1
|
Tyrrell AD, Cisbani G, Smith ME, Chen CT, Chen YT, Chouinard-Watkins R, Hopperton KE, Taha AY, Bazinet RP. Lipid mediators in post-mortem brain samples from patients with Alzheimer's disease: A systematic review. Brain Behav Immun Health 2025; 43:100938. [PMID: 39896840 PMCID: PMC11782888 DOI: 10.1016/j.bbih.2024.100938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 12/21/2024] [Indexed: 02/04/2025] Open
Abstract
A proposed contributor to Alzheimer's disease (AD) pathology is the induction of neuroinflammation due to tau and beta-amyloid protein accumulation causing neuronal injury and dysfunction. Dysregulation of lipid mediators derived from polyunsaturated fatty acids may contribute to this inflammatory response in the brain of patients with AD, yet the literature has not yet been systematically reviewed. A systematic search was conducted in Medline, Embase and PsychINFO for articles published up to April 22, 2024. Papers were included if they measured levels of lipid mediators and/or enzymes involved in their production in post-mortem brain samples from patients with AD and control without neurological disease. A total of 50 relevant studies were identified. Despite heterogeneity in the results, pro-inflammatory lipid mediators, including 5-, 11-, 12- and 15-hydroxyeicosatetraenoic acid oxylipins and prostaglandin D2, were significantly higher, while anti-inflammatory lipoxin A4 and DHA-derived docosanoids were significantly lower in brains of patients with AD compared to control (16 studies). Thirty-seven articles reported on enzymes, with 32 reporting values for enzyme level changes between AD and controls. Among the 32 articles, the majority reported on levels of cyclooxygenase (COX) (18/32), with fewer studies reporting on phospholipase (8/32), lipoxygenase (LOX) (4/32) and prostaglandin E synthase (4/32). Enzyme levels also exhibited variability in the literature, with a trend towards elevated expression of enzymes involved in the pro-inflammatory response, including COX and LOX enzymes. Overall, these results are consistent with the involvement of neuroinflammation in the pathogenesis of AD measured by lipid mediators. However, the specific contribution of each lipid metabolite and enzymes to either the progression or persistence of AD remains unclear, and more research is required.
Collapse
Affiliation(s)
- Aidan D. Tyrrell
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Canada
| | - Giulia Cisbani
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Canada
| | - Mackenzie E. Smith
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Canada
| | - Chuck T. Chen
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Canada
| | - Yue-Tong Chen
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Canada
| | | | - Kathryn E. Hopperton
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Canada
| | - Ameer Y. Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| | - Richard P. Bazinet
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Canada
| |
Collapse
|
2
|
Park SM, Oh YH, Lim GH, An JH, Lee JH, Gwag BJ, Won SJ, Seo KW, Youn HY. Crisdesalazine alleviates inflammation in an experimental autoimmune encephalomyelitis multiple sclerosis mouse model by regulating the immune system. BMC Neurosci 2025; 26:1. [PMID: 39754048 PMCID: PMC11699678 DOI: 10.1186/s12868-024-00920-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 12/17/2024] [Indexed: 01/06/2025] Open
Abstract
Microglia/macrophages participate in the development of and recovery from experimental autoimmune encephalomyelitis (EAE), and the macrophage M1 (pro-inflammatory)/M2 (anti-inflammatory) phase transition is involved in EAE disease progression. We evaluated the efficacy of crisdesalazine (a novel microsomal prostaglandin E2 synthase-1 inhibitor) in an EAE model, including its immune-regulating potency in lipopolysaccharide-stimulated macrophages, and its neuroprotective effects in a macrophage-neuronal co-culture system. Crisdesalazine significantly alleviated clinical symptoms, inhibited inflammatory cell infiltration and demyelination in the spinal cord, and altered the phase of microglial/macrophage and regulatory T cells. Crisdesalazine promoted the M1 to M2 phase transition in macrophages (immunomodulation) and reduced neuronal necrosis (neuroprotection) in vitro. This is the first study to directly demonstrate the therapeutic effects of a microsomal prostaglandin E2 synthase-1 inhibitor in an EAE model and its ability to alter macrophage polarization, suggesting that it may be a new therapeutic option for the treatment of patients affected by multiple sclerosis and other autoimmune diseases.
