1
|
Kemna RE, Kueck PJ, Blankenship AE, John CS, Johnson CN, Green ZD, Chamberlain T, Thyfault JP, Mahnken JD, Miller BF, Morris JK. Methods to characterize lactate turnover in aging and Alzheimer's disease; The LEAN study. Contemp Clin Trials 2024; 146:107682. [PMID: 39236780 PMCID: PMC11938302 DOI: 10.1016/j.cct.2024.107682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND There is evidence that chronic exercise can benefit the brain, but the effects vary markedly between studies. One potential mechanism for exercise-related benefit is the increase in systemic lactate concentration that is well-characterized to occur during exercise. Lactate is known to cross the blood brain barrier and can be used readily as a fuel for neurons. This may be particularly important in Alzheimer's Disease, which is characterized by cerebral hypometabolism. However, little is known about how whole-body lactate metabolism differs between older adults and individuals with cognitive impairment. This information is critical when considering potential differences in responses to exercise in various cognitive diagnosis groups. METHODS Here we describe the use of a "lactate clamp" procedure to adjust blood lactate levels to approximate those achieved during exercise, but while at rest. This trial will compare lactate oxidation between cognitively healthy older adults and cognitively impaired participants. We will further evaluate the effect of acute lactate infusion on cognitive performance. DISCUSSION The findings of the study described here, the Lactate for Energy and Neurocognition trial (clinicaltrials.gov # NCT05207397) will add to our understanding of systemic lactate mechanics in cognitively healthy older adults and individuals with Alzheimer's Disease. These findings will be applicable to ongoing exercise trials and to future studies aimed at modulating systemic bioenergetic function in aging and Alzheimer's Disease.
Collapse
Affiliation(s)
- Riley E Kemna
- University of Kansas Alzheimer's Disease Research Center, United States of America; Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Paul J Kueck
- University of Kansas Alzheimer's Disease Research Center, United States of America; Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Anneka E Blankenship
- University of Kansas Alzheimer's Disease Research Center, United States of America; Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Casey S John
- University of Kansas Alzheimer's Disease Research Center, United States of America; Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Chelsea N Johnson
- University of Kansas Alzheimer's Disease Research Center, United States of America; Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States of America; Cell Biology and Physiology, Universtiy of Kansas Medical Center, Kansas City, KS, United States of America
| | - Zachary D Green
- University of Kansas Alzheimer's Disease Research Center, United States of America; Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States of America
| | | | - John P Thyfault
- University of Kansas Alzheimer's Disease Research Center, United States of America; Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States of America; Cell Biology and Physiology, Universtiy of Kansas Medical Center, Kansas City, KS, United States of America; Internal Medicine-Division of Endocrinology, Universtiy of Kansas Medical Center, Kansas City, KS, United States of America; Diabetes Institute, Universtiy of Kansas Medical Center, Kansas City, KS, United States of America
| | - Jonathan D Mahnken
- University of Kansas Alzheimer's Disease Research Center, United States of America; Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States of America; Oklahoma City Veterance Association, Oklahoma City, OK, United States of America
| | - Jill K Morris
- University of Kansas Alzheimer's Disease Research Center, United States of America; Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States of America.
| |
Collapse
|
2
|
Frame AK, Sinka JL, Courchesne M, Muhammad RA, Grahovac-Nemeth S, Bernards MA, Bartha R, Cumming RC. Altered neuronal lactate dehydrogenase A expression affects cognition in a sex- and age-dependent manner. iScience 2024; 27:110342. [PMID: 39055955 PMCID: PMC11269950 DOI: 10.1016/j.isci.2024.110342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/15/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
The astrocyte-neuron lactate shuttle (ANLS) model posits that astrocyte-generated lactate is transported to neurons to fuel memory processes. However, neurons express high levels of lactate dehydrogenase A (LDHA), the rate-limiting enzyme of lactate production, suggesting a cognitive role for neuronally generated lactate. It was hypothesized that lactate metabolism in neurons is critical for learning and memory. Here transgenic mice were generated to conditionally induce or knockout (KO) the Ldha gene in CNS neurons of adult mice. High pattern separation memory was enhanced by neuronal Ldha induction in young females, and by neuronal Ldha KO in aged females. In older mice, Ldha induction caused cognitive deficits whereas Ldha KO caused cognitive improvements. Genotype-associated cognitive changes were often only observed in one sex or oppositely in males and females. Thus, neuronal-generated lactate has sex-specific cognitive effects, is largely indispensable at young age, and may be detrimental to learning and memory with aging.
Collapse
Affiliation(s)
- Ariel K. Frame
- Department of Biology, Western University, London, ON N6A 5B7, Canada
| | - Jessica L. Sinka
- Department of Biology, Western University, London, ON N6A 5B7, Canada
| | - Marc Courchesne
- Department of Biology, Western University, London, ON N6A 5B7, Canada
| | | | | | - Mark A. Bernards
- Department of Biology, Western University, London, ON N6A 5B7, Canada
| | - Robert Bartha
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Robert C. Cumming
- Department of Biology, Western University, London, ON N6A 5B7, Canada
| |
Collapse
|
3
|
Vaglio-Garro A, Halasz A, Nováková E, Gasser AS, Zavadskis S, Weidinger A, Kozlov AV. Interplay between Energy Supply and Glutamate Toxicity in the Primary Cortical Culture. Biomolecules 2024; 14:543. [PMID: 38785950 PMCID: PMC11118065 DOI: 10.3390/biom14050543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Limited substrate availability because of the blood-brain barrier (BBB) has made the brain develop specific molecular mechanisms to survive, using lactate synthesized by astrocytes as a source of energy in neurons. To understand if lactate improves cellular viability and susceptibility to glutamate toxicity, primary cortical cells were incubated in glucose- or lactate-containing media and toxic concentrations of glutamate for 24 h. Cell death was determined by immunostaining and lactate dehydrogenase (LDH) release. Mitochondrial membrane potential and nitric oxide (NO) levels were measured using Tetramethylrhodamine, methyl ester (TMRM) and 4-Amino-5-Methylamino-2',7'-Difluorofluorescein Diacetate (DAF-FM) live staining, respectively. LDH activity was quantified in single cells in the presence of lactate (LDH substrate) and oxamate (LDH inhibitor). Nuclei of cells were stained with DAPI and neurons with MAP2. Based on the distance between neurons and glial cells, they were classified as linked (<10 µm) and non-linked (>10 µm) neurons. Lactate increased cell death rate and the mean value of endogenous NO levels compared to glucose incubations. Mitochondrial membrane potential was lower in the cells cultured with lactate, but this effect was reversed when glutamate was added to the lactate medium. LDH activity was higher in linked neurons compared to non-linked neurons, supporting the hypothesis of the existence of the lactate shuttle between astrocytes and at least a portion of neurons. In conclusion, glucose or lactate can equally preserve primary cortical neurons, but those neurons having a low level of LDH activity and incubated with lactate cannot cover high energetic demand solely with lactate and become more susceptible to glutamate toxicity.
Collapse
Affiliation(s)
- Annette Vaglio-Garro
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria; (A.V.-G.); (A.H.); (E.N.); (A.S.G.); (S.Z.); (A.W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Andrea Halasz
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria; (A.V.-G.); (A.H.); (E.N.); (A.S.G.); (S.Z.); (A.W.)
| | - Ema Nováková
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria; (A.V.-G.); (A.H.); (E.N.); (A.S.G.); (S.Z.); (A.W.)
| | - Andreas Sebastian Gasser
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria; (A.V.-G.); (A.H.); (E.N.); (A.S.G.); (S.Z.); (A.W.)
| | - Sergejs Zavadskis
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria; (A.V.-G.); (A.H.); (E.N.); (A.S.G.); (S.Z.); (A.W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Adelheid Weidinger
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria; (A.V.-G.); (A.H.); (E.N.); (A.S.G.); (S.Z.); (A.W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Andrey V. Kozlov
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria; (A.V.-G.); (A.H.); (E.N.); (A.S.G.); (S.Z.); (A.W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
4
|
Zhang L, Zheng J, Liu SY, Hou LL, Zhang B, Tian SW. Acute Administration of Lactate Exerts Antidepressant-like Effect Through cAMP-dependent Protein Synthesis. Neuroscience 2024; 542:11-20. [PMID: 38336096 DOI: 10.1016/j.neuroscience.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/16/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Lactate acts as an important metabolic substrate and signalling molecule modulating neural activities in the brain, and recent preclinical and clinical studies have revealed its antidepressant effect after acute or chronic peripheral administration. However, the neural mechanism underlying the antidepressant effect of lactate, in particular when lactate is acutely administered remains largely unknown. In the current study, we focused on forced swimming test (FST) to elucidate the neural mechanisms through which acute intracerebroventricular (ICV) infusion of lactate exerts antidepressant-like effect. A total of 238 male Sprague Dawley rats were used as experimental subjects. Results showed lactate produced antidepressant-like effect, as indicated by reduced immobility, in a dose- and time-dependent manner. Moreover, the antidepressant-like effect of lactate was dependent of new protein synthesis but not new gene expression, lactate's metabolic effect or hydroxy-carboxylic acid receptor 1 (HCAR1) activation. Furthermore, lactate rapidly promoted dephosphorylation of eukaryotic elongation factor 2 (eEF2) and increased brain-derived neurotrophic factor (BDNF) protein synthesis in the hippocampus in a cyclic adenosine monophosphate (cAMP)-dependent manner. Finally, inhibition of cAMP production blocked the antidepressant-like effect of lactate. These findings suggest that acute administration of lactate exerts antidepressant-like effect through cAMP-dependent protein synthesis.
Collapse
Affiliation(s)
- Liang Zhang
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin, Guangxi 541199, China; Department of Anesthesiology, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, Guangdong 518112, China; Department of Anesthesiology, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Jing Zheng
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Shi-Yan Liu
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Li-Li Hou
- Department of Anesthesiology, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Bo Zhang
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Shao-Wen Tian
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin, Guangxi 541199, China.
| |
Collapse
|
5
|
Morris JK, Kueck PJ, Kemna RE, Green ZD, John CS, Winter M, Billinger SA, Vidoni ED. Biomarker Responses to Acute Exercise and Relationship with Brain Blood Flow. J Alzheimers Dis 2024; 97:283-292. [PMID: 38108352 DOI: 10.3233/jad-230766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
BACKGROUND There is evidence that aerobic exercise is beneficial for brain health, but these effects are variable between individuals and the underlying mechanisms that modulate these benefits remain unclear. OBJECTIVE We sought to characterize the acute physiological response of bioenergetic and neurotrophic blood biomarkers to exercise in cognitively healthy older adults, as well as relationships with brain blood flow. METHODS We measured exercise-induced changes in lactate, which has been linked to brain blood flow, as well brain-derived neurotrophic factor (BDNF), a neurotrophin related to brain health. We further quantified changes in brain blood flow using arterial spin labeling. RESULTS As expected, lactate and BDNF both changed with time post exercise. Intriguingly, there was a negative relationship between lactate response (area under the curve) and brain blood flow measured acutely following exercise. Finally, the BDNF response tracked strongly with change in platelet activation, providing evidence that platelet activation is an important mechanism for trophic-related exercise responses. CONCLUSIONS Lactate and BDNF respond acutely to exercise, and the lactate response tracks with changes in brain blood flow. Further investigation into how these factors relate to brain health-related outcomes in exercise trials is warranted.
