in triple-negative breast cancer cell lines NMDAR2B and MET proteins are coexpressed. HGF stimulation of these cells is followed by autophosphorylation of the MET kinase and phosphorylation of the NMDAR2B subunit at tyrosines 1252 and 1474. MET and phosphorylated NMDAR2B are physically associated, as demonstrated by co-immunoprecipitation, confocal immunofluorescence, and proximity ligation assays. Notably, pharmacological inhibition of NMDAR by MK801 and ifenprodil blunts the biological response to HGF. These results demonstrate the existence of a MET-NMDAR crosstalk driving the invasive program, paving the way for a new combinatorial therapy.
Collapse
|
10
|
Chiarotto GB, Cartarozzi LP, Perez M, Tomiyama ALMR, de Castro MV, Duarte ASS, Luzo ÂCM, Oliveira ALRD. Delayed onset, immunomodulation, and lifespan improvement of SOD1 G93A mice after intravenous injection of human mesenchymal stem cells derived from adipose tissue. Brain Res Bull 2022; 186:153-164. [PMID: 35718222 DOI: 10.1016/j.brainresbull.2022.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/07/2022] [Accepted: 06/14/2022] [Indexed: 11/02/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the selective and progressive loss of motor neurons from the spinal cord, brain stem, and motor cortex. Although the hallmark of ALS is motor neuron degeneration, astrocytes, microglia, and T cells actively participate. Pharmacological treatment with riluzole has little effect on the lifespan of the patient. Thus, the development of new therapeutic strategies is of utmost importance. The objective of this study was to verify whether human mesenchymal stem cells (hMSCs) from adipose tissue have therapeutic potential in SOD1G93A transgenic mice. The treatment was carried out in the asymptomatic phase of the disease (10th week) by a single systemic application of ad-hMSCs (1 ×105 cells). The animals were sacrificed at the 14th week (the initial stage of symptoms) or the end-stage (ES) of the disease. The lumbar spinal cords were dissected and processed for Nissl staining (neuronal survival), immunohistochemistry (gliosis and synaptic preservation), and gene transcript expression (qRT-PCR). Behavioral analyses considering the onset of disease and its progression, neurological score, body weight, and motor control (rotarod test) started on the 10th week and were performed every three days until the ES of the disease. The results revealed that treatment with ad-hMSCs promoted greater neuronal survival (44%) than vehicle treatment. However, no effect was seen at the ES of the disease. Better structural preservation of the ventral horn in animals treated with ad-hMSCs was observed, together with decreased gliosis and greater synapse protection. In line with this, we found that the transcript levels of Hgf1 were upregulated in ad-hMSCs-treated mice. These results corroborate the behavioral data showing that ad-hMSCs had delayed motor deficits and reduced weight loss compared to vehicle animals. Additionally, cell therapy delayed the course of the disease and significantly improved survival by 20 days. Overall, our results indicate that treatment with ad-hMSCs has beneficial effects, enhancing neuronal survival and promoting a less degenerative neuronal microenvironment. Thus, this may be a potential therapy to improve the quality of life and to extend the lifespan of ALS patients.
Collapse
Affiliation(s)
- Gabriela Bortolança Chiarotto
- Laboratory of Nerve Regeneration, University of Campinas - UNICAMP, Cidade Universitaria "Zeferino Vaz", Rua Monteiro Lobato, 255, Campinas, 13083-862, SP, Brazil
| | - Luciana Politti Cartarozzi
- Laboratory of Nerve Regeneration, University of Campinas - UNICAMP, Cidade Universitaria "Zeferino Vaz", Rua Monteiro Lobato, 255, Campinas, 13083-862, SP, Brazil
| | - Matheus Perez
- Laboratory of Nerve Regeneration, University of Campinas - UNICAMP, Cidade Universitaria "Zeferino Vaz", Rua Monteiro Lobato, 255, Campinas, 13083-862, SP, Brazil; School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, 14040-907 Ribeirão Preto, SP, Brazil
| | - Ana Laura Midori Rossi Tomiyama
- Laboratory of Nerve Regeneration, University of Campinas - UNICAMP, Cidade Universitaria "Zeferino Vaz", Rua Monteiro Lobato, 255, Campinas, 13083-862, SP, Brazil
| | - Mateus Vidigal de Castro
- Laboratory of Nerve Regeneration, University of Campinas - UNICAMP, Cidade Universitaria "Zeferino Vaz", Rua Monteiro Lobato, 255, Campinas, 13083-862, SP, Brazil
| | - Adriana S S Duarte
- Hematology and Hemotherapy Center, University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil
| | - Ângela Cristina Malheiros Luzo
- Hematology and Hemotherapy Center, University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil
| | - Alexandre Leite Rodrigues de Oliveira
- Laboratory of Nerve Regeneration, University of Campinas - UNICAMP, Cidade Universitaria "Zeferino Vaz", Rua Monteiro Lobato, 255, Campinas, 13083-862, SP, Brazil.
| |
Collapse
|
11
|
Hedou E, Douceau S, Chevilley A, Varangot A, Thiebaut AM, Triniac H, Bardou I, Ali C, Maillasson M, Crepaldi T, Comoglio P, Lemarchand E, Agin V, Roussel BD, Vivien D. Two-Chains Tissue Plasminogen Activator Unifies Met and NMDA Receptor Signalling to Control Neuronal Survival. Int J Mol Sci 2021; 22:ijms222413483. [PMID: 34948279 PMCID: PMC8707453 DOI: 10.3390/ijms222413483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
Tissue-type plasminogen activator (tPA) plays roles in the development and the plasticity of the nervous system. Here, we demonstrate in neurons, that by opposition to the single chain form (sc-tPA), the two-chains form of tPA (tc-tPA) activates the MET receptor, leading to the recruitment of N-Methyl-d-Aspartate receptors (NMDARs) and to the endocytosis and proteasome-dependent degradation of NMDARs containing the GluN2B subunit. Accordingly, tc-tPA down-regulated GluN2B-NMDAR-driven signalling, a process prevented by blockers of HGFR/MET and mimicked by its agonists, leading to a modulation of neuronal death. Thus, our present study unmasks a new mechanism of action of tPA, with its two-chains form mediating a crosstalk between MET and the GluN2B subunit of NMDARs to control neuronal survival.