Collapse
Affiliation(s)
- Su-Min Park
- Laboratory of Veterinary Internal Medicine, Department of Clinical Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yong-Hun Oh
- Laboratory of Veterinary Internal Medicine, Department of Clinical Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ga-Hyun Lim
- Laboratory of Veterinary Internal Medicine, Department of Clinical Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ju-Hyun An
- Department of Veterinary Emergency and Critical Care Medicine and Institute of Veterinary Science, College of Veterinary Medicine, Kangwon National University, Chuncheon-si, Republic of Korea
| | | | | | - So-Jung Won
- GNT Pharma Co. Ltd., Yongin, Republic of Korea
| | - Kyoung-Won Seo
- Laboratory of Veterinary Internal Medicine, Department of Clinical Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hwa-Young Youn
- Laboratory of Veterinary Internal Medicine, Department of Clinical Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
3
|
Do Carmo S, Kautzmann MAI, Bhattacharjee S, Jun B, Steinberg C, Emmerson JT, Malcolm JC, Bonomo Q, Bazan NG, Cuello AC. Differential effect of an evolving amyloid and tau pathology on brain phospholipids and bioactive lipid mediators in rat models of Alzheimer-like pathology. J Neuroinflammation 2024; 21:185. [PMID: 39080670 PMCID: PMC11290283 DOI: 10.1186/s12974-024-03184-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Brain inflammation contributes significantly to the pathophysiology of Alzheimer's disease, and it is manifested by glial cell activation, increased production of cytokines/chemokines, and a shift in lipid mediators from a pro-homeostatic to a pro-inflammatory profile. However, whether the production of bioactive lipid mediators is affected at earlier stages, prior to the deposition of Aβ plaques and tau hyperphosphorylation, is unknown. The differential contribution of an evolving amyloid and tau pathology on the composition and abundance of membrane phospholipids and bioactive lipid mediators also remains unresolved. METHODS In this study, we examined the cortical levels of DHA- and AA-derived bioactive lipid mediators and of membrane phospholipids by liquid chromatography with tandem mass spectrometry in transgenic rat models of the Alzheimer's-like amyloid and tau pathologies at early and advanced pathological stages. RESULTS Our findings revealed a complex balance between pro-inflammatory and pro-resolving processes in which tau pathology has a more pronounced effect compared to amyloid pathology. At stages preceding tau misfolding and aggregation, there was an increase in pro-resolving lipid mediators (RVD6 and NPD1), DHA-containing phospholipids and IFN-γ levels. However, in advanced tau pathology displaying NFT-like inclusions, neuronal death, glial activation and cognitive deficits, there was an increase in cytokine and PGD2, PGE2, and PGF2α generation accompanied by a drop in IFN-γ levels. This pathology also resulted in a marked increase in AA-containing phospholipids. In comparison, pre-plaque amyloid pathology already presented high levels of cytokines and AA-containing phospholipids together with elevated RVD6 and NPD1 levels. Finally, Aβ plaque deposition was accompanied by a modest increase in prostaglandins, increased AA-containing phospholipids and reduced DHA-containing phospholipids. CONCLUSIONS Our findings suggest a dynamic trajectory of inflammatory and lipid mediators in the evolving amyloid and tau pathologies and support their differing roles on membrane properties and, consequentially, on signal transduction.
Collapse
Affiliation(s)
- Sonia Do Carmo
- Department of Pharmacology & Therapeutics, McGill University, 3655 Promenade Sir William Osler, Room 1210, Montreal, H3G 1Y6, Canada.
| | - Marie-Audrey I Kautzmann
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier Street, Suite D, New Orleans, LA, 70112, USA
| | - Surjyadipta Bhattacharjee
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier Street, Suite D, New Orleans, LA, 70112, USA
| | - Bokkyoo Jun
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier Street, Suite D, New Orleans, LA, 70112, USA
| | - Carolyn Steinberg
- Department of Pharmacology & Therapeutics, McGill University, 3655 Promenade Sir William Osler, Room 1210, Montreal, H3G 1Y6, Canada
| | - Joshua T Emmerson
- Department of Pharmacology & Therapeutics, McGill University, 3655 Promenade Sir William Osler, Room 1210, Montreal, H3G 1Y6, Canada
| | - Janice C Malcolm
- Department of Cell Anatomy and Cell Biology, McGill University, Montreal, H3A 0C7, Canada
| | - Quentin Bonomo
- Department of Neurology and Neurosurgery, McGill University, Montreal, H3G 1Y6, Canada
| | - Nicolas G Bazan
- Department of Pharmacology & Therapeutics, McGill University, 3655 Promenade Sir William Osler, Room 1210, Montreal, H3G 1Y6, Canada.
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier Street, Suite D, New Orleans, LA, 70112, USA.
| | - A Claudio Cuello
- Department of Pharmacology & Therapeutics, McGill University, 3655 Promenade Sir William Osler, Room 1210, Montreal, H3G 1Y6, Canada.
- Department of Cell Anatomy and Cell Biology, McGill University, Montreal, H3A 0C7, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, H3G 1Y6, Canada.
- Department of Pharmacology, Oxford University, Oxford, OX1 3QT, UK.
| |
Collapse
|
4
|
Sheremeta CL, Yarlagadda S, Smythe ML, Noakes PG. Prostaglandins in the Inflamed Central Nervous System: Potential Therapeutic Targets. Curr Drug Targets 2024; 25:885-908. [PMID: 39177131 PMCID: PMC11774313 DOI: 10.2174/0113894501323980240815113851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/11/2024] [Accepted: 07/19/2024] [Indexed: 08/24/2024]
Abstract
The global burden of neurological disorders is evident, yet there remains limited efficacious therapeutics for their treatment. There is a growing recognition of the role of inflammation in diseases of the central nervous system (CNS); among the numerous inflammatory mediators involved, prostaglandins play a crucial role. Prostaglandins are small lipid mediators derived from arachidonic acid via multi-enzymatic pathways. The actions of prostaglandins are varied, with each prostaglandin having a specific role in maintaining homeostasis. In the CNS, prostaglandins can have neuroprotective or neurotoxic properties depending on their specific G-protein receptor. These G-protein receptors have varying subfamilies, tissue distribution, and signal transduction cascades. Further studies into the impact of prostaglandins in CNS-based diseases may contribute to the clarification of their actions, hopefully leading to the development of efficacious therapeutic strategies. This review focuses on the roles played by prostaglandins in neural degeneration, with a focus on Alzheimer's Disease, Multiple Sclerosis, and Amyotrophic Lateral Sclerosis in both preclinical and clinical settings. We further discuss current prostaglandin-related agonists and antagonists concerning suggestions for their use as future therapeutics.