Collapse
Affiliation(s)
- Jill K Morris
- The University of Kansas Medical Center, Fairway, KS, USA
- Department of Neurology, Fairway, KS, USA
- University of Kansas Alzheimer's Disease Research Center, Fairway, KS, USA
| | - Paul J Kueck
- The University of Kansas Medical Center, Fairway, KS, USA
- Department of Neurology, Fairway, KS, USA
- University of Kansas Alzheimer's Disease Research Center, Fairway, KS, USA
| | - Riley E Kemna
- The University of Kansas Medical Center, Fairway, KS, USA
- Department of Neurology, Fairway, KS, USA
- University of Kansas Alzheimer's Disease Research Center, Fairway, KS, USA
| | - Zachary D Green
- The University of Kansas Medical Center, Fairway, KS, USA
- Department of Neurology, Fairway, KS, USA
- University of Kansas Alzheimer's Disease Research Center, Fairway, KS, USA
| | - Casey S John
- The University of Kansas Medical Center, Fairway, KS, USA
- Department of Neurology, Fairway, KS, USA
- University of Kansas Alzheimer's Disease Research Center, Fairway, KS, USA
| | - Michelle Winter
- The University of Kansas Medical Center, Fairway, KS, USA
- Department of Neurology, Fairway, KS, USA
- University of Kansas Alzheimer's Disease Research Center, Fairway, KS, USA
| | - Sandra A Billinger
- The University of Kansas Medical Center, Fairway, KS, USA
- Department of Neurology, Fairway, KS, USA
- University of Kansas Alzheimer's Disease Research Center, Fairway, KS, USA
| | - Eric D Vidoni
- The University of Kansas Medical Center, Fairway, KS, USA
- Department of Neurology, Fairway, KS, USA
- University of Kansas Alzheimer's Disease Research Center, Fairway, KS, USA
| |
Collapse
|
6
|
Su Z, Zhang G, Li X, Zhang H. Inverse correlation between Alzheimer's disease and cancer from the perspective of hypoxia. Neurobiol Aging 2023; 131:59-73. [PMID: 37572528 DOI: 10.1016/j.neurobiolaging.2023.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 06/02/2023] [Accepted: 07/03/2023] [Indexed: 08/14/2023]
Abstract
Sporadic Alzheimer's disease and cancer remain epidemiologically inversely related, and exploring the reverse pathogenesis is important for our understanding of both. Cognitive dysfunctions in Alzheimer's disease (AD) might result from the depletion of adaptive reserves in the brain. Energy storage in the brain is limited and is dynamically regulated by neurovascular and neurometabolic coupling. The research on neurodegenerative diseases has been dominated by the neurocentric view that neuronal defects cause the diseases. However, the proposal of the 2-hit vascular hypothesis in AD led us to focus on alterations in the vasculature, especially hypoperfusion. Chronic hypoxia is a feature shared by AD and cancer. It is interesting how contradicting chronic hypoxia's effects on both cancer and AD are. In this article, we discuss the potential links between the 2 diseases' etiology, from comparable upstream circumstances to diametrically opposed downstream effects. We suggest opposing potential mechanisms, including upregulation and downregulation of hypoxia-inducible factor-1α, the Warburg and reverse-Warburg effects, lactate-mediated intracellular acidic and alkaline conditions, and VDAC1-mediated apoptosis and antiapoptosis, and search for regulators that may be identified as the crossroads between cancer and AD.
Collapse
Affiliation(s)
- Zhan Su
- Department of Neurology and Neuroscience Centre, The First Hospital of Jilin University, Changchun, China
| | - Guimei Zhang
- Department of Neurology and Neuroscience Centre, The First Hospital of Jilin University, Changchun, China
| | - Xiangting Li
- Department of Neurology and Neuroscience Centre, The First Hospital of Jilin University, Changchun, China
| | - Haining Zhang
- Department of Neurology and Neuroscience Centre, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
7
|
Zalouli V, Rajavand H, Bayat M, Khaleghnia J, Sharifianjazi F, Jafarinazhad F, Beheshtizadeh N. Adult hippocampal neurogenesis (AHN) controls central nervous system and promotes peripheral nervous system regeneration via physical exercise. Biomed Pharmacother 2023; 165:115078. [PMID: 37390707 DOI: 10.1016/j.biopha.2023.115078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023] Open
Abstract
Physical exercise has beneficial effects on adult hippocampal neurogenesis (AHN) and cognitive processes, including learning. Although it is not known if anaerobic resistance training and high-intensity interval training, which involve alternating brief bouts of highly intense anaerobic activity with rest periods, have comparable effects on AHN. Also, while less thoroughly investigated, individual genetic diversity in the overall response to physical activity is likely to play a key role in the effects of exercise on AHN. Physical exercise has been shown to improve health on average, although the benefits may vary from person to person, perhaps due to genetic differences. Maximal aerobic capacity and metabolic health may improve significantly with aerobic exercise for some people, while the same amount of training may have little effect on others. This review discusses the AHN's capability for peripheral nervous system (PNS) regeneration and central nervous system (CNS) control via physical exercise. Exercise neurogenicity, effective genes, growth factors, and the neurotrophic factors involved in PNS regeneration and CNS control were discussed. Also, some disorders that could be affected by AHN and physical exercise are summarized.
Collapse
Affiliation(s)
- Vahideh Zalouli
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hosnieh Rajavand
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahdi Bayat
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Medicine and Surgery, Physical Activity and Health Promotion, University of Tor Vergata, Rome, Italy
| | - Jalil Khaleghnia
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Sport Sciences, Khavaran Institute of Higher Education, Mashhad, Iran
| | - Fariborz Sharifianjazi
- Department of Natural Sciences, School of Science and Technology, University of Georgia, Tbilisi 0171, Georgia
| | - Farzad Jafarinazhad
- Yeditepe University, Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation, Istanbul, Turkey.
| | - Nima Beheshtizadeh
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Jacob N, So I, Sharma B, Marzolini S, Tartaglia MC, Oh P, Green R. Effects of High-Intensity Interval Training Protocols on Blood Lactate Levels and Cognition in Healthy Adults: Systematic Review and Meta-Regression. Sports Med 2023; 53:977-991. [PMID: 36917435 DOI: 10.1007/s40279-023-01815-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2023] [Indexed: 03/16/2023]
Abstract
BACKGROUND Some health benefits from high-intensity interval training (HIIT) are facilitated by peripheral blood lactate levels. However, the lactate response from HIIT is variable and dependent on protocol parameters. OBJECTIVES We aimed to determine the HIIT protocol parameters that elicited peak lactate levels, and how these levels are associated with post-HIIT cognitive performance. STUDY DESIGN We conducted a systematic review with meta-regression. METHODS MEDLINE, Embase, CENTRAL, SPORTDiscus, and CINAHL + were searched from database inception to 8 April, 2022. Peer-reviewed primary research in healthy adults that determined lactate (mmol/L) and cognitive performance after one HIIT session was included. Mixed-effects meta-regressions determined the protocol parameters that elicited peak lactate levels, and linear regressions modelled the relationship between lactate levels and cognitive performance. RESULTS Study entries (n = 226) involving 2560 participants (mean age 24.1 ± 4.7 years) were included in the meta-regression. A low total work-interval volume (~ 5 min), recovery intervals that are about five times longer than work intervals, and a medium session volume (~ 15 min), elicited peak lactate levels, even when controlling for intensity, fitness (peak oxygen consumption) and blood measurement methods. Lactate levels immediately post-HIIT explained 14-17% of variance in Stroop interference condition at 30 min post-HIIT. CONCLUSIONS A HIIT protocol that uses the above parameters (e.g., 8 × 30-s maximal intensity with 90-s recovery) can elicit peak lactate, a molecule that is known to benefit the central nervous system and be involved in exercise training adaptations. This review reports the state of the science in regard to the lactate response following HIIT, which is relevant to those in the sports medicine field designing HIIT training programs. TRIAL REGISTRY Clinical Trial Registration: PROSPERO (CRD42020204400).
Collapse
Affiliation(s)
- Nithin Jacob
- KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, 550 University Ave, Toronto, ON, M5G 2A2, Canada.,Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada.,University Health Network, Toronto, ON, Canada
| | - Isis So
- KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, 550 University Ave, Toronto, ON, M5G 2A2, Canada
| | - Bhanu Sharma
- Department of Medical Sciences, McMaster University, Hamilton, ON, Canada
| | - Susan Marzolini
- KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, 550 University Ave, Toronto, ON, M5G 2A2, Canada.,University Health Network, Toronto, ON, Canada
| | - Maria Carmela Tartaglia
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Kembril Research Institute, Toronto Western-University Health Network, Toronto, ON, Canada
| | - Paul Oh
- KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, 550 University Ave, Toronto, ON, M5G 2A2, Canada.,University Health Network, Toronto, ON, Canada
| | - Robin Green
- KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, 550 University Ave, Toronto, ON, M5G 2A2, Canada. .,Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada. .,University Health Network, Toronto, ON, Canada.
| |
Collapse
|
9
|
Metabolic Features of Brain Function with Relevance to Clinical Features of Alzheimer and Parkinson Diseases. Molecules 2022; 27:molecules27030951. [PMID: 35164216 PMCID: PMC8839962 DOI: 10.3390/molecules27030951] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/04/2022] Open
Abstract
Brain metabolism is comprised in Alzheimer’s disease (AD) and Parkinson’s disease (PD). Since the brain primarily relies on metabolism of glucose, ketone bodies, and amino acids, aspects of these metabolic processes in these disorders—and particularly how these altered metabolic processes are related to oxidative and/or nitrosative stress and the resulting damaged targets—are reviewed in this paper. Greater understanding of the decreased functions in brain metabolism in AD and PD is posited to lead to potentially important therapeutic strategies to address both of these disorders, which cause relatively long-lasting decreased quality of life in patients.