Collapse
Affiliation(s)
- Elodie Hedou
- Normandie University, UNICAEN, INSERM U1237, Etablissement Français du Sang, Physiopathology and Imaging of Neurological Disorders (PhIND), Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), 14000 Caen, France; (E.H.); (S.D.); (A.C.); (A.V.); (A.M.T.); (H.T.); (I.B.); (C.A.); (V.A.); (D.V.)
| | - Sara Douceau
- Normandie University, UNICAEN, INSERM U1237, Etablissement Français du Sang, Physiopathology and Imaging of Neurological Disorders (PhIND), Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), 14000 Caen, France; (E.H.); (S.D.); (A.C.); (A.V.); (A.M.T.); (H.T.); (I.B.); (C.A.); (V.A.); (D.V.)
| | - Arnaud Chevilley
- Normandie University, UNICAEN, INSERM U1237, Etablissement Français du Sang, Physiopathology and Imaging of Neurological Disorders (PhIND), Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), 14000 Caen, France; (E.H.); (S.D.); (A.C.); (A.V.); (A.M.T.); (H.T.); (I.B.); (C.A.); (V.A.); (D.V.)
| | - Alexandre Varangot
- Normandie University, UNICAEN, INSERM U1237, Etablissement Français du Sang, Physiopathology and Imaging of Neurological Disorders (PhIND), Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), 14000 Caen, France; (E.H.); (S.D.); (A.C.); (A.V.); (A.M.T.); (H.T.); (I.B.); (C.A.); (V.A.); (D.V.)
| | - Audrey M. Thiebaut
- Normandie University, UNICAEN, INSERM U1237, Etablissement Français du Sang, Physiopathology and Imaging of Neurological Disorders (PhIND), Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), 14000 Caen, France; (E.H.); (S.D.); (A.C.); (A.V.); (A.M.T.); (H.T.); (I.B.); (C.A.); (V.A.); (D.V.)
| | - Hortense Triniac
- Normandie University, UNICAEN, INSERM U1237, Etablissement Français du Sang, Physiopathology and Imaging of Neurological Disorders (PhIND), Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), 14000 Caen, France; (E.H.); (S.D.); (A.C.); (A.V.); (A.M.T.); (H.T.); (I.B.); (C.A.); (V.A.); (D.V.)
| | - Isabelle Bardou
- Normandie University, UNICAEN, INSERM U1237, Etablissement Français du Sang, Physiopathology and Imaging of Neurological Disorders (PhIND), Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), 14000 Caen, France; (E.H.); (S.D.); (A.C.); (A.V.); (A.M.T.); (H.T.); (I.B.); (C.A.); (V.A.); (D.V.)
| | - Carine Ali
- Normandie University, UNICAEN, INSERM U1237, Etablissement Français du Sang, Physiopathology and Imaging of Neurological Disorders (PhIND), Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), 14000 Caen, France; (E.H.); (S.D.); (A.C.); (A.V.); (A.M.T.); (H.T.); (I.B.); (C.A.); (V.A.); (D.V.)
| | - Mike Maillasson
- University of Nantes, CHU Nantes, Inserm UMR1232, CNRS ERL6001, SFR Santé, FED 4203, Inserm UMS 016, CNRS UMS 3556, CRCINA, Impact Platform, 44200 Nantes, France;
| | - Tiziana Crepaldi
- Candiolo Cancer Institute IRCCS-FPO, Candiolo, 10060 Turin, Italy; (T.C.); (P.C.)
| | - Paolo Comoglio
- Candiolo Cancer Institute IRCCS-FPO, Candiolo, 10060 Turin, Italy; (T.C.); (P.C.)
| | - Eloïse Lemarchand
- Faculty of Biology, Medicine and Health, University of Manchester, Oxford Rd, Manchester M13 9PL, UK;
| | - Véronique Agin
- Normandie University, UNICAEN, INSERM U1237, Etablissement Français du Sang, Physiopathology and Imaging of Neurological Disorders (PhIND), Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), 14000 Caen, France; (E.H.); (S.D.); (A.C.); (A.V.); (A.M.T.); (H.T.); (I.B.); (C.A.); (V.A.); (D.V.)
| | - Benoit D. Roussel
- Normandie University, UNICAEN, INSERM U1237, Etablissement Français du Sang, Physiopathology and Imaging of Neurological Disorders (PhIND), Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), 14000 Caen, France; (E.H.); (S.D.); (A.C.); (A.V.); (A.M.T.); (H.T.); (I.B.); (C.A.); (V.A.); (D.V.)
- Correspondence: ; Tel.: +33-2-31470166; Fax: +33-2-31470222
| | - Denis Vivien
- Normandie University, UNICAEN, INSERM U1237, Etablissement Français du Sang, Physiopathology and Imaging of Neurological Disorders (PhIND), Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), 14000 Caen, France; (E.H.); (S.D.); (A.C.); (A.V.); (A.M.T.); (H.T.); (I.B.); (C.A.); (V.A.); (D.V.)