Collapse
Affiliation(s)
- Chynna-Loren Sheremeta
- Institute for Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Sai Yarlagadda
- Institute for Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Mark L. Smythe
- Institute for Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Peter G. Noakes
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
5
|
Sluter MN, Li Q, Yasmen N, Chen Y, Li L, Hou R, Yu Y, Yang CY, Meibohm B, Jiang J. The inducible prostaglandin E synthase (mPGES-1) in neuroinflammatory disorders. Exp Biol Med (Maywood) 2023; 248:811-819. [PMID: 37515545 PMCID: PMC10468642 DOI: 10.1177/15353702231179926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2023] Open
Abstract
The cyclooxygenase (COX)/prostaglandin E2 (PGE2) signaling pathway has emerged as a critical target for anti-inflammatory therapeutic development in neurological diseases. However, medical use of COX inhibitors in the treatment of various neurological disorders has been limited due to well-documented cardiovascular and cerebrovascular complications. It has been widely proposed that modulation of downstream microsomal prostaglandin E synthase-1 (mPGES-1) enzyme may provide more specificity for inhibiting PGE2-elicited neuroinflammation. Heightened levels of mPGES-1 have been detected in a variety of brain diseases such as epilepsy, stroke, glioma, and neurodegenerative diseases. Subsequently, elevated levels of PGE2, the enzymatic product of mPGES-1, have been demonstrated to modulate a multitude of deleterious effects. In epilepsy, PGE2 participates in retrograde signaling to augment glutamate release at the synapse leading to neuronal death. The excitotoxic demise of neurons incites the activation of microglia, which can become overactive upon further stimulation by PGE2. A selective mPGES-1 inhibitor was able to reduce gliosis and the expression of proinflammatory cytokines in the hippocampus following status epilepticus. A similar mechanism has also been observed in stroke, where the overactivation of microglia by PGE2 upregulated the expression and secretion of proinflammatory cytokines. This intense activation of neuroinflammatory processes triggered the secondary injury commonly observed in stroke, and blockade of mPGES-1 reduced infarction size and edema, suppressed induction of proinflammatory cytokines, and improved post-stroke well-being and cognition. Furthermore, elevated levels of PGE2 have been shown to intensify the proliferation of glioma cells, mediate P-glycoprotein expression at the blood-brain barrier (BBB) and facilitate breakdown of the BBB. For these reasons, targeting mPGES-1, the central and inducible enzyme of the COX cascade, may provide a more specific therapeutic strategy for treating neuroinflammatory diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Ruida Hou
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ying Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Chao-Yie Yang
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
6
|
Alrouji M, Al-Kuraishy HM, Al-Gareeb AI, Saad HM, Batiha GES. A story of the potential effect of non-steroidal anti-inflammatory drugs (NSAIDs) in Parkinson's disease: beneficial or detrimental effects. Inflammopharmacology 2023; 31:673-688. [PMID: 36961665 DOI: 10.1007/s10787-023-01192-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/02/2023] [Indexed: 03/25/2023]
Abstract
Parkinson's disease (PD) is an advanced neurodegenerative disease (NDD) caused by the degeneration of dopaminergic neurons (DNs) in the substantia nigra (SN). As PD is an age-related disorder, the majority of PD patients are associated with musculoskeletal disorders with prolonged use of analgesic and anti-inflammatory agents, such as non-steroidal anti-inflammatory drugs (NSAIDs). Therefore, NSAIDs can affect PD neuropathology in different ways. Thus, the objective of the present narrative review was to clarify the potential role of NSAIDs in PD according to the assorted view of preponderance. Inhibition of neuroinflammation and modulation of immune response by NSAIDs could be an effective way in preventing the development of NDD. NSAIDs affect PD neuropathology in different manners could be beneficial or detrimental effects. Inhibition of cyclooxygenase 2 (COX2) by NSAIDs may prevent the development of PD. NSAIDs afforded a neuroprotective role against the development and progression of PD neuropathology through the modulation of neuroinflammation. Though, NSAIDs may lead to neutral or harmful effects by inhibiting neuroprotective prostacyclin (PGI2) and accentuation of pro-inflammatory leukotrienes (LTs). In conclusion, there is still a potential conflict regarding the effect of NSAIDs on PD neuropathology.
Collapse
Affiliation(s)
- Mohammed Alrouji
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra, 11961, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Professor in Department of Clinical Pharmacology and Therapeutic Medicine, College of Medicine, ALmustansiriyiah University, M.B.Ch.B, FRCP, Box 14132, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Professor in Department of Clinical Pharmacology and Therapeutic Medicine, College of Medicine, ALmustansiriyiah University, M.B.Ch.B, FRCP, Box 14132, Baghdad, Iraq
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matrouh, 51744, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, AlBeheira, Damanhour, 22511, Egypt.
| |
Collapse
|
7
|
Ochiai T, Honsawa T, Sasaki Y, Hara S. Prostacyclin Synthase as an Ambivalent Regulator of Inflammatory Reactions. Biol Pharm Bull 2022; 45:979-984. [DOI: 10.1248/bpb.b22-00370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Tsubasa Ochiai
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University
| | - Toshiya Honsawa
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University
| | - Yuka Sasaki
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University
| | - Shuntaro Hara
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University
| |
Collapse
|
8
|
Zhang YY, Yao YD, Luo JF, Liu ZQ, Huang YM, Wu FC, Sun QH, Liu JX, Zhou H. Microsomal prostaglandin E 2 synthase-1 and its inhibitors: Molecular mechanisms and therapeutic significance. Pharmacol Res 2021; 175:105977. [PMID: 34798265 DOI: 10.1016/j.phrs.2021.105977] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/03/2021] [Accepted: 11/07/2021] [Indexed: 12/17/2022]
Abstract
Inflammation is closely linked to the abnormal phospholipid metabolism chain of cyclooxygenase-2/microsomal prostaglandin E2 synthase-1/prostaglandin E2 (COX-2/mPGES-1/PGE2). In clinical practice, non-steroidal anti-inflammatory drugs (NSAIDs) as upstream COX-2 enzyme activity inhibitors are widely used to block COX-2 cascade to relieve inflammatory response. However, NSAIDs could also cause cardiovascular and gastrointestinal side effects due to its inhibition on other prostaglandins generation. To avoid this, targeting downstream mPGES-1 instead of upstream COX is preferable to selectively block overexpressed PGE2 in inflammatory diseases. Some mPGES-1 inhibitor candidates including synthetic compounds, natural products and existing anti-inflammatory drugs have been proved to be effective in in vitro experiments. After 20 years of in-depth research on mPGES-1 and its inhibitors, ISC 27864 have completed phase II clinical trial. In this review, we intend to summarize mPGES-1 inhibitors focused on their inhibitory specificity with perspectives for future drug development.