Collapse
|
10
|
Attentive Processes and Blood Lactate in the Sambo. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031113. [PMID: 35162138 PMCID: PMC8834330 DOI: 10.3390/ijerph19031113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Sambo is a martial art and combat sport that originated in the Soviet Union. There are two main stiles, Sport Sambo and Combat Sambo which resembles modern mixed martial arts. Very little literature is available about physiological aspects of Sambo and, in particular, on the possible effects on cognitive domains. The purpose of the present research was to determine if there is a correlation between a blood lactate increase and the intensity and/or selectivity of attentions. METHODS Sixteen male athletes practicing Sambo for at least 5 years participated voluntarily in the study. Each athlete had to sustain, with an interval of one week, both a Sport Sambo match and a Combat Sambo match, each lasting 5 min. Blood lactate levels as well as attentive capacities were evaluated at three different times: at rest, i.e., 5 min before the start of the session (pre), at end of the session and 15 min after its conclusion. Reaction time protocol was used to evaluate the intensity of attention, whereas divided attention was assessed for analyzing the selectivity of attention together with errors and omissions. RESULTS Concerning Sport Sambo, blood lactate was 1.66 mmol/L (±0.55 SD) before the session, reached a mean value of 3.40 mmol/L (±0.45 SD) at the end of the session (end) and returned to values similar to initial ones (a mean value of 1.98 mmol/L (±0.37 SD) after 15 min (15-end). None of the attentive parameters examined, showed statistically significant differences. Conversely, for Combat Sambo, it was found a significant increase in blood lactate levels that went from 1.66 mmol/L (±0.55 SD) before the session (pre), to 4.76 mmol/L (±0.60 SD) at the end (end) and then back to values similar to those observed before the session 15 min after its conclusion (15-end), i.e., 1.97 mmol/L (±0.37 SD); however, after a Combat Sambo session increases in blood lactate were associated with significant worsening of attentional mechanisms. CONCLUSIONS In conclusion, in all the participants, the worsening of attentional mechanisms was observed only after the Combat Sambo session in which blood lactate values exceeded 4 mmol/L. This figure, also known as the Onset of Blood Lactate Accumulation (OBLA), is commonly used to determine the anaerobic threshold.
Collapse
|
11
|
Lactate sensing mechanisms in arterial chemoreceptor cells. Nat Commun 2021; 12:4166. [PMID: 34230483 PMCID: PMC8260783 DOI: 10.1038/s41467-021-24444-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 06/08/2021] [Indexed: 12/17/2022] Open
Abstract
Classically considered a by-product of anaerobic metabolism, lactate is now viewed as a fundamental fuel for oxidative phosphorylation in mitochondria, and preferred over glucose by many tissues. Lactate is also a signaling molecule of increasing medical relevance. Lactate levels in the blood can increase in both normal and pathophysiological conditions (e.g., hypoxia, physical exercise, or sepsis), however the manner by which these changes are sensed and induce adaptive responses is unknown. Here we show that the carotid body (CB) is essential for lactate homeostasis and that CB glomus cells, the main oxygen sensing arterial chemoreceptors, are also lactate sensors. Lactate is transported into glomus cells, leading to a rapid increase in the cytosolic NADH/NAD+ ratio. This in turn activates membrane cation channels, leading to cell depolarization, action potential firing, and Ca2+ influx. Lactate also decreases intracellular pH and increases mitochondrial reactive oxygen species production, which further activates glomus cells. Lactate and hypoxia, although sensed by separate mechanisms, share the same final signaling pathway and jointly activate glomus cells to potentiate compensatory cardiorespiratory reflexes. Lactate levels in blood change during hypoxia or exercise, however whether this variable is sensed to evoke adaptive responses is unknown. Here the authors show that oxygen-sensing carotid body cells stimulated by hypoxia are also activated by lactate to potentiate a compensatory ventilatory response.
Collapse
|
12
|
Rationale and methods to characterize the acute exercise response in aging and Alzheimer's Disease: the AEROBIC pilot study. Contemp Clin Trials 2021; 107:106457. [PMID: 34051350 DOI: 10.1016/j.cct.2021.106457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 11/20/2022]
Abstract
There is evidence that exercise benefits the brain, but the mechanisms for this benefit are unclear. The chronic benefits of exercise are likely a product of discreet, acute responses in exercise-related blood biomarkers and brain metabolism. This acute exercise response has not been compared in aging and Alzheimer's Disease (AD). It is known that acute exercise elicits a powerful peripheral response in young individuals, and exercise-related biomarkers such as glucose and lactate readily penetrate the brain. How this changes with aging and neurodegenerative disease is less clear. It is critical to characterize and understand the acute effects of exercise, including different exercise intensities, in terms of the peripheral metabolic response and relationship with brain metabolism. This will help determine potential mechanisms for brain benefits of exercise and better inform the design of future clinical trials. The primary goal of the AEROBIC study is to characterize the acute exercise response of brain glucose metabolism and exercise-related blood biomarkers. We will measure how cerebral metabolism is affected by an acute bout of moderate and higher intensity exercise and characterize the extent to which this differs between cognitively healthy older adults and individuals with AD. Related to this primary goal, we will quantify the peripheral biomarker response to moderate and higher intensity exercise and how this relates to brain metabolic change in both groups.
Collapse
|
13
|
Lundquist AJ, Gallagher TJ, Petzinger GM, Jakowec MW. Exogenous l-lactate promotes astrocyte plasticity but is not sufficient for enhancing striatal synaptogenesis or motor behavior in mice. J Neurosci Res 2021; 99:1433-1447. [PMID: 33629362 DOI: 10.1002/jnr.24804] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/15/2021] [Indexed: 12/21/2022]
Abstract
l-Lactate is an energetic and signaling molecule that may be produced through astrocyte-specific aerobic glycolysis and is elevated in striatal muscle during intensive exercise. l-Lactate has been shown to promote neurotrophic gene expression through astrocytes within the hippocampus, however, its role in neuroplasticity within the striatum remains unknown. This study sought to investigate the role of peripheral sources of l-lactate in promoting astrocyte-specific gene expression and morphology as well as its role in neuroplasticity within the striatum of healthy animals. Using in vitro primary astrocyte cell culture, administration of l-lactate increased the expression of the neurotrophic factors Bdnf, Gdnf, Cntf, and the immediate early gene cFos. l-Lactate's promotion of neurotrophic factor expression was mediated through the lactate receptor HCAR1 since application of the HCAR1 agonist 3,5-DHBA also increased expression of Bdnf in primary astrocytes. Similar to our previous report demonstrating exercise-induced changes in astrocytic structure within the striatum, l-lactate administration to healthy mice led to increased astrocyte morphological complexity as well as astrocyte-specific neurotrophic expression within the striatum. Our study failed to demonstrate an effect of peripheral l-lactate on synaptogenesis or motor behavior. Insufficient levels and/or inadequate delivery of l-lactate through regional cerebral blood flow within the striatum may account for the lack of these benefits. Taken together, these novel findings suggest a potential framework that links peripheral l-lactate production within muscle and intensive exercise with neuroplasticity of specific brain regions through astrocytic function.
Collapse
Affiliation(s)
- Adam J Lundquist
- Department of Neurology, University of Southern California, Los Angeles, CA, USA
| | - Tyler J Gallagher
- Department of Neurology, University of Southern California, Los Angeles, CA, USA
| | - Giselle M Petzinger
- Department of Neurology, University of Southern California, Los Angeles, CA, USA.,Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, USA
| | - Michael W Jakowec
- Department of Neurology, University of Southern California, Los Angeles, CA, USA.,Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
14
|
Dong Y, Brewer GJ. Global Metabolic Shifts in Age and Alzheimer's Disease Mouse Brains Pivot at NAD+/NADH Redox Sites. J Alzheimers Dis 2020; 71:119-140. [PMID: 31356210 PMCID: PMC6839468 DOI: 10.3233/jad-190408] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Age and Alzheimer’s disease (AD) share some common features such as cognitive impairments, memory loss, metabolic disturbances, bioenergetic deficits, and inflammation. Yet little is known on how systematic shifts in metabolic networks depend on age and AD. In this work, we investigated the global metabolomic alterations in non-transgenic (NTg) and triple-transgenic (3xTg-AD) mouse brain hippocampus as a function of age by using untargeted Ultrahigh Performance Liquid Chromatography-tandem Mass Spectroscopy (UPLC-MS/MS). We observed common metabolic patterns with aging in both NTg and 3xTg-AD brains involved in energy-generating pathways, fatty acids oxidation, glutamate, and sphingolipid metabolism. We found age-related downregulation of metabolites from reactions in glycolysis that consumed ATP and in the TCA cycle, especially at NAD+/NADH-dependent redox sites, where age- and AD-associated limitations in the free NADH may alter reactions. Conversely, metabolites increased in glycolytic reactions in which ATP is produced. With age, inputs to the TCA cycle were increased including fatty acid β-oxidation and glutamine. Overall age- and AD-related changes were > 2-fold when comparing the declines of upstream metabolites of NAD+/NADH-dependent reactions to the increases of downstream metabolites (p = 10-5, n = 8 redox reactions). Inflammatory metabolites such as ceramides and sphingosine-1-phosphate also increased with age. Age-related decreases in glutamate, GABA, and sphingolipid were seen which worsened with AD genetic load in 3xTg-AD brains, possibly contributing to synaptic, learning- and memory-related deficits. The data support the novel hypothesis that age- and AD-associated metabolic shifts respond to NAD(P)+/NAD(P)H redox-dependent reactions, which may contribute to decreased energetic capacity.
Collapse
Affiliation(s)
- Yue Dong
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Gregory J Brewer
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA.,MIND Institute, Center for Neurobiology of Learning and Memory, University of California, Irvine, CA, USA
| |
Collapse
|
15
|
Brooks GA. The tortuous path of lactate shuttle discovery: From cinders and boards to the lab and ICU. JOURNAL OF SPORT AND HEALTH SCIENCE 2020; 9:446-460. [PMID: 32444344 PMCID: PMC7498672 DOI: 10.1016/j.jshs.2020.02.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/04/2019] [Accepted: 12/16/2019] [Indexed: 05/11/2023]
Abstract
Once thought to be a waste product of oxygen limited (anaerobic) metabolism, lactate is now known to form continuously under fully oxygenated (aerobic) conditions. Lactate shuttling between producer (driver) and consumer cells fulfills at least 3 purposes; lactate is: (1) a major energy source, (2) the major gluconeogenic precursor, and (3) a signaling molecule. The Lactate Shuttle theory is applicable to diverse fields such as sports nutrition and hydration, resuscitation from acidosis and Dengue, treatment of traumatic brain injury, maintenance of glycemia, reduction of inflammation, cardiac support in heart failure and following a myocardial infarction, and to improve cognition. Yet, dysregulated lactate shuttling disrupts metabolic flexibility, and worse, supports oncogenesis. Lactate production in cancer (the Warburg effect) is involved in all main sequela for carcinogenesis: angiogenesis, immune escape, cell migration, metastasis, and self-sufficient metabolism. The history of the tortuous path of discovery in lactate metabolism and shuttling was discussed in the 2019 American College of Sports Medicine Joseph B. Wolffe Lecture in Orlando, FL.