- Department of Clinical Research, Caen-Normandie University Hospital, CHU, Avenue de la Côte de Nacre, 14000 Caen, France
| |
Collapse
|
12
|
Bryant JD, Kodali M, Shuai B, Menissy SS, Graves PJ, Phan TT, Dantzer R, Shetty AK, Ciaccia West L, West AP. Neuroimmune mechanisms of cognitive impairment in a mouse model of Gulf War illness. Brain Behav Immun 2021; 97:204-218. [PMID: 34333111 PMCID: PMC8453129 DOI: 10.1016/j.bbi.2021.07.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 07/13/2021] [Accepted: 07/24/2021] [Indexed: 12/17/2022] Open
Abstract
Gulf War Illness (GWI) is a chronic, multi-symptom disorder affecting approximately 30 percent of the nearly 700,000 Veterans of the 1991 Persian Gulf War. GWI-related chemical (GWIC) exposure promotes immune activation that correlates with cognitive impairment and other symptoms of GWI. However, the molecular mechanisms and signaling pathways linking GWIC to inflammation and neurological symptoms remain unclear. Here we show that acute exposure of murine macrophages to GWIC potentiates innate immune signaling and inflammatory cytokine production. Using an established mouse model of GWI, we report that neurobehavioral changes and neuroinflammation are attenuated in mice lacking the cyclic GMP-AMP synthase (cGAS)-Stimulator of Interferon Genes (STING) and NOD-, LRR- or pyrin domain-containing protein 3 (NLRP3) innate immune pathways. In addition, we report sex differences in response to GWIC, with female mice showing more pronounced cognitive impairment and hippocampal astrocyte hypertrophy. In contrast, male mice display a GWIC-dependent upregulation of proinflammatory cytokines in the plasma that is not present in female mice. Our results indicate that STING and NLRP3 are key mediators of the cognitive impairment and inflammation observed in GWI and provide important new information on sex differences in this model.
Collapse
Affiliation(s)
- Joshua D. Bryant
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Maheedhar Kodali
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX, USA
| | - Bing Shuai
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX, USA
| | - Saeed S. Menissy
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Paige J. Graves
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Thien Trong Phan
- Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert Dantzer
- Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ashok K. Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX, USA
| | - Laura Ciaccia West
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA.
| | - A. Phillip West
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA,Corresponding authors. (L. Ciaccia West), (A.P. West)
| |
Collapse
|
13
|
Desole C, Gallo S, Vitacolonna A, Montarolo F, Bertolotto A, Vivien D, Comoglio P, Crepaldi T. HGF and MET: From Brain Development to Neurological Disorders. Front Cell Dev Biol 2021; 9:683609. [PMID: 34179015 PMCID: PMC8220160 DOI: 10.3389/fcell.2021.683609] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 04/30/2021] [Indexed: 12/22/2022] Open
Abstract
Hepatocyte growth factor (HGF) and its tyrosine kinase receptor, encoded by the MET cellular proto-oncogene, are expressed in the nervous system from pre-natal development to adult life, where they are involved in neuronal growth and survival. In this review, we highlight, beyond the neurotrophic action, novel roles of HGF-MET in synaptogenesis during post-natal brain development and the connection between deregulation of MET expression and developmental disorders such as autism spectrum disorder (ASD). On the pharmacology side, HGF-induced MET activation exerts beneficial neuroprotective effects also in adulthood, specifically in neurodegenerative disease, and in preclinical models of cerebral ischemia, spinal cord injuries, and neurological pathologies, such as Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). HGF is a key factor preventing neuronal death and promoting survival through pro-angiogenic, anti-inflammatory, and immune-modulatory mechanisms. Recent evidence suggests that HGF acts on neural stem cells to enhance neuroregeneration. The possible therapeutic application of HGF and HGF mimetics for the treatment of neurological disorders is discussed.
Collapse
Affiliation(s)
- Claudia Desole
- Department of Oncology, University of Turin, Turin, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Simona Gallo
- Department of Oncology, University of Turin, Turin, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Annapia Vitacolonna
- Department of Oncology, University of Turin, Turin, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Francesca Montarolo
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy.,Neurobiology Unit, Neurology, CReSM (Regional Referring Center of Multiple Sclerosis), San Luigi Gonzaga University Hospital, Orbassano, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Antonio Bertolotto
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy.,Neurobiology Unit, Neurology, CReSM (Regional Referring Center of Multiple Sclerosis), San Luigi Gonzaga University Hospital, Orbassano, Italy
| | - Denis Vivien
- INSERM U1237, University of Caen, Gyp Cyceron, Caen, France.,Department of Clinical Research, Caen-Normandie University Hospital, Caen, France
| | - Paolo Comoglio
- IFOM, FIRC Institute for Molecular Oncology, Milan, Italy
| | - Tiziana Crepaldi
- Department of Oncology, University of Turin, Turin, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| |
Collapse
|
14
|
Hallberg M, Larhed M. From Angiotensin IV to Small Peptidemimetics Inhibiting Insulin-Regulated Aminopeptidase. Front Pharmacol 2020; 11:590855. [PMID: 33178027 PMCID: PMC7593869 DOI: 10.3389/fphar.2020.590855] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/18/2020] [Indexed: 12/26/2022] Open
Abstract
It was reported three decades ago that intracerebroventricular injection of angiotensin IV (Ang IV, Val-Tyr-Ile-His-Pro-Phe) improved memory and learning in the rat. There are several explanations for these positive effects of the hexapeptide and related analogues on cognition available in the literature. In 2001, it was proposed that the insulin-regulated aminopeptidase (IRAP) is a main target for Ang IV and that Ang IV serves as an inhibitor of the enzyme. The focus of this review is the efforts to stepwise transform the hexapeptide into more drug-like Ang IV peptidemimetics serving as IRAP inhibitors. Moreover, the discovery of IRAP inhibitors by virtual and substance library screening and direct design applying knowledge of the structure of IRAP and of related enzymes is briefly presented.