Collapse
Affiliation(s)
- Yan-Yu Zhang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Yun-Da Yao
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Jin-Fang Luo
- Guizhou University of Traditional Chinese Medicine, Huaxi District, Guiyang City, Guizhou Province 550025, PR China
| | - Zhong-Qiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province 510006, PR China
| | - Yu-Ming Huang
- Hunan Zhengqing Pharmaceutical Company Group Ltd, Huaihua City, Hunan Province, PR China
| | - Fei-Chi Wu
- Hunan Zhengqing Pharmaceutical Company Group Ltd, Huaihua City, Hunan Province, PR China
| | - Qin-Hua Sun
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua City, Hunan Province 418000, PR China.
| | - Jian-Xin Liu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou City, Zhejiang Province 310053, PR China.
| | - Hua Zhou
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Macau University of Science and Technology, Taipa, Macao, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province 510006, PR China; Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai City, Guangdong Province 519000, PR China.
| |
Collapse
|
9
|
Siddiqui A, Shah Z, Jahan RN, Othman I, Kumari Y. Mechanistic role of boswellic acids in Alzheimer's disease: Emphasis on anti-inflammatory properties. Biomed Pharmacother 2021; 144:112250. [PMID: 34607104 DOI: 10.1016/j.biopha.2021.112250] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/17/2021] [Accepted: 09/26/2021] [Indexed: 12/24/2022] Open
Abstract
The resin/gum of Boswellia species belonging to the family of Burseraceae is a naturally occurring mixture of bioactive compounds, which was traditionally used as a folk medicine to treat conditions like chronic inflammation. Several research studies have also explored its' therapeutic potential against multiple neurodegenerative diseases such as Alzheimer's disease (AD). The main chemical constituents of this gum include boswellic acids (BAs) like 3-O-acetyl-11-keto-β boswellic acid (AKBA) that possess potent anti-inflammatory and neuroprotective properties in AD. It is also involved in inhibiting the acetylcholinesterase (AChE) activity in the cholinergic pathway and improve choline levels as well as its binding with nicotinic receptors to produce anti-inflammatory effects. Multiple shreds of evidence have demonstrated that BAs modulate key molecular targets and signalling pathways like 5-lipoxygenase/cyclooxygenase, Nrf2, NF-kB, cholinergic, amyloid-beta (Aβ), and neurofibrillary tangles formation (NFTs) that are involved in AD progression. The present review focuses on the possible mechanistic therapeutic role of BAs in modulating the 5-LOX/COX pathway in arachidonic acid metabolism, activating Nrf2 through binding of ARE, inhibiting NF-kB and AChE activity. In addition, an inhibition of amyloid plaques (Aβ) and neurofibrillary tangles (NFTs) induced neurotoxicity and neuroinflammation in AD by BAs is also discussed in this review. We have also highlighted that BAs possess beneficial effects in AD by targeting multiple molecular pathways and makes it an emerging drug candidate for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Aisha Siddiqui
- Neurological disorder and aging research group (NDA), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Selangor, Malaysia
| | - Zahoor Shah
- Department of Medicinal and Biological Chemistry, University of Toledo, 3000 Arlington Avenue, Toledo 43614, OH, USA
| | - Rao Nargis Jahan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard University, New Delhi 110062, India
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Selangor, Malaysia
| | - Yatinesh Kumari
- Neurological disorder and aging research group (NDA), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Selangor, Malaysia.
| |
Collapse
|
10
|
A Study to Decipher the Potential Effects of Butylphthalide against Central Nervous System Diseases Based on Network Pharmacology and Molecular Docking Integration Strategy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6694698. [PMID: 34035826 PMCID: PMC8116153 DOI: 10.1155/2021/6694698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/05/2021] [Accepted: 04/27/2021] [Indexed: 11/24/2022]
Abstract
Background Butylphthalide (NBP), approved by the China National Medical Products Administration (NMPA) for the treatment of ischemic stroke (IS), showed pleiotropic potentials against central nervous system (CNS) diseases, including neuroprotection and cognitive deficits improvement. However, the effects and corresponding modes of action were not fully explored. This study was designed to investigate the potential of NBP against IS-associated CNS diseases based on network pharmacology (NP) and molecular docking (MD). Methods IS was inputted as the index disease to retrieve the “associated diseases” in DisGeNET. Three-database-based IS genes were obtained and integrated (DisGeNET, Malacards, and OMIM). Then, IS-associated genes were identified by combining these genes. Meanwhile, PubMed references and online databases were applied to identify NBP target genes. The IS-related disease-disease association (DDA) network and NBP-disease regulation network were constructed and analyzed in Cytoscape. In silico MD and references were used to validate the binding affinity of NBP with critical targets and the potential of NBP against certain IS-related CNS disease regulation. Results 175 NBP target genes were obtained, while 312 IS-related disease genes were identified. 36 NBP target genes were predicted to be associated with IS-related CNS diseases, including Alzheimer's disease (AD), epilepsy, major depressive disorder (MDD), amyotrophic lateral sclerosis (ALS), and dementia. Six target genes (i.e., GRIN1, PTGIS, PTGES, ADRA1A, CDK5, and SULT1E1) indicating disease specificity index (DSI) >0.5 showed certain to good degree binding affinity with NBP, ranging from −9.2 to −6.7 kcal/mol. And the binding modes may be mainly related to hydrogen bonds and hydrophobic “bonds.” Further literature validations inferred that these critical NBP targets had a tight association with AD, epilepsy, ALS, and depression. Conclusions Our study proposed a drug-target-disease integrated method to predict the drug repurposing potentials to associated diseases by application of NP and MD, which could be an attractive alternative to facilitate the development of CNS disease therapies. NBP may be promising and showed potentials to be repurposed for treatments for AD, epilepsy, ALS, and depression, and further investigations are warranted to be carefully designed and conducted.