Collapse
Affiliation(s)
- George A Brooks
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California Berkeley, CA 94720-3140, USA.
| |
Collapse
|
16
|
Tauffenberger A, Fiumelli H, Almustafa S, Magistretti PJ. Lactate and pyruvate promote oxidative stress resistance through hormetic ROS signaling. Cell Death Dis 2019; 10:653. [PMID: 31506428 PMCID: PMC6737085 DOI: 10.1038/s41419-019-1877-6] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/17/2019] [Accepted: 08/01/2019] [Indexed: 12/11/2022]
Abstract
L-lactate was long considered a glycolytic by-product but is now being recognized as a signaling molecule involved in cell survival. In this manuscript, we report the role of L-lactate in stress resistance and cell survival mechanisms using neuroblastoma cells (SH-SY5Y) as well as the C. elegans model. We observed that L-lactate promotes cellular defense mechanisms, including Unfolded Protein Response (UPR) and activation of nuclear factor erythroid 2-related factor 2 (NRF2), by promoting a mild Reactive Oxygen Species (ROS) burst. This increase in ROS triggers antioxidant defenses and pro-survival pathways, such as PI3K/AKT and Endoplasmic Reticulum (ER) chaperones. These results contribute to the understanding of the molecular mechanisms involved in beneficial effects of L-lactate, involving mild ROS burst, leading to activation of unfolded protein responses and detoxification mechanisms. We present evidence that this hormetic mechanism induced by L-lactate protects against oxidative stress in vitro and in vivo. This work contributes to the identification of molecular mechanisms, which could serve as targets for future therapeutic approaches for cell protection and aging-related disorders.
Collapse
Affiliation(s)
- Arnaud Tauffenberger
- Laboratory for Cellular Imaging and Energetics, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Hubert Fiumelli
- Laboratory for Cellular Imaging and Energetics, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Salam Almustafa
- Laboratory for Cellular Imaging and Energetics, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Pierre J Magistretti
- Laboratory for Cellular Imaging and Energetics, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| |
Collapse
|
17
|
Moriarty T, Bourbeau K, Bellovary B, Zuhl MN. Exercise Intensity Influences Prefrontal Cortex Oxygenation during Cognitive Testing. Behav Sci (Basel) 2019; 9:E83. [PMID: 31357450 PMCID: PMC6721405 DOI: 10.3390/bs9080083] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 12/15/2022] Open
Abstract
Activation changes in the prefrontal cortex (PFC) regions have been linked to acute exercise-induced improvements in cognitive performance. The type of exercise performed may influence PFC activation, and further impact cognitive function. The present study aimed to compare PFC activation during cognitive testing after moderate-intensity, high intensity, and yoga exercises, and to determine if PFC activation is linked to cognitive performance. Eight subjects (four male and four female), aged 35 ± 5 completed a control, high intensity, moderate intensity, and yoga exercises followed by administration of a cognitive task (NIH Toolbox Fluid Cognition). Left and right PFC activation (LPFC and RPFC, respectively) were evaluated by measuring hemoglobin difference (Hbdiff) changes during post-exercise cognitive assessment using functional near infrared spectroscopy (fNIRS). Activation during the cognitive test was higher in the LPFC after moderate intensity exercise compared to control, high intensity, and yoga (5.30 ± 6.65 vs. 2.26 ± 2.40, 2.50 ± 1.48, 2.41 ± 2.36 μM, p < 0.05, respectively). A negative relationship was detected between LPFC and processing speed after exercise. PFC activation did not align with cognitive performance. However, acute exercise, regardless of type, appeared to alter neural processing. Specifically, less PFC activation was required for a given neural output after exercise.
Collapse
Affiliation(s)
- Terence Moriarty
- Department of Health, Exercise, and Sports Sciences, University of New Mexico, Albuquerque, NM 87131, USA
- Department of Kinesiology, University of Northern Iowa, Cedar Falls, IA 50614, USA
| | - Kelsey Bourbeau
- Department of Health, Exercise, and Sports Sciences, University of New Mexico, Albuquerque, NM 87131, USA
| | - Bryanne Bellovary
- Department of Health, Exercise, and Sports Sciences, University of New Mexico, Albuquerque, NM 87131, USA
| | - Micah N Zuhl
- Department of Health, Exercise, and Sports Sciences, University of New Mexico, Albuquerque, NM 87131, USA.
- School of Health Sciences, Central Michigan University, Mount Pleasant, MI 48859, USA.
| |
Collapse
|
18
|
Calì C, Tauffenberger A, Magistretti P. The Strategic Location of Glycogen and Lactate: From Body Energy Reserve to Brain Plasticity. Front Cell Neurosci 2019; 13:82. [PMID: 30894801 PMCID: PMC6415680 DOI: 10.3389/fncel.2019.00082] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/18/2019] [Indexed: 01/08/2023] Open
Abstract
Brain energy metabolism has been the object of intense research in recent years. Pioneering work has identified the different cell types involved in energy production and use. Recent evidence has demonstrated a key role of L-Lactate in brain energy metabolism, producing a paradigm-shift in our understanding of the neuronal energy metabolism. At the center of this shift, is the identification of a central role of astrocytes in neuroenergetics. Thanks to their morphological characteristics, they are poised to take up glucose from the circulation and deliver energy substrates to neurons. Astrocyte neuron lactate shuttle (ANLS) model, has shown that the main energy substrate that astrocytes deliver to neurons is L-Lactate, to sustain neuronal oxidative metabolism. L-Lactate can also be produced from glycogen, the storage form of glucose, which is exclusively localized in astrocytes. Inhibition of glycogen metabolism and the ensuing inhibition of L-Lactate production leads to cognitive dysfunction. Experimental evidence indicates that the role of lactate in cognitive function relates not only to its role as a metabolic substrate for neurons but also as a signaling molecule for synaptic plasticity. Interestingly, a similar metabolic uncoupling appears to exist in peripheral tissues plasma, whereby glucose provides L-Lactate as the substrate for cellular oxidative metabolism. In this perspective article, we review the known information on the distribution of glycogen and lactate within brain cells, and how this distribution relates to the energy regime of glial vs. neuronal cells.
Collapse
Affiliation(s)
- Corrado Calì
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Arnaud Tauffenberger
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Pierre Magistretti
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
19
|
Gonçalves CA, Rodrigues L, Bobermin LD, Zanotto C, Vizuete A, Quincozes-Santos A, Souza DO, Leite MC. Glycolysis-Derived Compounds From Astrocytes That Modulate Synaptic Communication. Front Neurosci 2019; 12:1035. [PMID: 30728759 PMCID: PMC6351787 DOI: 10.3389/fnins.2018.01035] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/20/2018] [Indexed: 12/14/2022] Open
Abstract
Based on the concept of the tripartite synapse, we have reviewed the role of glucose-derived compounds in glycolytic pathways in astroglial cells. Glucose provides energy and substrate replenishment for brain activity, such as glutamate and lipid synthesis. In addition, glucose metabolism in the astroglial cytoplasm results in products such as lactate, methylglyoxal, and glutathione, which modulate receptors and channels in neurons. Glucose has four potential destinations in neural cells, and it is possible to propose a crossroads in “X” that can be used to describe these four destinations. Glucose-6P can be used either for glycogen synthesis or the pentose phosphate pathway on the left and right arms of the X, respectively. Fructose-6P continues through the glycolysis pathway until pyruvate is formed but can also act as the initial compound in the hexosamine pathway, representing the left and right legs of the X, respectively. We describe each glucose destination and its regulation, indicating the products of these pathways and how they can affect synaptic communication. Extracellular L-lactate, either generated from glucose or from glycogen, binds to HCAR1, a specific receptor that is abundantly localized in perivascular and post-synaptic membranes and regulates synaptic plasticity. Methylglyoxal, a product of a deviation of glycolysis, and its derivative D-lactate are also released by astrocytes and bind to GABAA receptors and HCAR1, respectively. Glutathione, in addition to its antioxidant role, also binds to ionotropic glutamate receptors in the synaptic cleft. Finally, we examined the hexosamine pathway and evaluated the effect of GlcNAc-modification on key proteins that regulate the other glucose destinations.
Collapse
Affiliation(s)
- Carlos-Alberto Gonçalves
- Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Letícia Rodrigues
- Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Larissa D Bobermin
- Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Caroline Zanotto
- Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Adriana Vizuete
- Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - André Quincozes-Santos
- Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Diogo O Souza
- Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Marina C Leite
- Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
20
|
Dong M, Ren M, Li C, Zhang X, Yang C, Zhao L, Gao H. Analysis of Metabolic Alterations Related to Pathogenic Process of Diabetic Encephalopathy Rats. Front Cell Neurosci 2019; 12:527. [PMID: 30692917 PMCID: PMC6339875 DOI: 10.3389/fncel.2018.00527] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/19/2018] [Indexed: 12/25/2022] Open
Abstract
Diabetic encephalopathy (DE) is a diabetic complication characterized by alterations in cognitive function and nervous system structure. The pathogenic transition from hyperglycemia to DE is a long-term process accompanied by multiple metabolic disorders. Exploring time-dependent metabolic changes in hippocampus will facilitate our understanding of the pathogenesis of DE. In the present study, we first performed behavioral and histopathological experiments to confirm the appearance of DE in rats with streptozotocin-induced diabetes. We then utilized nuclear magnetic resonance-based metabonomics to analyze metabolic disorders in the hippocampus at different stages of DE. After 1 week, we observed no cognitive or structural impairments in diabetic rats, although some metabolic changes were observed in local hippocampal extracts. At 5 weeks, while cognitive function was still normal, we then examined initial levels of neuronal apoptosis. The characteristic metabolic changes of this stage included elevated levels of energy metabolites (i.e., ATP, ADP, AMP, and creatine phosphate/creatine). At 9 weeks, significant cognitive decline and histopathological brain damage were observed, in conjunction with reduced levels of some amino acids. Thus, this stage was classified as the DE period. Our findings indicated that the pathogenesis of DE is associated with time-dependent alterations in metabolic features in hippocampal regions, such as glycolysis, osmoregulation, energy metabolism, choline metabolism, branched-chain amino acid metabolism, and the glutamate-glutamine cycle. Furthermore, we observed alterations in levels of lactate and its receptor in hippocampal cells, which may be involved in the pathogenesis of DE.