Collapse
Affiliation(s)
- Mathias Hallberg
- The Beijer Laboratory, Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, BMC, Uppsala University, Uppsala, Sweden
| | - Mats Larhed
- Department of Medicinal Chemistry, Science for Life Laboratory, BMC, Uppsala University, Uppsala, Sweden
| |
Collapse
|
15
|
Abstract
Neuron-glia antigen 2-expressing glial cells (NG2 glia) serve as oligodendrocyte progenitors during development and adulthood. However, recent studies have shown that these cells represent not only a transitional stage along the oligodendroglial lineage, but also constitute a specific cell type endowed with typical properties and functions. Namely, NG2 glia (or subsets of NG2 glia) establish physical and functional interactions with neurons and other central nervous system (CNS) cell types, that allow them to constantly monitor the surrounding neuropil. In addition to operating as sensors, NG2 glia have features that are expected for active modulators of neuronal activity, including the expression and release of a battery of neuromodulatory and neuroprotective factors. Consistently, cell ablation strategies targeting NG2 glia demonstrate that, beyond their role in myelination, these cells contribute to CNS homeostasis and development. In this review, we summarize and discuss the advancements achieved over recent years toward the understanding of such functions, and propose novel approaches for further investigations aimed at elucidating the multifaceted roles of NG2 glia.
Collapse
|
16
|
Kato T, Oka K, Nakamura T. HGF induces the serine‑phosphorylation and cell surface translocation of ROMK (Kir 1.1) channels in rat kidney cells. Mol Med Rep 2017; 17:1031-1034. [PMID: 29115510 DOI: 10.3892/mmr.2017.7969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 02/09/2017] [Indexed: 11/06/2022] Open
Abstract
Extracellular potassium homeostasis is dependent on the activity of potassium channels, which are expressed on the apical membrane of epithelial tubular cells. The renal outer medullary potassium channel (ROMK) is considered to be the major route for potassium transport into the tubule lumen. Hepatocyte growth factor (HGF) exerts multiple biological activities and is important for maintaining renal homeostasis. It is also anti‑apoptotic and mitogenic for protection and recovery from ARF. Whether HGF regulates the ion channel activities remains to be elucidated, therefore, the present study aimed to investigate the modulation of HGF on the expression of ROMK in cultured renal tubular cells. NRK‑52E cells were treated with recombinant HGF, however, no alterations in the total expression of ROMK were observed by western blot analysis. In examining the serine 44 phosphorylation of ROMK in NRK‑52E cells, the present study observed that HGF enhanced the serine 44 phosphorylation of ROMK. In addition, to investigate whether HGF‑Met signaling induces the movement of ROMK to the cell surface in NRK‑52E cells, the protein constituents of cells were separated into plasma membrane and cytoplasm. Using immunofluorescence assay, the expression of ROMK on the plasma membrane was increased in the HGF‑treated NRK‑52E cells, which suggested that ROMK was translocated to the plasma membrane following the HGF‑induced phosphorylation of serine 44. Therefore, HGF may be important in potassium excretion and perform antihyperkalemic effects through the translocation of potassium channels.
Collapse
Affiliation(s)
- Takashi Kato
- Department of Pharmacology, Faculty of Medicine, Kindai University, Osakasayama, Osaka 589‑8511, Japan
| | - Kiyomasa Oka
- Research and Development, Neurogen, Inc., Ibaraki, Osaka 567‑0085, Japan
| | - Toshikazu Nakamura
- Research and Development, Neurogen, Inc., Ibaraki, Osaka 567‑0085, Japan
| |
Collapse
|
17
|
Kato T. Biological roles of hepatocyte growth factor-Met signaling from genetically modified animals. Biomed Rep 2017; 7:495-503. [PMID: 29188052 DOI: 10.3892/br.2017.1001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/26/2017] [Indexed: 12/29/2022] Open
Abstract
Hepatocyte growth factor (HGF) is produced by stromal and mesenchymal cells, and it stimulates epithelial cell proliferation, motility, morphogenesis and angiogenesis in various organs via tyrosine phosphorylation of its cognate receptor, Met. The HGF-Met signaling pathway contributes in a paracrine manner to the development of epithelial organs, exerts regenerative effects on the epithelium, and promotes the regression of fibrosis in numerous organs. Additionally, the HGF-Met signaling pathway is correlated with the biology of cancer types, neurons and immunity. In vivo analyses using genetic modification have markedly increased the profound understanding of the HGF-Met system in basic biology and its clinical applications. HGF and Met knockout (KO) mice are embryonically lethal. Therefore, amino acids in multifunctional docking sites of Met have been exchanged with specific binding motifs for downstream adaptor molecules in order to investigate the signaling potential of the HGF-Met signaling pathway. Conditional Met KO mice were generated using Cre-loxP methodology and characterization of these mice indicated that the HGF-Met signaling pathway is essential in regeneration, protection, and homeostasis in various tissue types and cells. Furthermore, the results of studies using HGF-overexpressing mice have indicated the therapeutic potential of HGF for various types of disease and injury. In the present review, the phenotypes of Met gene-modified mice are summarized.