Collapse
|
11
|
Di Micco S, Terracciano S, Ruggiero D, Potenza M, Vaccaro MC, Fischer K, Werz O, Bruno I, Bifulco G. Identification of 2-(thiophen-2-yl)acetic Acid-Based Lead Compound for mPGES-1 Inhibition. Front Chem 2021; 9:676631. [PMID: 34046398 PMCID: PMC8144515 DOI: 10.3389/fchem.2021.676631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/07/2021] [Indexed: 11/13/2022] Open
Abstract
We report the implementation of our in silico/synthesis pipeline by targeting the glutathione-dependent enzyme mPGES-1, a valuable macromolecular target in both cancer therapy and inflammation therapy. Specifically, by using a virtual fragment screening approach of aromatic bromides, straightforwardly modifiable by the Suzuki-Miyaura reaction, we identified 3-phenylpropanoic acid and 2-(thiophen-2-yl)acetic acid to be suitable chemical platforms to develop tighter mPGES-1 inhibitors. Among these, compounds 1c and 2c showed selective inhibitory activity against mPGES-1 in the low micromolar range in accordance with molecular modeling calculations. Moreover, 1c and 2c exhibited interesting IC50 values on A549 cell lines compared to CAY10526, selected as reference compound. The most promising compound 2c induced the cycle arrest in the G0/G1 phase at 24 h of exposure, whereas at 48 and 72 h, it caused an increase of subG0/G1 fraction, suggesting an apoptosis/necrosis effect.
Collapse
Affiliation(s)
- Simone Di Micco
- European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy
| | | | - Dafne Ruggiero
- Dipartimento di Farmacia, University degli Studi di Salerno, Fisciano, Italy
| | - Marianna Potenza
- Dipartimento di Farmacia, University degli Studi di Salerno, Fisciano, Italy
| | - Maria C Vaccaro
- Dipartimento di Farmacia, University degli Studi di Salerno, Fisciano, Italy
| | - Katrin Fischer
- Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| | - Oliver Werz
- Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| | - Ines Bruno
- Dipartimento di Farmacia, University degli Studi di Salerno, Fisciano, Italy
| | - Giuseppe Bifulco
- Dipartimento di Farmacia, University degli Studi di Salerno, Fisciano, Italy
| |
Collapse
|
12
|
Murakawa-Hirachi T, Mizoguchi Y, Ohgidani M, Haraguchi Y, Monji A. Effect of memantine, an anti-Alzheimer's drug, on rodent microglial cells in vitro. Sci Rep 2021; 11:6151. [PMID: 33731780 PMCID: PMC7969939 DOI: 10.1038/s41598-021-85625-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 02/24/2021] [Indexed: 01/07/2023] Open
Abstract
The pathophysiology of Alzheimer's disease (AD) is related to neuroinflammatory responses mediated by microglia. Memantine, an antagonist of N-methyl-D-aspartate (NMDA) receptors used as an anti-Alzheimer's drug, protects from neuronal death accompanied by suppression of proliferation and activation of microglial cells in animal models of AD. However, it remains to be tested whether memantine can directly affect microglial cell function. In this study, we examined whether pretreatment with memantine affects intracellular NO and Ca2+ mobilization using DAF-2 and Fura-2 imaging, respectively, and tested the effects of memantine on phagocytic activity by human β-Amyloid (1-42) phagocytosis assay in rodent microglial cells. Pretreatment with memantine did not affect production of NO or intracellular Ca2+ elevation induced by TNF in rodent microglial cells. Pretreatment with memantine also did not affect the mRNA expression of pro-inflammatory (TNF, IL-1β, IL-6 and CD45) or anti-inflammatory (IL-10, TGF-β and arginase) phenotypes in rodent microglial cells. In addition, pretreatment with memantine did not affect the amount of human β-Amyloid (1-42) phagocytosed by rodent microglial cells. Moreover, we observed that pretreatment with memantine did not affect 11 major proteins, which mainly function in the phagocytosis and degradation of β-Amyloid (1-42), including TREM2, DAP12 and neprilysin in rodent microglial cells. To the best of our knowledge, this is the first report to suggest that memantine does not directly modulate intracellular NO and Ca2+ mobilization or phagocytic activity in rodent microglial cells. Considering the neuroinflammation hypothesis of AD, the results might be important to understand the effect of memantine in the brain.