Collapse
Affiliation(s)
- Minjian Dong
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Mengqian Ren
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chen Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xi Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Changwei Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Liangcai Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hongchang Gao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
21
|
Metabolic regulation of synaptic activity. Rev Neurosci 2018; 29:825-835. [DOI: 10.1515/revneuro-2017-0090] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 03/16/2018] [Indexed: 12/20/2022]
Abstract
Abstract
Brain tissue is bioenergetically expensive. In humans, it composes approximately 2% of body weight and accounts for approximately 20% of calorie consumption. The brain consumes energy mostly for ion and neurotransmitter transport, a process that occurs primarily in synapses. Therefore, synapses are expensive for any living creature who has brain. In many brain diseases, synapses are damaged earlier than neurons start dying. Synapses may be considered as vulnerable sites on a neuron. Ischemic stroke, an acute disturbance of blood flow in the brain, is an example of a metabolic disease that affects synapses. The associated excessive glutamate release, called excitotoxicity, is involved in neuronal death in brain ischemia. Another example of a metabolic disease is hypoglycemia, a complication of diabetes mellitus, which leads to neuronal death and brain dysfunction. However, synapse function can be corrected with “bioenergetic medicine”. In this review, a ketogenic diet is discussed as a curative option. In support of a ketogenic diet, whereby carbohydrates are replaced for fats in daily meals, epileptic seizures can be terminated. In this review, we discuss possible metabolic sensors in synapses. These may include molecules that perceive changes in composition of extracellular space, for instance, ketone body and lactate receptors, or molecules reacting to changes in cytosol, for instance, KATP channels or AMP kinase. Inhibition of endocytosis is believed to be a universal synaptic mechanism of adaptation to metabolic changes.
Collapse
|
22
|
The Science and Translation of Lactate Shuttle Theory. Cell Metab 2018; 27:757-785. [PMID: 29617642 DOI: 10.1016/j.cmet.2018.03.008] [Citation(s) in RCA: 746] [Impact Index Per Article: 106.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/06/2018] [Accepted: 03/16/2018] [Indexed: 02/07/2023]
Abstract
Once thought to be a waste product of anaerobic metabolism, lactate is now known to form continuously under aerobic conditions. Shuttling between producer and consumer cells fulfills at least three purposes for lactate: (1) a major energy source, (2) the major gluconeogenic precursor, and (3) a signaling molecule. "Lactate shuttle" (LS) concepts describe the roles of lactate in delivery of oxidative and gluconeogenic substrates as well as in cell signaling. In medicine, it has long been recognized that the elevation of blood lactate correlates with illness or injury severity. However, with lactate shuttle theory in mind, some clinicians are now appreciating lactatemia as a "strain" and not a "stress" biomarker. In fact, clinical studies are utilizing lactate to treat pro-inflammatory conditions and to deliver optimal fuel for working muscles in sports medicine. The above, as well as historic and recent studies of lactate metabolism and shuttling, are discussed in the following review.
Collapse
|
23
|
Avola R, Graziano ACE, Pannuzzo G, Albouchi F, Cardile V. New insights on Parkinson's disease from differentiation of SH-SY5Y into dopaminergic neurons: An involvement of aquaporin4 and 9. Mol Cell Neurosci 2018; 88:212-221. [PMID: 29428877 DOI: 10.1016/j.mcn.2018.02.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 07/16/2017] [Accepted: 02/07/2018] [Indexed: 12/30/2022] Open
Abstract
The purpose of this research was to explore the behavior of aquaporins (AQPs) in an in vitro model of Parkinson's disease that is a recurrent neurodegenerative disorder caused by the gradual, progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Because of postmortem studies have provided evidences for oxidative damage and alteration of water flow and energy metabolism, we carried out an investigation about AQP4 and 9, demonstrated in the brain to maintain water and energy homeostasis. As an appropriate in vitro cell model, we used SH-SY5Y cultures and induced their differentiation into a mature dopaminergic neuron phenotype with retinoic acid (RA) alone or in association with phorbol-12-myristate-13-acetate (MPA). The association RA plus MPA provided the most complete and mature neuron phenotype, as demonstrated by high levels of β-Tubulin III, MAP-2, and tyrosine hydroxylase. After validation of cell differentiation, the neurotoxin 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) and H2O2 were applied to reproduce a Parkinson's-like stress. The results confirmed RA/MPA differentiated SH-SY5Y as a useful in vitro system for studying neurotoxicity and for using in a MPTP and H2O2-induced Parkinson's disease cell model. Moreover, the data demonstrated that neuronal differentiation, neurotoxicity, neuroinflammation, and oxidative stress are strongly correlated with dynamic changes of AQP4 and 9 transcription and transduction. New in vitro and in vivo experiments are needed to confirm these innovative outcomes.
Collapse
Affiliation(s)
- Rosanna Avola
- Department of Biomedical and Biotechnological Science, Section of Physiology, University of Catania, Via Santa Sofia, 97-95123 Catania, Italy.
| | - Adriana Carol Eleonora Graziano
- Department of Biomedical and Biotechnological Science, Section of Physiology, University of Catania, Via Santa Sofia, 97-95123 Catania, Italy.
| | - Giovanna Pannuzzo
- Department of Biomedical and Biotechnological Science, Section of Physiology, University of Catania, Via Santa Sofia, 97-95123 Catania, Italy
| | - Ferdaous Albouchi
- Laboratoire Materiaux Molecules et Applications, Institut Preparatoire au Etude Scientifique et Technique, Faculty of Sciences of Bizerte, University of Carthage, La Marsa, 2070 Tunis, Tunisia
| | - Venera Cardile
- Department of Biomedical and Biotechnological Science, Section of Physiology, University of Catania, Via Santa Sofia, 97-95123 Catania, Italy.
| |
Collapse
|
24
|
Fasting and Fast Food Diet Play an Opposite Role in Mice Brain Aging. Mol Neurobiol 2018; 55:6881-6893. [DOI: 10.1007/s12035-018-0891-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/08/2018] [Indexed: 11/25/2022]
|
25
|
Qi G, Mi Y, Fan R, Zhao B, Ren B, Liu X. Tea polyphenols ameliorates neural redox imbalance and mitochondrial dysfunction via mechanisms linking the key circadian regular Bmal1. Food Chem Toxicol 2017; 110:189-199. [PMID: 29061316 DOI: 10.1016/j.fct.2017.10.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/16/2017] [Accepted: 10/19/2017] [Indexed: 11/21/2022]
Abstract
Circadian rhythms are autonomous anticipatory oscillators that control a large array of physiological and metabolic processes. Compelling evidence points toward an interplay between circadian rhythms and cellular redox metabolism. Dysregulation of circadian rhythms is associated with neurodegenerative diseases and accelerated aging. Tea polyphenols (TP) is one of the most used antioxidants and exerts beneficial effect on neurodegenerative diseases. The aim of this study is to investigate whether circadian clock mechanisms are involved in the protection effect of TP against neural redox imbalance and mitochondrial dysfunction in SH-SY5Y cells. In the current study, our results revealed that TP, as a Bmal1-enhancing natural compound, can reverse the relatively shallow daily oscillations of circadian clock genes transcription and protein expression in SH-SY5Y neuronal cells under oxidative stress conditions. Furthermore, TP pretreatment significantly ameliorated H2O2-elicited mitochondria impairment via manipulating mitochondrial dynamics and mitochondrial membrane potential, which is consistent with the recovery in expression of mitochondrial respiration complex I-IV in Bmal1-dependent efficiency. Furthermore, Bmal1 is involved in TP-stimulated Nrf2/ARE/HO-1 and AKT/CREB/BDNF signaling pathway. Hence, TP may serve as a nutritional preventive strategy in the recovery of oxidative stress-related neurodegenerative disease via modulating circadian clock.
Collapse
Affiliation(s)
- Guoyuan Qi
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yashi Mi
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rong Fan
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Beita Zhao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bo Ren
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
26
|
Cheng J, Liu HP, Lee CC, Chen MY, Lin WY, Tsai FJ. Matrix metalloproteinase 14 modulates diabetes and Alzheimer's disease cross-talk: a meta-analysis. Neurol Sci 2017; 39:267-274. [PMID: 29103177 DOI: 10.1007/s10072-017-3166-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/20/2017] [Indexed: 12/22/2022]
Abstract
Diabetes mellitus is associated with dementia, but whether diabetes is associated with Alzheimer's disease remains controversial. Alzheimer's disease is characterized by amyloid beta aggregation. We hypothesized that genes, involved in amyloid beta degradation, may be altered due to diabetes and thus participate in progression of Alzheimer's disease. Expression profiling of amyloid beta-degrading enzymes in streptozotocin-induced diabetic mice and their correlation with expression of amyloid precursor protein in hippocampus of Alzheimer's disease patients were accessed. We found that matrix metalloproteinase 14 decreased in brain but not in other tissues of streptozotocin-induced diabetic mice, and was negatively correlated with expression of amyloid precursor protein in hippocampus of Alzheimer's disease patients. These findings suggested matrix metalloproteinase 14 may link insulin-deficient diabetes to Alzheimer's disease.
Collapse
Affiliation(s)
- Jack Cheng
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan.,Department of Medical Research, China Medical University Hospital, Taichung, 40447, Taiwan
| | - Hsin-Ping Liu
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Cheng-Chun Lee
- School of Medicine, College of Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Mei-Ying Chen
- Department of Environmental Engineering, National Chung Hsing University, Taichung, 402, Taiwan
| | - Wei-Yong Lin
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan. .,Department of Medical Research, China Medical University Hospital, Taichung, 40447, Taiwan.
| | - Fuu-Jen Tsai
- Department of Medical Research, China Medical University Hospital, Taichung, 40447, Taiwan. .,School of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan. .,Department of Biotechnology, Asia University, Taichung, 41354, Taiwan. .,Children's Medical Center, China Medical University Hospital, Taichung, 40447, Taiwan.
| |
Collapse
|
27
|
Tateishi H, Tsuji AB, Kato K, Sudo H, Sugyo A, Hanakawa T, Zhang MR, Saga T, Arano Y, Higashi T. Synthesis and evaluation of 11C-labeled coumarin analog as an imaging probe for detecting monocarboxylate transporters expression. Bioorg Med Chem Lett 2017; 27:4893-4897. [PMID: 28951078 DOI: 10.1016/j.bmcl.2017.09.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/11/2017] [Accepted: 09/14/2017] [Indexed: 12/23/2022]
Abstract
Upregulated monocarboxylate transporters (MCTs) in tumors are considered diagnostic imaging targets. Herein, we synthesized the positron emission tomography probe candidates coumarin analogs 2 and 3, and showed 55 times higher affinity of 2 for MCTs than a representative MCT inhibitor. Whereas [11C]2 showed low tumor accumulation, probably due to adduct formation with plasma proteins, [11C]2 showed high initial brain uptake, suggesting that the scaffold of 2 has properties that are preferable in imaging probes for the astrocyte-neuron lactate shuttle. Although further optimization of 2 is required, our findings can be used to inform the development of MCT-targeted imaging agents.