Collapse
Affiliation(s)
- Takashi Kato
- Urologic Oncology Branch, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA
| |
Collapse
|
18
|
Kato T, Mizuguchi N, Ito A. Characteristics of podocyte injury in malignant hypertensive nephropathy of rats (MSHRSP/Kpo strain). Biomed Res 2016; 36:313-21. [PMID: 26522148 DOI: 10.2220/biomedres.36.313] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Proteinuria is not only a hallmark of renal complication in malignant hypertension, but is also a major deteriorating factor for the progression to end-stage renal disease. Podocyte injury plays a crucial role in the renal damage associated with hypertensive nephropathy, but the underlying mechanism remains unclear. Malignant stroke-prone spontaneously hypertensive rats (MSHRSP/Kpo) represent an original and useful model of human malignant hypertension. In this study, we disclosed the glomerular injuries in the MSHRSP/Kpo. MSHRSP/Kpo exhibited elevated blood pressure at 6 weeks along with renal dysfunction and proteinuria. Histological analysis of the MSHRSP/Kpo glomeruli revealed a severe atrophy, but no change was found in the podocyte number. The expression levels of podocyte-specific proteins, nephrin, podocin, and synaptopodin were decreased in the MSHRSP/Kpo glomeruli, though another podocyte-specific protein, CD2AP, in the MSHRSP/Kpo glomeruli exhibited a similar extent of staining as in normotensive WKY/Kpo rats. Furthermore, desmin was not markedly detected in the WKY/Kpo glomeruli, but was strongly positive in MSHRSP/Kpo. By electron microscopy, well-formed foot processes (FP) were replaced by effacement in MSHRSP/Kpo. An original malignant hypertension strain MSHRSP/Kpo exhibits podocyte injuries associated with the decrease of some podocyte-specific proteins and the upregulation of desmin, along with FP effacement and proteinuria.
Collapse
Affiliation(s)
- Takashi Kato
- Department of Pharmacology, Faculty of Medicine, Kinki University
| | | | | |
Collapse
|
19
|
Kato T, Mizuguchi N, Ito A. Blood pressure, renal biochemical parameters and histopathology in an original rat model of essential hypertension (SHRSP/Kpo strain). Biomed Res 2016; 36:169-77. [PMID: 26106046 DOI: 10.2220/biomedres.36.169] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Hypertensive nephropathy, a consequence of chronic high blood pressure, is increasingly a cause of end-stage renal diseases and its correct management is very important for clinical outcome. Spontaneously hypertensive rat (SHR/Kpo) and stroke-prone SHR (SHRSP/Kpo) strains represent models of human essential hypertension. However, the kidney injuries in SHR/Kpo and SHRSP/Kpo are not well defined. We therefore characterized the renal pathophysiology of SHR/Kpo and SHRSP/Kpo compared with normotensive control (WKY/Kpo) rats. The SHRSP/Kpo exhibited increased systolic blood pressure at 10 weeks of age, and proteinuria and increased blood urea nitrogen (BUN) and serum creatinine levels at 20 weeks. We simultaneously detected mononuclear cell infiltration, tubular injuries, accumulation of extracellular matrix and marked expression of α-SMA in the tubulointerstitium. Additionally, TGF-β1 and CTGF were up-regulated in the kidney of SHRSP/Kpo. We lastly focused on changes in glomerular cells of SHRSP/Kpo. Nestin, a podocyte marker, was detected but decreased slightly in 20-week-old SHRSP/Kpo. PECAM-1 expression was increased in SHRSP/Kpo glomeruli, indicating the thickening of glomerular endothelial cells. Moreover, we found that α-SMA, a myofibroblast marker, was also upregulated in the glomeruli of SHRSP/Kpo at 20 weeks. These findings suggest that SHRSP/Kpo could be a valuable animal model for human hypertensive nephropathy.
Collapse
Affiliation(s)
- Takashi Kato
- Department of Pathology, Faculty of Medicine, Kinki University
| | | | | |
Collapse
|
20
|
Kato T, Oka K, Nakamura T, Ito A. Decreased expression of Met during differentiation in rat lung. Eur J Histochem 2016; 60:2575. [PMID: 26972715 PMCID: PMC4800251 DOI: 10.4081/ejh.2016.2575] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/05/2016] [Accepted: 01/05/2016] [Indexed: 12/02/2022] Open
Abstract
Organ-specific stem cells play key roles in maintaining the epithelial cell layers of lung. Bronchioalveolar stem cells (BASCs) are distal lung epithelial stem cells of adult mice. Alveolar type 2 (AT2) cells have important functions and serve as progenitor cells of alveolar type 1 (AT1) cells to repair the epithelium when they are injured. Hepatocyte growth factor (HGF) elicits mitogenic, morphogenic, and anti-apoptotic effects on lung epithelial cells through tyrosine phosphorylation of Met receptor, and thus is recognized as a pulmotrophic factor. To understand which cells HGF targets in lung, we identified the cells expressing Met by immunofluorescence assay. Met was strongly expressed in BASCs, which expressed an AT2 cell marker, pro-SP-C, and a club cell marker, CCSP. In alveoli, we found higher expression of Met in primary AT2 than in AT1 cells, which was confirmed using primary AT2 cells. We further examined the mitogenic activity of HGF in AT2-cell-derived alveolar-like cysts (ALCs) in 3D culture. Multicellular ALCs expressed Met, and HGF enhanced the ALC production. Taking these findings together, BASCs could also be an important target for HGF, and HGF-Met signaling could function more potent on cells that have greater multipotency in adult lung.