Collapse
Affiliation(s)
- Toru Murakawa-Hirachi
- Department of Psychiatry, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Yoshito Mizoguchi
- Department of Psychiatry, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan.
| | - Masahiro Ohgidani
- Department of Psychiatry, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshinori Haraguchi
- Department of Psychiatry, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Akira Monji
- Department of Psychiatry, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| |
Collapse
|
13
|
Mukhtar I. Inflammatory and immune mechanisms underlying epileptogenesis and epilepsy: From pathogenesis to treatment target. Seizure 2020; 82:65-79. [PMID: 33011590 DOI: 10.1016/j.seizure.2020.09.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
Epilepsy is a brain disease associated with epileptic seizures as well as with neurobehavioral outcomes of this condition. In the last century, inflammation emerged as a crucial factor in epilepsy etiology. Various brain insults through activation of neuronal and non-neuronal brain cells initiate a series of inflammatory events. Growing observations strongly suggest that abnormal activation of critical inflammatory processes contributes to epileptogenesis, a gradual process by which a normal brain transforms into the epileptic brain. Increased knowledge of inflammatory pathways in epileptogenesis has unveiled mechanistic targets for novel antiepileptic therapies. Molecules specifically targeting the pivotal inflammatory pathways may serve as promising candidates to halt the development of epilepsy. The present paper reviews the pieces of evidence conceptually supporting the potential role of inflammatory mechanisms and the relevant blood-brain barrier (BBB) disruption in epileptogenesis. Also, it discusses the mechanisms underlying inflammation-induced neuronal-glial network impairment and highlights innovative neuroregulatory actions of typical inflammatory molecules. Finally, it presents a brief analysis of observations supporting the therapeutic role of inflammation-targeting tiny molecules in epileptic seizures.
Collapse
Affiliation(s)
- Iqra Mukhtar
- H.E.J Research Institute of Chemistry, International Center For Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan; Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
14
|
Ling QL, Akasaka H, Chen C, Haile CN, Winoske K, Ruan KH. The Protective Effects of Up-Regulating Prostacyclin Biosynthesis on Neuron Survival in Hippocampus. J Neuroimmune Pharmacol 2020; 15:292-308. [PMID: 31897976 DOI: 10.1007/s11481-019-09896-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/22/2019] [Indexed: 01/09/2023]
Abstract
Cellular arachidonic acid (AA), an unsaturated fatty acid found ubiquitously in plasma membranes, is metabolized to different prostanoids, such as prostacyclin (PGI2) and prostaglandin E2 (PGE2), by the three-step reactions coupling the upstream cyclooxygenase (COX) isoforms (COX-1 and COX-2) with the corresponding individual downstream synthases. While the vascular actions of these prostanoids are well-characterized, their specific roles in the hippocampus, a major brain area for memory, are poorly understood. The major obstacle for its understanding in the brain was to mimic the biosynthesis of each prostanoid. To solve the problem, we utilized Single-Chain Hybrid Enzyme Complexes (SCHECs), which could successfully control cellular AA metabolites to the desired PGI2 or PGE2. Our in vitro studies suggested that neurons with higher PGI2 content and lower PGE2 content exhibited survival protection and resistance to Amyloid-β-induced neurotoxicity. Further extending to an in vivo model, the hybrid of PGI2-producing transgenic mice and Alzheimer's disease (AD) mice showed restored long-term memory. These findings suggested that the vascular prostanoids, PGI2 and PGE2, exerted significant regulatory influences on neuronal protection (by PGI2), or damage (by PGE2) in the hippocampus, and raised a concern that the wide uses of aspirin in cardiovascular diseases may exert negative impacts on neurodegenerative protection. Graphic Abstract Our study intended to understand the crosstalk of prostanoids in the hippocampus, a major brain area impacted in AD, by using hybrid enzymes to redirect the synthesis of prostanoids to PGE2 and PGI2, respectively. Our data indicated that during inflammation, the vascular mediators, PGI2 and PGE2, exerted significant regulatory influences on neuronal protection (by PGI2), or damage (by PGE2) in the hippocampus. These findings also raised a concern that the widely uses of non-steroidal anti-inflammatory drugs in cardiovascular diseases may exert negative impacts on neurodegenerative protection.
Collapse
Affiliation(s)
- Qing-Lan Ling
- The Center for Experimental Therapeutics and Pharmacoinformatics, Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Health and Biomedical Sciences Building 2, 4849 Calhoun Road, Room 3044, Houston, TX, 77204-5037, USA
| | - Hironari Akasaka
- The Center for Experimental Therapeutics and Pharmacoinformatics, Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Health and Biomedical Sciences Building 2, 4849 Calhoun Road, Room 3044, Houston, TX, 77204-5037, USA
| | - Chang Chen
- The Center for Experimental Therapeutics and Pharmacoinformatics, Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Health and Biomedical Sciences Building 2, 4849 Calhoun Road, Room 3044, Houston, TX, 77204-5037, USA
- Department of Anesthesia, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China
| | - Colin N Haile
- University of Houston Animal Behavior Core Facility, Texas Institute for Measurement, Evaluation and Statistics (TIMES), Department of Psychology, University of Houston, Houston, TX, 77204, USA
| | - Kevin Winoske
- University of Houston Animal Behavior Core Facility, Texas Institute for Measurement, Evaluation and Statistics (TIMES), Department of Psychology, University of Houston, Houston, TX, 77204, USA
| | - Ke-He Ruan
- The Center for Experimental Therapeutics and Pharmacoinformatics, Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Health and Biomedical Sciences Building 2, 4849 Calhoun Road, Room 3044, Houston, TX, 77204-5037, USA.