Collapse
Affiliation(s)
- Hiroyuki Tateishi
- Experimental Nuclear Medicine Team, Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST-NIRS), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan; Department of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Atsushi B Tsuji
- Experimental Nuclear Medicine Team, Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST-NIRS), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| | - Koichi Kato
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST-NIRS), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan; Department of Integrative Brain Imaging, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187-5551, Japan.
| | - Hitomi Sudo
- Experimental Nuclear Medicine Team, Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST-NIRS), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Aya Sugyo
- Experimental Nuclear Medicine Team, Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST-NIRS), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Takashi Hanakawa
- Department of Integrative Brain Imaging, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187-5551, Japan
| | - Ming-Rong Zhang
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST-NIRS), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Tsuneo Saga
- Experimental Nuclear Medicine Team, Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST-NIRS), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan; Department of Diagnostic Radiology, Kyoto University Hospital, 54 Shogoinkawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yasushi Arano
- Department of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Tatsuya Higashi
- Experimental Nuclear Medicine Team, Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST-NIRS), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
28
|
Yamagata K, Takahashi N, Akita N, Nabika T. Arginine vasopressin altered the expression of monocarboxylate transporters in cultured astrocytes isolated from stroke-prone spontaneously hypertensive rats and congenic SHRpch1_18 rats. J Neuroinflammation 2017; 14:176. [PMID: 28865453 PMCID: PMC5581459 DOI: 10.1186/s12974-017-0949-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/24/2017] [Indexed: 11/25/2022] Open
Abstract
Background Astrocytes support a range of brain functions as well as neuronal survival, but their detailed relationship with stroke-related edema is not well understood. We previously demonstrated that the release of lactate from astrocytes isolated from stroke-prone spontaneously hypertensive rats (SHRSP/Izm) was attenuated under stroke conditions. The supply of lactate to neurons is regulated by astrocytic monocarboxylate transporters (MCTs). The purpose of this study was to examine the contributions of arginine vasopressin (AVP) and/or hypoxia and reoxygenation (H/R) to the regulation of MCTs and neurotrophic factor in astrocytes obtained from SHRSP/Izm and congenic SHRpch1_18 rats. Methods We compared AVP-induced lactate levels, MCTs, and brain-derived neurotrophic factor (BDNF) in astrocytes isolated from SHRSP/Izm, SHRpch1_18, and Wistar Kyoto rats (WKY/Izm). The expression levels of genes and proteins were determined by PCR and Western blotting (WB). Results The production of lactate induced by AVP was increased in astrocytes from all three strains. However, the levels of lactate were lower in SHRSP/Izm and SHRpch1_18 animals compared with the WKY/Izm strain. Gene expression levels of Slc16a1, Slc16a4, and Bdnf were lowered by AVP in SHRSP/Izm and SHRpch1_18 rats compared with WKY/Izm. The increase of MCT4 that was induced by AVP was blocked by the addition of a specific nitric oxide (NO) chelator, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (CPTIO). Furthermore, AVP increased the expression of iNOS and eNOS proteins in WKY/Izm and SHRSP/Izm rat astrocytes. However, the iNOS expression levels in SHRSP astrocytes differed from those of WKY/Izm astrocytes. The increase of MCT4 protein expression during AVP treatment was blocked by the addition of a specific NF-kB inhibitor, pyrrolidine dithiocarbamate (PDTC). The induction of MCT4 by AVP may be regulated by NO through NF-kB. Conclusions These results suggest that the expression of MCTs mediated by AVP may be regulated by NO. The data suggest that AVP attenuated the expression of MCTs in SHRSP/Izm and SHRpch1_18 astrocytes. Reduced expression of MCTs may be associated with decreased lactate production in SHRSP.
Collapse
Affiliation(s)
- Kazuo Yamagata
- Laboratory of Molecular Health of Food, Department of Food Bioscience and Biotechnology, College of Bioresource Sciences, Nihon University (NUBS), 1866, Kameino, Fujisawa, Kanagawa, 252-8510, Japan.
| | - Natsumi Takahashi
- Laboratory of Molecular Health of Food, Department of Food Bioscience and Biotechnology, College of Bioresource Sciences, Nihon University (NUBS), 1866, Kameino, Fujisawa, Kanagawa, 252-8510, Japan
| | - Nozomi Akita
- Laboratory of Molecular Health of Food, Department of Food Bioscience and Biotechnology, College of Bioresource Sciences, Nihon University (NUBS), 1866, Kameino, Fujisawa, Kanagawa, 252-8510, Japan
| | - Toru Nabika
- Department of Functional Pathology, Shimane University Faculty of Medicine, Matsue, Japan
| |
Collapse
|
29
|
Astrocytic transporters in Alzheimer's disease. Biochem J 2017; 474:333-355. [DOI: 10.1042/bcj20160505] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 11/16/2016] [Accepted: 11/29/2016] [Indexed: 12/26/2022]
Abstract
Astrocytes play a fundamental role in maintaining the health and function of the central nervous system. Increasing evidence indicates that astrocytes undergo both cellular and molecular changes at an early stage in neurological diseases, including Alzheimer's disease (AD). These changes may reflect a change from a neuroprotective to a neurotoxic phenotype. Given the lack of current disease-modifying therapies for AD, astrocytes have become an interesting and viable target for therapeutic intervention. The astrocyte transport system covers a diverse array of proteins involved in metabolic support, neurotransmission and synaptic architecture. Therefore, specific targeting of individual transporter families has the potential to suppress neurodegeneration, a characteristic hallmark of AD. A small number of the 400 transporter superfamilies are expressed in astrocytes, with evidence highlighting a fraction of these are implicated in AD. Here, we review the current evidence for six astrocytic transporter subfamilies involved in AD, as reported in both animal and human studies. This review confirms that astrocytes are indeed a viable target, highlights the complexities of studying astrocytes and provides future directives to exploit the potential of astrocytes in tackling AD.
Collapse
|
30
|
Perciavalle V, Blandini M, Fecarotta P, Buscemi A, Di Corrado D, Bertolo L, Fichera F, Coco M. The role of deep breathing on stress. Neurol Sci 2016; 38:451-458. [DOI: 10.1007/s10072-016-2790-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 12/01/2016] [Indexed: 11/29/2022]
|
31
|
ALS-causing mutations differentially affect PGC-1α expression and function in the brain vs. peripheral tissues. Neurobiol Dis 2016; 97:36-45. [PMID: 27818323 DOI: 10.1016/j.nbd.2016.11.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 10/19/2016] [Accepted: 11/01/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Monogenetic forms of amyotrophic lateral sclerosis (ALS) offer an opportunity for unraveling the molecular mechanisms underlying this devastating neurodegenerative disorder. In order to identify a link between ALS-related metabolic changes and neurodegeneration, we investigated whether ALS-causing mutations interfere with the peripheral and brain-specific expression and signaling of the metabolic master regulator PGC (PPAR gamma coactivator)-1α (PGC-1α). METHODS We analyzed the expression of PGC-1α isoforms and target genes in two mouse models of familial ALS and validated the stimulated PGC-1α signaling in primary adipocytes and neurons of these animal models and in iPS derived motoneurons of two ALS patients harboring two different frame-shift FUS/TLS mutations. RESULTS Mutations in SOD1 and FUS/TLS decrease Ppargc1a levels in the CNS whereas in muscle and brown adipose tissue Ppargc1a mRNA levels were increased. Probing the underlying mechanism in neurons, we identified the monocarboxylate lactate as a previously unrecognized potent and selective inducer of the CNS-specific PGC-1α isoforms. Lactate also induced genes like brain-derived neurotrophic factor, transcription factor EB and superoxide dismutase 3 that are down-regulated in PGC-1α deficient neurons. The lactate-induced CNS-specific PGC-1α signaling system is completely silenced in motoneurons derived from induced pluripotent stem cells obtained from two ALS patients harboring two different frame-shift FUS/TLS mutations. CONCLUSION ALS mutations increase the canonical PGC-1α system in the periphery while inhibiting the CNS-specific isoforms. We identify lactate as an inducer of the neuronal PGC-1α system directly linking brain metabolism and neuroprotection. Changes in the PGC-1α system might be involved in the ALS accompanied metabolic changes and in neurodegeneration.
Collapse
|
32
|
Jha MK, Lee IK, Suk K. Metabolic reprogramming by the pyruvate dehydrogenase kinase-lactic acid axis: Linking metabolism and diverse neuropathophysiologies. Neurosci Biobehav Rev 2016; 68:1-19. [PMID: 27179453 DOI: 10.1016/j.neubiorev.2016.05.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/11/2016] [Accepted: 05/09/2016] [Indexed: 12/12/2022]
Abstract
Emerging evidence indicates that there is a complex interplay between metabolism and chronic disorders in the nervous system. In particular, the pyruvate dehydrogenase (PDH) kinase (PDK)-lactic acid axis is a critical link that connects metabolic reprogramming and the pathophysiology of neurological disorders. PDKs, via regulation of PDH complex activity, orchestrate the conversion of pyruvate either aerobically to acetyl-CoA, or anaerobically to lactate. The kinases are also involved in neurometabolic dysregulation under pathological conditions. Lactate, an energy substrate for neurons, is also a recently acknowledged signaling molecule involved in neuronal plasticity, neuron-glia interactions, neuroimmune communication, and nociception. More recently, the PDK-lactic acid axis has been recognized to modulate neuronal and glial phenotypes and activities, contributing to the pathophysiologies of diverse neurological disorders. This review covers the recent advances that implicate the PDK-lactic acid axis as a novel linker of metabolism and diverse neuropathophysiologies. We finally explore the possibilities of employing the PDK-lactic acid axis and its downstream mediators as putative future therapeutic strategies aimed at prevention or treatment of neurological disorders.
Collapse
Affiliation(s)
- Mithilesh Kumar Jha
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 PLUS KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea; Department of Neurology, Division of Neuromuscular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - In-Kyu Lee
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 PLUS KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea.
| |
Collapse
|
33
|
Tsai SF, Chen PC, Calkins MJ, Wu SY, Kuo YM. Exercise Counteracts Aging-Related Memory Impairment: A Potential Role for the Astrocytic Metabolic Shuttle. Front Aging Neurosci 2016; 8:57. [PMID: 27047373 PMCID: PMC4801859 DOI: 10.3389/fnagi.2016.00057] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/08/2016] [Indexed: 01/19/2023] Open
Abstract
Age-related cognitive impairment has become one of the most common health threats in many countries. The biological substrate of cognition is the interconnection of neurons to form complex information processing networks. Experience-based alterations in the activities of these information processing networks lead to neuroadaptation, which is physically represented at the cellular level as synaptic plasticity. Although synaptic plasticity is known to be affected by aging, the underlying molecular mechanisms are not well described. Astrocytes, a glial cell type that is infrequently investigated in cognitive science, have emerged as energy suppliers which are necessary for meeting the abundant energy demand resulting from glutamatergic synaptic activity. Moreover, the concerted action of an astrocyte-neuron metabolic shuttle is essential for cognitive function; whereas, energetic incoordination between astrocytes and neurons may contribute to cognitive impairment. Whether altered function of the astrocyte-neuron metabolic shuttle links aging to reduced synaptic plasticity is unexplored. However, accumulated evidence documents significant beneficial effects of long-term, regular exercise on cognition and synaptic plasticity. Furthermore, exercise increases the effectiveness of astrocyte-neuron metabolic shuttle by upregulation of astrocytic lactate transporter levels. This review summarizes previous findings related to the neuronal activity-dependent astrocyte-neuron metabolic shuttle. Moreover, we discuss how aging and exercise may shape the astrocyte-neuron metabolic shuttle in cognition-associated brain areas.