Collapse
|
21
|
Kato T, Oka K, Nakamura T, Ito A. Bronchioalveolar morphogenesis of human bronchial epithelial cells depending upon hepatocyte growth factor. J Cell Mol Med 2015; 19:2818-26. [PMID: 26416301 PMCID: PMC4687712 DOI: 10.1111/jcmm.12672] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 07/22/2015] [Indexed: 01/09/2023] Open
Abstract
Lung alveolar regeneration occurs in adult human lungs as a result of proliferation, differentiation and alveolar morphogenesis of stem cells. It is increasingly being believed that bronchial epithelial cells (BECs) have a potential as stem cells, because they are potent to differentiate into multiple central and peripheral lung cell types in three‐dimensional (3D) cultures, and they develop multiple foci with well‐differentiated histogenesis after transformed into neoplastic cells. In this study, we investigated morphogenic abilities of HBE135 human BECs immortalized by E6/E7 oncogene in 3D cultures. When HBE135 cells were cultured alone or co‐cultured with endothelial cells, the cells formed spherical colonies without branching. However, in co‐culture with lung fibroblast MRC‐9 cells, HBE135 cells formed colonies with bronchioalveolar‐like complex branching, suggesting that MRC‐9‐derived soluble factor(s) are responsible for the branching formation. MRC‐9 cells, not endothelial cells, were found to highly express hepatocyte growth factor (HGF), a soluble molecule involved in liver and kidney regeneration. An anti‐HGF neutralizing antibody severely suppressed the complex branching formation, but addition of HGF could not sufficiently compensate the morphogenic effects of MRC‐9 cells, suggesting that MCR‐9‐derived HGF was necessary but insufficient for the bronchioalveolar structure formation. Immunohistochemistry revealed that Met, a cognate receptor for HGF, was highly expressed and phosphorylated in neoplastic BECs from lung adenocarcinomas with well‐differentiated, not poorly differentiated, histogenesis. These results are consistent with the notion that BECs have an aspect of stem cells. This aspect appears to become manifest through HGF–Met signalling pathway activation.
Collapse
Affiliation(s)
- Takashi Kato
- Department of Pathology, Faculty of Medicine, Kinki University, Osaka-Sayama, Osaka, Japan.,Department of Pharmacology, Faculty of Medicine, Kinki University, Osaka-Sayama, Osaka, Japan
| | - Kiyomasa Oka
- Research & Development, Neurogen Inc., Ibaraki, Osaka, Japan
| | | | - Akihiko Ito
- Department of Pathology, Faculty of Medicine, Kinki University, Osaka-Sayama, Osaka, Japan
| |
Collapse
|
22
|
Wright JW, Kawas LH, Harding JW. The development of small molecule angiotensin IV analogs to treat Alzheimer's and Parkinson's diseases. Prog Neurobiol 2014; 125:26-46. [PMID: 25455861 DOI: 10.1016/j.pneurobio.2014.11.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 11/17/2014] [Accepted: 11/19/2014] [Indexed: 02/07/2023]
Abstract
Alzheimer's (AD) and Parkinson's (PD) diseases are neurodegenerative diseases presently without effective drug treatments. AD is characterized by general cognitive impairment, difficulties with memory consolidation and retrieval, and with advanced stages episodes of agitation and anger. AD is increasing in frequency as life expectancy increases. Present FDA approved medications do little to slow disease progression and none address the underlying progressive loss of synaptic connections and neurons. New drug design approaches are needed beyond cholinesterase inhibitors and N-methyl-d-aspartate receptor antagonists. Patients with PD experience the symptomatic triad of bradykinesis, tremor-at-rest, and rigidity with the possibility of additional non-motor symptoms including sleep disturbances, depression, dementia, and autonomic nervous system failure. This review summarizes available information regarding the role of the brain renin-angiotensin system (RAS) in learning and memory and motor functions, with particular emphasis on research results suggesting a link between angiotensin IV (AngIV) interacting with the AT4 receptor subtype. Currently there is controversy over the identity of this AT4 receptor protein. Albiston and colleagues have offered convincing evidence that it is the insulin-regulated aminopeptidase (IRAP). Recently members of our laboratory have presented evidence that the brain AngIV/AT4 receptor system coincides with the brain hepatocyte growth factor/c-Met receptor system. In an effort to resolve this issue we have synthesized a number of small molecule AngIV-based compounds that are metabolically stable, penetrate the blood-brain barrier, and facilitate compromised memory and motor systems. These research efforts are described along with details concerning a recently synthesized molecule, Dihexa that shows promise in overcoming memory and motor dysfunctions by augmenting synaptic connectivity via the formation of new functional synapses.