| |
Collapse
|
15
|
Haghaei H, Soltani S, Aref Hosseini S, Rashidi MR, Karima S. Boswellic Acids as Promising Leads in Drug Development against Alzheimer’s Disease. PHARMACEUTICAL SCIENCES 2020. [DOI: 10.34172/ps.2020.25] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Biological activity of Boswellia extract (BE) has been attributed to its main active ingredients; i.e. Boswellic acids (BAs). BE/BAs possess a promising therapeutic potential in neurodegenerative disorders; including Alzheimer's disease (AD). The multifactorial nature of AD pathophysiology necessitates the development of the disease-modifying agents (DMA). Recent multi-targeting approaches for the DMAs development have brought more attention to the plant-derived compounds regarding their better human compatibility because of their biologic origin. This review addresses the current knowledge on the anti-AD activity of BE/BAs based on the available in silico, in vitro, in vivo studies and clinical trials. The contribution of BE/BAs in inflammatory pathways, Tau and β-amyloid proteins, microtubule functions, oxidative stress, cholinesterase and diabetes/insulin pathways involved in AD have been discussed. BAs efficacy in different AD-related pathways has been confirmed in vitro and in vivo. They can be considered as valuable scaffold/lead compounds for multi-targeted DMAs in anti-AD drug discovery and development.
Collapse
Affiliation(s)
- Hossein Haghaei
- Nutrition and food Sciences Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somaieh Soltani
- Drug Applied Research Center and Pharmacy Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Reza Rashidi
- Drug Applied Research Center and Pharmacy Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Pharmaceutical Nanotechnology and Pharmacy Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Karima
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| |
Collapse
|
16
|
Bülbül B, Küçükgüzel İ. Microsomal Prostaglandin E2 Synthase-1 as a New Macromolecular Drug Target in the Prevention of Inflammation and Cancer. Anticancer Agents Med Chem 2020; 19:1205-1222. [PMID: 30827263 DOI: 10.2174/1871520619666190227174137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/29/2019] [Accepted: 02/05/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Cancer is one of the most life-threatening diseases worldwide. Since inflammation is considered to be one of the known characteristics of cancer, the activity of PGE2 has been paired with different tumorigenic steps such as increased tumor cell proliferation, resistance to apoptosis, increased invasiveness, angiogenesis and immunosuppression. OBJECTIVE It has been successfully demonstrated that inhibition of mPGES-1 prevented inflammation in preclinical studies. However, despite the crucial roles of mPGEs-1 and PGE2 in tumorigenesis, there is not much in vivo study on mPGES-1 inhibition in cancer therapy. The specificity of mPGEs-1 enzyme and its low expression level under normal conditions makes it a promising drug target with a low risk of side effects. METHODS A comprehensive literature search was performed for writing this review. An updated view on PGE2 biosynthesis, PGES isoenzyme family and its pharmacology and the latest information about inhibitors of mPGES-1 have been discussed. RESULTS In this study, it was aimed to highlight the importance of mPGES-1 and its inhibition in inflammationrelated cancer and other inflammatory conditions. Information about PGE2 biosynthesis, its role in inflammationrelated pathologies were also provided. We kept the noncancer-related inflammatory part short and tried to bring together promising molecules or scaffolds. CONCLUSION The information provided in this review might be useful to researchers in designing novel and potent mPGES-1 inhibitors for the treatment of cancer and inflammation.
Collapse
Affiliation(s)
- Bahadır Bülbül
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| | - İlkay Küçükgüzel
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| |
Collapse
|
17
|
Lu CD, Ma JK, Luo ZY, Tai QX, Wang P, Guan PP. Transferrin is responsible for mediating the effects of iron ions on the regulation of anterior pharynx-defective-1α/β and Presenilin 1 expression via PGE 2 and PGD 2 at the early stage of Alzheimer's Disease. Aging (Albany NY) 2019; 10:3117-3135. [PMID: 30383537 PMCID: PMC6286844 DOI: 10.18632/aging.101615] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 10/19/2018] [Indexed: 01/03/2023]
Abstract
Transferrin (Tf) is an important iron-binding protein postulated to play a key role in iron ion (Fe) absorption via the Tf receptor (TfR), which potentially contributes to the pathogenesis of Alzheimer’s disease (AD). However, the role of Tf in AD remains unknown. Using mouse-derived neurons and APP/PS1 transgenic (Tg) mice as model systems, we firstly revealed the mechanisms of APH-1α/1β and presenilin 1 (PS1) upregulation by Fe in prostaglandin (PG) E2- and PGD2-dependent mechanisms. Specifically, Fe stimulated the expression of mPGES-1 and the production of PGE2 and PGD2 via the Tf and TfR system. Highly accumulated PGE2 markedly induced the expression of anterior pharynx-defective-1α and -1β (APH-1α/1β) and PS1 via an EP receptor-dependent mechanism. In contrast, PGD2 suppressed the expression of APH-1α/1β and PS1 via a prostaglandin D2 (DP) receptor-dependent mechanism. As the natural dehydrated product of PGD2, 15d-PGJ2 exerts inhibitory effects on the expression of APH-1α/1β and PS1 in a peroxisome proliferator-activated receptor (PPAR) γ-dependent manner. The expression of APH-1α/1β and PS1 ultimately determined the production and deposition of β-amyloid protein (Aβ), an effect that potentially contributes to the pathogenesis of AD.