Collapse
Affiliation(s)
- Sheng-Feng Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University Tainan, Taiwan
| | - Pei-Chun Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung UniversityTainan, Taiwan; Department of Physiology, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Marcus J Calkins
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University Tainan, Taiwan
| | - Shih-Ying Wu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University Tainan, Taiwan
| | - Yu-Min Kuo
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung UniversityTainan, Taiwan; Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| |
Collapse
|
34
|
Coco M, Perciavalle V, Cavallari P, Perciavalle V. Effects of an Exhaustive Exercise on Motor Skill Learning and on the Excitability of Primary Motor Cortex and Supplementary Motor Area. Medicine (Baltimore) 2016; 95:e2978. [PMID: 26986109 PMCID: PMC4839890 DOI: 10.1097/md.0000000000002978] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We examined, on 28 healthy adult subjects, the possible correlations of an exhaustive exercise, and the consequent high blood lactate levels, on immediate (explicit) and delayed (implicit) motor execution of sequential finger movements (cognitive task). Moreover, we determined with transcranial magnetic stimulation whether changes in motor performance are associated with variations in excitability of primary motor area (M1) and supplementary motor area (SMA). We observed that, after an acute exhaustive exercise, the large increase of blood lactate is associated with a significant worsening of both explicit and implicit sequential visuomotor task paradigms, without gender differences. We also found that, at the end of the exhaustive exercise, there is a change of excitability in both M1 and SMA. In particular, the excitability of M1 was increased whereas that of SMA decreased and, also in this case, without gender differences. These results support the idea that an increase of blood lactate after an exhaustive exercise appears to have a protective effect at level of primary cortical areas (as M1), although at the expense of efficiency of adjacent cortical regions (as SMA).
Collapse
Affiliation(s)
- Marinella Coco
- From the Section of Physiology of the Department of Biomedical and Biotechnological Sciences, Universita' degli Studi di Catania, Catania, Italy (MC, ViP); Section of Human Physiology of the Department of Pathophysiology and Transplantation, Universita' degli Studi di Milano, Milan, Italy (PC); and Department of Sciences of Formation, Universita' degli Studi di Catania, Catania, Italy (VaP)
| | | | | | | |
Collapse
|
35
|
Taubert M, Villringer A, Lehmann N. Endurance Exercise as an "Endogenous" Neuro-enhancement Strategy to Facilitate Motor Learning. Front Hum Neurosci 2015; 9:692. [PMID: 26834602 PMCID: PMC4714627 DOI: 10.3389/fnhum.2015.00692] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 12/07/2015] [Indexed: 11/13/2022] Open
Abstract
Endurance exercise improves cardiovascular and musculoskeletal function and may also increase the information processing capacities of the brain. Animal and human research from the past decade demonstrated widespread exercise effects on brain structure and function at the systems-, cellular-, and molecular level of brain organization. These neurobiological mechanisms may explain the well-established positive influence of exercise on performance in various behavioral domains but also its contribution to improved skill learning and neuroplasticity. With respect to the latter, only few empirical and theoretical studies are available to date. The aim of this review is (i) to summarize the existing neurobiological and behavioral evidence arguing for endurance exercise-induced improvements in motor learning and (ii) to develop hypotheses about the mechanistic link between exercise and improved learning. We identify major knowledge gaps that need to be addressed by future research projects to advance our understanding of how exercise should be organized to optimize motor learning.
Collapse
Affiliation(s)
- Marco Taubert
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, LeipzigGermany; Clinic for Cognitive Neurology, University Hospital Leipzig, LeipzigGermany
| | - Nico Lehmann
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig Germany
| |
Collapse
|
36
|
Abstract
Neuroglia, the "glue" that fills the space between neurons in the central nervous system, takes active part in nerve cell signaling. Neuroglial cells, astroglia, oligodendroglia, and microglia, are together about as numerous as neurons in the brain as a whole, and in the cerebral cortex grey matter, but the proportion varies widely among brain regions. Glial volume, however, is less than one-fifth of the tissue volume in grey matter. When stimulated by neurons or other cells, neuroglial cells release gliotransmitters by exocytosis, similar to neurotransmitter release from nerve endings, or by carrier-mediated transport or channel flux through the plasma membrane. Gliotransmitters include the common neurotransmitters glutamate and GABA, the nonstandard amino acid d-serine, the high-energy phosphate ATP, and l-lactate. The latter molecule is a "buffer" between glycolytic and oxidative metabolism as well as a signaling substance recently shown to act on specific lactate receptors in the brain. Complementing neurotransmission at a synapse, neuroglial transmission often implies diffusion of the transmitter over a longer distance and concurs with the concept of volume transmission. Transmission from glia modulates synaptic neurotransmission based on energetic and other local conditions in a volume of tissue surrounding the individual synapse. Neuroglial transmission appears to contribute significantly to brain functions such as memory, as well as to prevalent neuropathologies.
Collapse
Affiliation(s)
- Vidar Gundersen
- SN-Lab, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, and CMBN/SERTA/Healthy Brain Ageing Centre, University of Oslo, Oslo, Norway; Department of Neurology, Oslo University Hospital-Rikshospitalet, Oslo, Norway; Center for Healthy Aging, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; and Brain and Muscle Energy Group, Department of Oral Biology and Division of Anatomy, Department of Molecular Medicine, University of Oslo, Oslo, Norway
| | - Jon Storm-Mathisen
- SN-Lab, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, and CMBN/SERTA/Healthy Brain Ageing Centre, University of Oslo, Oslo, Norway; Department of Neurology, Oslo University Hospital-Rikshospitalet, Oslo, Norway; Center for Healthy Aging, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; and Brain and Muscle Energy Group, Department of Oral Biology and Division of Anatomy, Department of Molecular Medicine, University of Oslo, Oslo, Norway
| | - Linda Hildegard Bergersen
- SN-Lab, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, and CMBN/SERTA/Healthy Brain Ageing Centre, University of Oslo, Oslo, Norway; Department of Neurology, Oslo University Hospital-Rikshospitalet, Oslo, Norway; Center for Healthy Aging, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; and Brain and Muscle Energy Group, Department of Oral Biology and Division of Anatomy, Department of Molecular Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
37
|
Demetrius LA, Driver JA. Preventing Alzheimer's disease by means of natural selection. J R Soc Interface 2015; 12:20140919. [PMID: 25551134 DOI: 10.1098/rsif.2014.0919] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The amyloid cascade model for the origin of sporadic forms of Alzheimer's disease (AD) posits that the imbalance in the production and clearance of beta-amyloid is a necessary condition for the disease. A competing theory called the entropic selection hypothesis asserts that the primary cause of sporadic AD is age-induced mitochondrial dysregulation and the following cascade of events: (i) metabolic reprogramming—the upregulation of oxidative phosphorylation in compensation for insufficient energy production in neurons, (ii) natural selection—competition between intact and reprogrammed neurons for energy substrates and (iii) propagation—the spread of the disease due to the selective advantage of neurons with upregulated metabolism. Experimental studies to evaluate the predictions of the amyloid cascade model are being continually retuned to accommodate conflicts of the predictions with empirical data. Clinical trials of treatments for AD based on anti-amyloid therapy have been unsuccessful. We contend that these anomalies and failures stem from a fundamental deficit of the amyloid hypothesis: the model derives from a nuclear-genomic perspective of sporadic AD and discounts the bioenergetic processes that characterize the progression of most age-related disorders. In this article, we review the anomalies of the amyloid model and the theoretical and empirical support for the entropic selection theory. We also discuss the new therapeutic strategies based on natural selection which the model proposes.
Collapse
|
38
|
Perciavalle V, Maci T, Perciavalle V, Massimino S, Coco M. Working memory and blood lactate levels. Neurol Sci 2015; 36:2129-36. [DOI: 10.1007/s10072-015-2329-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 07/06/2015] [Indexed: 01/25/2023]
|
39
|
L-Lactate Protects Skin Fibroblasts against Aging-Associated Mitochondrial Dysfunction via Mitohormesis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:351698. [PMID: 26171114 PMCID: PMC4478408 DOI: 10.1155/2015/351698] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/25/2015] [Accepted: 05/27/2015] [Indexed: 12/21/2022]
Abstract
A moderate elevation of reactive oxygen species (ROS) production and a mild inhibition of mitochondrial respiratory chain have been associated with a health promotion and a lifespan extension in several animal models of aging. Here, we tested whether this phenomenon called mitohormesis could be mediated by L-lactate. The treatment with 5 mM L-lactate significantly increased H2O2 production and slightly inhibited the respiration in cultured skin fibroblasts and in isolated mitochondria. The L-lactate exposure was associated with oxidation of intracellular glutathione, phosphorylation of 5′AMP-activated protein kinase (AMPK), and induction of peroxisome proliferator-activated receptor gamma coactivator 1α (PGC1α) transcription. A replicative aging of fibroblasts (L0) with a constant (LC), or intermittent 5 mM L-lactate (LI) in media showed that the high-passage LI fibroblasts have higher respiration, lower H2O2 release, and lower secretion of L-lactate compared to L0 and LC. This protection against mitochondrial dysfunction in LI cells was associated with lower activity of mechanistic target of rapamycin complex 1 (mTORC1), less signs of cellular senescence, and increased autophagy compared to L0 and LC. In conclusion, we demonstrated that intermittent but not constant exposure to L-lactate triggers mitohormesis, prevents aging-associated mitochondrial dysfunction, and improves other markers of aging.
Collapse
|
40
|
Somatosensory evoked potentials and blood lactate levels. Neurol Sci 2015; 36:1597-601. [DOI: 10.1007/s10072-015-2210-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/07/2015] [Indexed: 01/18/2023]
|
41
|
Bergersen LH. Lactate transport and signaling in the brain: potential therapeutic targets and roles in body-brain interaction. J Cereb Blood Flow Metab 2015; 35:176-85. [PMID: 25425080 PMCID: PMC4426752 DOI: 10.1038/jcbfm.2014.206] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 09/30/2014] [Accepted: 10/24/2014] [Indexed: 12/26/2022]
Abstract
Lactate acts as a 'buffer' between glycolysis and oxidative metabolism. In addition to being exchanged as a fuel by the monocarboxylate transporters (MCTs) between cells and tissues with different glycolytic and oxidative rates, lactate may be a 'volume transmitter' of brain signals. According to some, lactate is a preferred fuel for brain metabolism. Immediately after brain activation, the rate of glycolysis exceeds oxidation, leading to net production of lactate. At physical rest, there is a net efflux of lactate from the brain into the blood stream. But when blood lactate levels rise, such as in physical exercise, there is net influx of lactate from blood to brain, where the lactate is used for energy production and myelin formation. Lactate binds to the lactate receptor GPR81 aka hydroxycarboxylic acid receptor (HCAR1) on brain cells and cerebral blood vessels, and regulates the levels of cAMP. The localization and function of HCAR1 and the three MCTs (MCT1, MCT2, and MCT4) expressed in brain constitute the focus of this review. They are possible targets for new therapeutic drugs and interventions. The author proposes that lactate actions in the brain through MCTs and the lactate receptor underlie part of the favorable effects on the brain resulting from physical exercise.