Collapse
Affiliation(s)
- John W Wright
- Departments of Psychology, Integrative Physiology and Neuroscience and Program in Biotechnology, Washington State University, Pullman, WA 99164-4820, USA; M3 Biotechnology, Inc., 4000 Mason Rd Suite 300, Box 352141, Seattle, WA 98195-2141, USA.
| | - Leen H Kawas
- Departments of Psychology, Integrative Physiology and Neuroscience and Program in Biotechnology, Washington State University, Pullman, WA 99164-4820, USA; M3 Biotechnology, Inc., 4000 Mason Rd Suite 300, Box 352141, Seattle, WA 98195-2141, USA
| | - Joseph W Harding
- Departments of Psychology, Integrative Physiology and Neuroscience and Program in Biotechnology, Washington State University, Pullman, WA 99164-4820, USA; M3 Biotechnology, Inc., 4000 Mason Rd Suite 300, Box 352141, Seattle, WA 98195-2141, USA
| |
Collapse
|
23
|
Lee YS. Genes and signaling pathways involved in memory enhancement in mutant mice. Mol Brain 2014; 7:43. [PMID: 24894914 PMCID: PMC4050447 DOI: 10.1186/1756-6606-7-43] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 05/27/2014] [Indexed: 11/10/2022] Open
Abstract
Mutant mice have been used successfully as a tool for investigating the mechanisms of memory at multiple levels, from genes to behavior. In most cases, manipulating a gene expressed in the brain impairs cognitive functions such as memory and their underlying cellular mechanisms, including synaptic plasticity. However, a remarkable number of mutations have been shown to enhance memory in mice. Understanding how to improve a system provides valuable insights into how the system works under normal conditions, because this involves understanding what the crucial components are. Therefore, more can be learned about the basic mechanisms of memory by studying mutant mice with enhanced memory. This review will summarize the genes and signaling pathways that are altered in the mutants with enhanced memory, as well as their roles in synaptic plasticity. Finally, I will discuss how knowledge of memory-enhancing mechanisms could be used to develop treatments for cognitive disorders associated with impaired plasticity.
Collapse
Affiliation(s)
- Yong-Seok Lee
- Department of Life Science, College of Natural Science, Chung-Ang University, Seoul 156-756, Republic of Korea.
| |
Collapse
|
24
|
Eagleson KL, Milner TA, Xie Z, Levitt P. Synaptic and extrasynaptic location of the receptor tyrosine kinase met during postnatal development in the mouse neocortex and hippocampus. J Comp Neurol 2014; 521:3241-59. [PMID: 23787772 DOI: 10.1002/cne.23343] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 02/13/2013] [Accepted: 04/05/2013] [Indexed: 12/13/2022]
Abstract
MET, a replicated autism risk gene, encodes a pleiotropic receptor tyrosine kinase implicated in multiple cellular processes during development and following injury. Previous studies suggest that Met modulates excitatory synapse development in the neocortex and hippocampus, although the underlying mechanism is unknown. The peak of Met expression corresponds to the period of process outgrowth and synaptogenesis, with robust expression in hippocampal and neocortical neuropil. Resolving whether neuropil expression represents presynaptic, postsynaptic or glial localization provides insight into potential mechanisms of Met action. The subcellular distribution of Met was characterized using complementary ultrastructural, in situ proximity ligation assay (PLA), and biochemical approaches. At postnatal day (P) 7, immunoelectron microscopy revealed near-equivalent proportions of Met-immunoreactive pre- (axons and terminals) and postsynaptic (dendritic shafts and spines) profiles in the stratum radiatum in the hippocampal CA1 region. Staining was typically in elements in which the corresponding pre- or postsynaptic apposition was unlabeled. By P21, Met-immunoreactive presynaptic profiles predominated and ~20% of Met-expressing profiles were glial. A different distribution of Met-immunoreactive profiles was observed in layer V of somatosensory cortex: Met-labeled spines were rare and a smaller proportion of glial profiles expressed Met. Strikingly, Met-immunoreactive presynaptic profiles predominated over postsynaptic profiles as early as P7. PLA analysis of neurons in vitro and biochemical analysis of tissue subsynaptic fractions confirmed the localization of Met in specific synaptic subcompartments. The study demonstrates that Met is enriched at synapses during development and its activation may modulate synapse formation and stability through both pre- and postsynaptic mechanisms.
Collapse
Affiliation(s)
- Kathie L Eagleson
- Zilkha Neurogenetic Institute, Keck School of Medicine of USC, Los Angeles, California 90033, USA.
| | | | | | | |
Collapse
|
25
|
Hamasaki H, Honda H, Suzuki SO, Hokama M, Kiyohara Y, Nakabeppu Y, Iwaki T. Down-regulation of MET in hippocampal neurons of Alzheimer's disease brains. Neuropathology 2014; 34:284-90. [DOI: 10.1111/neup.12095] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 12/14/2013] [Indexed: 01/04/2023]
Affiliation(s)
- Hideomi Hamasaki
- Department of Neuropathology; Graduate School of Medical Sciences; Kyushu University; Fukuoka Japan
| | - Hiroyuki Honda
- Department of Neuropathology; Graduate School of Medical Sciences; Kyushu University; Fukuoka Japan
| | - Satoshi O. Suzuki
- Department of Neuropathology; Graduate School of Medical Sciences; Kyushu University; Fukuoka Japan
| | - Masaaki Hokama
- Division of Neurofunctional Genomics; Department of Immunobiology and Neuroscience; Medical Institute of Bioregulation; Kyushu University; Fukuoka Japan
| | - Yutaka Kiyohara
- Department of Environmental Medicine; Graduate School of Medical Sciences; Kyushu University; Fukuoka Japan
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics; Department of Immunobiology and Neuroscience; Medical Institute of Bioregulation; Kyushu University; Fukuoka Japan
| | - Toru Iwaki
- Department of Neuropathology; Graduate School of Medical Sciences; Kyushu University; Fukuoka Japan
| |
Collapse
|
26
|
Diosgenin-induced cognitive enhancement in normal mice is mediated by 1,25D₃-MARRS. Sci Rep 2013; 3:3395. [PMID: 24292207 PMCID: PMC3844946 DOI: 10.1038/srep03395] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/14/2013] [Indexed: 12/27/2022] Open
Abstract
We previously reported that diosgenin, a plant-derived steroidal sapogenin, improved memory and reduced axonal degeneration in an Alzheimer's disease mouse model. Diosgenin directly activated the membrane-associated rapid response steroid-binding receptor (1,25D3-MARRS) in neurons. However, 1,25D3-MARRS-mediated diosgenin signaling was only shown in vitro in the previous study. Here, we aimed to obtain in vivo evidence showing that diosgenin signaling is mediated by 1,25D3-MARRS in the mouse brain. Diosgenin treatment in normal mice enhanced object recognition memory and spike firing and cross-correlation in the medial prefrontal cortex and hippocampal CA1. In diosgenin-treated mice, axonal density and c-Fos expression was increased in the medial prefrontal and perirhinal cortices, suggesting that neuronal network activation may be enhanced. The diosgenin-induced memory enhancement and axonal growth were completely inhibited by co-treatment with a neutralizing antibody for 1,25D3-MARRS. Our in vivo data indicate that diosgenin is a memory-enhancing drug and that enhancement by diosgenin is mediated by 1,25D3-MARRS-triggered axonal growth.
Collapse
|
27
|
Savignac HM, Corona G, Mills H, Chen L, Spencer JPE, Tzortzis G, Burnet PWJ. Prebiotic feeding elevates central brain derived neurotrophic factor, N-methyl-D-aspartate receptor subunits and D-serine. Neurochem Int 2013; 63:756-64. [PMID: 24140431 PMCID: PMC3858812 DOI: 10.1016/j.neuint.2013.10.006] [Citation(s) in RCA: 257] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/24/2013] [Accepted: 10/10/2013] [Indexed: 12/26/2022]
Abstract
Prebiotic feeding elevated BDNF and NR1subunit mRNAs, in the rat hippocampus. The GOS prebiotic increased cortical NR1, d-serine, and hippocampal NR2A subunits. GOS feeding elevated plasma levels of the gut peptide PYY. GOS plasma increased BDNF release from human SH-SY5Y neuroblastoma cells. BDNF secretion from cells by GOS plasma was blocked by PYY antisera.
The influence of the gut microbiota on brain chemistry has been convincingly demonstrated in rodents. In the absence of gut bacteria, the central expression of brain derived neurotropic factor, (BDNF), and N-methyl-d-aspartate receptor (NMDAR) subunits are reduced, whereas, oral probiotics increase brain BDNF, and impart significant anxiolytic effects. We tested whether prebiotic compounds, which increase intrinsic enteric microbiota, also affected brain BDNF and NMDARs. In addition, we examined whether plasma from prebiotic treated rats released BDNF from human SH-SY5Y neuroblastoma cells, to provide an initial indication of mechanism of action. Rats were gavaged with fructo-oligosaccharides (FOS), galacto-oligosaccharides (GOS) or water for five weeks, prior to measurements of brain BDNF, NMDAR subunits and amino acids associated with glutamate neurotransmission (glutamate, glutamine, and serine and alanine enantiomers). Prebiotics increased hippocampal BDNF and NR1 subunit expression relative to controls. The intake of GOS also increased hippocampal NR2A subunits, and frontal cortex NR1 and d-serine. Prebiotics did not alter glutamate, glutamine, l-serine, l-alanine or d-alanine concentrations in the brain, though GOSfeeding raised plasma d-alanine. Elevated levels of plasma peptide YY (PYY) after GOS intake was observed. Plasma from GOS rats increased the release of BDNF from SH-SY5Y cells, but not in the presence of PYY antisera. The addition of synthetic PYY to SH-SY5Y cell cultures, also elevated BDNF secretion. We conclude that prebiotic-mediated proliferation of gut microbiota in rats, like probiotics, increases brain BDNF expression, possibly through the involvement of gut hormones. The effect of GOS on components of central NMDAR signalling was greater than FOS, and may reflect the proliferative potency of GOS on microbiota. Our data therefore, provide a sound basis to further investigate the utility of prebiotics in the maintenance of brain health and adjunctive treatment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Helene M Savignac
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK
| | | | | | | | | | | | | |
Collapse
|
28
|
Kopec AM, Carew TJ. Growth factor signaling and memory formation: temporal and spatial integration of a molecular network. Learn Mem 2013; 20:531-9. [PMID: 24042849 PMCID: PMC3768197 DOI: 10.1101/lm.031377.113] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Growth factor (GF) signaling is critically important for developmental plasticity. It also plays a crucial role in adult plasticity, such as that required for memory formation. Although different GFs interact with receptors containing distinct types of kinase domains, they typically signal through converging intracellular cascades (e.g., Ras–MEK–MAPK) to mediate overlapping functional endpoints. Several GFs have been implicated in memory formation, but due to a high level of convergent signaling, the unique contributions of individual GFs as well as the interactions between GF signaling cascades during the induction of memory is not well known. In this review, we highlight the unique roles of specific GFs in dendritic plasticity, and discuss the spatial and temporal profiles of different GFs during memory formation. Collectively, the data suggest that the roles of GF signaling in long-lasting behavioral and structural plasticity may be best viewed as interactive components in a complex molecular network.
Collapse
Affiliation(s)
- Ashley M Kopec
- Center for Neural Science, New York University, New York, New York 10003, USA
| | | |
Collapse
|