Collapse
Affiliation(s)
- Linda Hildegard Bergersen
- 1] The Brain and Muscle Energy Group, SN-Lab, Department of Anatomy, Institute of Basic Medical Sciences, Healthy Brain Ageing Centre, University of Oslo, Oslo, Norway [2] Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark [3] Center for Healthy Aging, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark [4] The Brain and Muscle Energy Group, Department of Oral Biology, University of Oslo, Oslo, Norway
| |
Collapse
|
42
|
Coco M, Alagona G, De Maria G, Rapisarda G, Costanzo E, Perciavalle V, Perciavalle V. Relationship of high blood lactate levels with latency of visual-evoked potentials. Neurol Sci 2014; 36:541-6. [DOI: 10.1007/s10072-014-2015-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 11/18/2014] [Indexed: 01/25/2023]
|
43
|
Tseng YC, Liu ST, Hu MY, Chen RD, Lee JR, Hwang PP. Brain functioning under acute hypothermic stress supported by dynamic monocarboxylate utilization and transport in ectothermic fish. Front Zool 2014. [DOI: 10.1186/s12983-014-0053-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
44
|
Nagelhus EA, Amiry-Moghaddam M, Bergersen LH, Bjaalie JG, Eriksson J, Gundersen V, Leergaard TB, Morth JP, Storm-Mathisen J, Torp R, Walhovd KB, Tønjum T. The glia doctrine: addressing the role of glial cells in healthy brain ageing. Mech Ageing Dev 2013; 134:449-59. [PMID: 24141107 DOI: 10.1016/j.mad.2013.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/03/2013] [Accepted: 10/04/2013] [Indexed: 01/14/2023]
Abstract
Glial cells in their plurality pervade the human brain and impact on brain structure and function. A principal component of the emerging glial doctrine is the hypothesis that astrocytes, the most abundant type of glial cells, trigger major molecular processes leading to brain ageing. Astrocyte biology has been examined using molecular, biochemical and structural methods, as well as 3D brain imaging in live animals and humans. Exosomes are extracelluar membrane vesicles that facilitate communication between glia, and have significant potential for biomarker discovery and drug delivery. Polymorphisms in DNA repair genes may indirectly influence the structure and function of membrane proteins expressed in glial cells and predispose specific cell subgroups to degeneration. Physical exercise may reduce or retard age-related brain deterioration by a mechanism involving neuro-glial processes. It is most likely that additional information about the distribution, structure and function of glial cells will yield novel insight into human brain ageing. Systematic studies of glia and their functions are expected to eventually lead to earlier detection of ageing-related brain dysfunction and to interventions that could delay, reduce or prevent brain dysfunction.
Collapse
Affiliation(s)
- Erlend A Nagelhus
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Norway; Centre for Molecular Medicine Norway (NCMM), The Nordic EMBL Partnership, University of Oslo, Norway; Department of Neurology, Oslo University Hospital, Norway
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Savignac HM, Corona G, Mills H, Chen L, Spencer JPE, Tzortzis G, Burnet PWJ. Prebiotic feeding elevates central brain derived neurotrophic factor, N-methyl-D-aspartate receptor subunits and D-serine. Neurochem Int 2013; 63:756-64. [PMID: 24140431 PMCID: PMC3858812 DOI: 10.1016/j.neuint.2013.10.006] [Citation(s) in RCA: 257] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/24/2013] [Accepted: 10/10/2013] [Indexed: 12/26/2022]
Abstract
Prebiotic feeding elevated BDNF and NR1subunit mRNAs, in the rat hippocampus. The GOS prebiotic increased cortical NR1, d-serine, and hippocampal NR2A subunits. GOS feeding elevated plasma levels of the gut peptide PYY. GOS plasma increased BDNF release from human SH-SY5Y neuroblastoma cells. BDNF secretion from cells by GOS plasma was blocked by PYY antisera.
The influence of the gut microbiota on brain chemistry has been convincingly demonstrated in rodents. In the absence of gut bacteria, the central expression of brain derived neurotropic factor, (BDNF), and N-methyl-d-aspartate receptor (NMDAR) subunits are reduced, whereas, oral probiotics increase brain BDNF, and impart significant anxiolytic effects. We tested whether prebiotic compounds, which increase intrinsic enteric microbiota, also affected brain BDNF and NMDARs. In addition, we examined whether plasma from prebiotic treated rats released BDNF from human SH-SY5Y neuroblastoma cells, to provide an initial indication of mechanism of action. Rats were gavaged with fructo-oligosaccharides (FOS), galacto-oligosaccharides (GOS) or water for five weeks, prior to measurements of brain BDNF, NMDAR subunits and amino acids associated with glutamate neurotransmission (glutamate, glutamine, and serine and alanine enantiomers). Prebiotics increased hippocampal BDNF and NR1 subunit expression relative to controls. The intake of GOS also increased hippocampal NR2A subunits, and frontal cortex NR1 and d-serine. Prebiotics did not alter glutamate, glutamine, l-serine, l-alanine or d-alanine concentrations in the brain, though GOSfeeding raised plasma d-alanine. Elevated levels of plasma peptide YY (PYY) after GOS intake was observed. Plasma from GOS rats increased the release of BDNF from SH-SY5Y cells, but not in the presence of PYY antisera. The addition of synthetic PYY to SH-SY5Y cell cultures, also elevated BDNF secretion. We conclude that prebiotic-mediated proliferation of gut microbiota in rats, like probiotics, increases brain BDNF expression, possibly through the involvement of gut hormones. The effect of GOS on components of central NMDAR signalling was greater than FOS, and may reflect the proliferative potency of GOS on microbiota. Our data therefore, provide a sound basis to further investigate the utility of prebiotics in the maintenance of brain health and adjunctive treatment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Helene M Savignac
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK
| | | | | | | | | | | | | |
Collapse
|
46
|
Coco M, Alagona G, Perciavalle V, Perciavalle V, Cavallari P, Caronni A. Changes in cortical excitability and blood lactate after a fatiguing hand-grip exercise. Somatosens Mot Res 2013; 31:35-9. [DOI: 10.3109/08990220.2013.834816] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
47
|
Sanchez A, Tripathy D, Yin X, Luo J, Martinez JM, Grammas P. Sunitinib enhances neuronal survival in vitro via NF-κB-mediated signaling and expression of cyclooxygenase-2 and inducible nitric oxide synthase. J Neuroinflammation 2013; 10:93. [PMID: 23880112 PMCID: PMC3726353 DOI: 10.1186/1742-2094-10-93] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 07/18/2013] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Angiogenesis is tightly linked to inflammation and cancer. Regulation of angiogenesis is mediated primarily through activation of receptor tyrosine kinases, thus kinase inhibitors represent a new paradigm in anti-cancer therapy. However, these inhibitors have broad effects on inflammatory processes and multiple cell types. Sunitinib is a multitarget receptor tyrosine kinase inhibitor, which has shown promise for the treatment of glioblastoma, a highly vascularized tumor. However, there is little information as to the direct effects of sunitinib on brain-derived neurons. The objective of this study is to explore the effects of sunitinib on neuronal survival as well as on the expression of inflammatory protein mediators in primary cerebral neuronal cultures. METHODS Primary cortical neurons were exposed to various doses of sunitinib. The drug-treated cultures were assessed for survival by MTT assay and cell death by lactate dehydrogenase release. The ability of sunitinib to affect NF-κB, COX2 and NOS2 expression was determined by western blot. The NF-κB inhibitors dicoumarol, SN50 and BAY11-7085 were employed to assess the role of NF-κB in sunitinib-mediated effects on neuronal survival as well as COX2 and NOS2 expression. RESULTS Treatment of neuronal cultures with sunitinib caused a dose-dependent increase in cell survival and decrease in neuronal cell death. Exposure of neurons to sunitinib also induced an increase in the expression of NF-κB, COX2 and NOS2. Inhibiting NF-κB blunted the increase in cell survival and decrease in cell death evoked by sunitinib. Treatment of cell cultures with both sunitinib and NF-κB inhibitors mitigated the increase in COX2 and NOS2 caused by sunitinib. CONCLUSIONS Sunitinib increases neuronal survival and this neurotrophic effect is mediated by NF-κB. Also, the inflammatory proteins COX2 and NOS2 are upregulated by sunitinib in an NF-κB-dependent manner. These data are in agreement with a growing literature suggesting beneficial effects for inflammatory mediators such as NF-κB, COX2 and NOS2 in neurons. Further work is needed to fully explore the effects of sunitinib in the brain and its possible use as a treatment for glioblastoma. Finally, sunitinib may be useful for the treatment of a range of central nervous system diseases where neuronal injury is prominent.
Collapse
Affiliation(s)
- Alma Sanchez
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | | | | | | | | | | |
Collapse
|
48
|
Perciavalle V, Alagona G, Maci T, Petralia MC, Costanzo E, Perciavalle V, Coco M. Attentional processes during submaximal exercises. Somatosens Mot Res 2013; 31:1-6. [DOI: 10.3109/08990220.2013.796924] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
49
|
Reevaluating Metabolism in Alzheimer's Disease from the Perspective of the Astrocyte-Neuron Lactate Shuttle Model. JOURNAL OF NEURODEGENERATIVE DISEASES 2013; 2013:234572. [PMID: 26316984 PMCID: PMC4437330 DOI: 10.1155/2013/234572] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 04/02/2013] [Indexed: 01/19/2023]
Abstract
The conventional view of central nervous system (CNS) metabolism is based on the assumption that glucose is the main fuel source for active neurons and is processed in an oxidative manner. However, since the early 1990s research has challenged the idea that the energy needs of nerve cells are met exclusively by glucose and oxidative metabolism. This alternative view of glucose utilization contends that astrocytes metabolize glucose to lactate, which is then released and taken up by nearby neurons and used as a fuel source, commonly known as the astrocyte-neuron lactate shuttle (ANLS) model. Once thought of as a waste metabolite, lactate has emerged as a central player in the maintenance of neuronal function and long-term memory. Decreased neuronal metabolism has traditionally been viewed as a hallmark feature of Alzheimer's disease (AD). However, a more complex picture of CNS metabolism is emerging that may provide valuable insight into the pathophysiological changes that occur during AD and other neurodegenerative diseases. This review will examine the ANLS model and present recent evidence highlighting the critical role that lactate plays in neuronal survival and memory. Moreover, the role of glucose and lactate metabolism in AD will be re-evaluated from the perspective of the ANLS.
Collapse
|