Collapse
Affiliation(s)
- Chen-Di Lu
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Ji-Kang Ma
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Zheng-Yang Luo
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Qun-Xi Tai
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Pu Wang
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Pei-Pei Guan
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| |
Collapse
|
18
|
A review on mPGES-1 inhibitors: From preclinical studies to clinical applications. Prostaglandins Other Lipid Mediat 2019; 147:106383. [PMID: 31698145 DOI: 10.1016/j.prostaglandins.2019.106383] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/16/2019] [Accepted: 09/09/2019] [Indexed: 02/06/2023]
Abstract
Prostaglandin E2 (PGE2) is a lipid mediator of inflammation and cancer progression. It is mainly formed via metabolism of arachidonic acid by cyclooxygenases (COX) and the terminal enzyme microsomal prostaglandin E synthase-1 (mPGES-1). Widely used non-steroidal anti-inflammatory drugs (NSAIDs) inhibit COX activity, resulting in decreased PGE2 production and symptomatic relief. However, NSAIDs block the production of many other lipid mediators that have important physiological and resolving actions, and these drugs cause gastrointestinal bleeding and/or increase the risk for severe cardiovascular events. Selective inhibition of downstream mPGES-1 for reduction in only PGE2 biosynthesis is suggested as a safer therapeutic strategy. This review covers the recent advances in characterization of new mPGES-1 inhibitors in preclinical models and their future clinical applications.
Collapse
|
19
|
Guan PP, Liang YY, Cao LL, Yu X, Wang P. Cyclooxygenase-2 Induced the β-Amyloid Protein Deposition and Neuronal Apoptosis Via Upregulating the Synthesis of Prostaglandin E 2 and 15-Deoxy-Δ 12,14-prostaglandin J 2. Neurotherapeutics 2019; 16:1255-1268. [PMID: 31392591 PMCID: PMC6985346 DOI: 10.1007/s13311-019-00770-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Elevated levels of cyclooxygenase-2 (COX-2) and prostaglandins (PGs) have been shown to be involved in the pathogenesis of Alzheimer's disease. Analysis of the underlying mechanisms elucidated a function of sequential PGE2 and PGD2 synthesis in regulating β-amyloid protein (Aβ) deposition by modulating tumor necrosis factor α (TNF-α)-dependent presenilin (PS)1/2 activity in COX-2 and APP/PS1 crossed mice. Specifically, COX-2 overexpression accelerates the expression of microsomal PGE synthase-1 (mPGES-1) and lipocalin-type prostaglandin D synthase (L-PGDS), leading to the synthesis of PGE2 and 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) in 6-month-old APP/PS1 mice. Consequently, PGE2 has the ability to increase Aβ production by enhancing the expression of PS1/2 in a TNF-α-dependent manner, which accelerates the cognitive decline of COX-2/APP/PS1 mice. More interestingly, low concentrations of 15d-PGJ2 treatment facilitate the effects of PGE2 on the deposition of Aβ via TNF-α-dependent PS1/2 mechanisms. In contrast, high concentrations of 15d-PGJ2 treatment inhibit the deposition of Aβ via suppressing the expression of TNF-α-dependent PS1/2. In this regard, a high concentration of 15d-PGJ2 appears to be a therapeutic agent against Alzheimer's disease. However, the high 15d-PGJ2 concentration treatment induces neuronal apoptosis via increasing the protein levels of Bax, cleaved caspase-3, and DFF45, which further impairs the learning ability of APP/PS1 mice.
Collapse
Affiliation(s)
- Pei-Pei Guan
- College of Life and Health Sciences, Northeastern University, No. 3-11, Wenhua Road, Shenyang, 110819, China
| | - Yun-Yue Liang
- College of Life and Health Sciences, Northeastern University, No. 3-11, Wenhua Road, Shenyang, 110819, China
| | - Long-Long Cao
- College of Life and Health Sciences, Northeastern University, No. 3-11, Wenhua Road, Shenyang, 110819, China
| | - Xin Yu
- College of Life and Health Sciences, Northeastern University, No. 3-11, Wenhua Road, Shenyang, 110819, China
| | - Pu Wang
- College of Life and Health Sciences, Northeastern University, No. 3-11, Wenhua Road, Shenyang, 110819, China.
| |
Collapse
|
20
|
Cao LL, Guan PP, Liang YY, Huang XS, Wang P. Calcium Ions Stimulate the Hyperphosphorylation of Tau by Activating Microsomal Prostaglandin E Synthase 1. Front Aging Neurosci 2019; 11:108. [PMID: 31143112 PMCID: PMC6521221 DOI: 10.3389/fnagi.2019.00108] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/25/2019] [Indexed: 01/07/2023] Open
Abstract
Alzheimer’s disease (AD) is reportedly associated with the accumulation of calcium ions (Ca2+), and this accumulation is responsible for the phosphorylation of tau. Although several lines of evidence demonstrate the above phenomenon, the inherent mechanisms remain unknown. Using APP/PS1 Tg mice and neuroblastoma (N)2a cells as in vivo and in vitro experimental models, we observed that Ca2+ stimulated the phosphorylation of tau by activating microsomal PGE synthase 1 (mPGES1) in a prostaglandin (PG) E2-dependent EP receptor-activating manner. Specifically, the highly accumulated Ca2+ stimulated the expression of mPGES1 and the synthesis of PGE2. Treatment with the inhibitor of Ca2+ transporter, NMDAR, attenuated the expression of mPGES1 and the production of PGE2 were attenuated in S(+)-ketamine-treated APP/PS1 Tg mice. Elevated levels of PGE2 were responsible for the hyperphosphorylation of tau in an EP-1-, EP-2-, and EP-3-dependent but not EP4-dependent cyclin-dependent kinase (Cdk) 5-activating manner. Reciprocally, the knockdown of the expression of mPGES1 ameliorated the expected cognitive decline by inhibiting the phosphorylation of tau in APP/PS1 Tg mice. Moreover, CDK5 was found to be located downstream of EP1-3 to regulate the phosphorylation of tau though the cleavage of p35 to p25. Finally, the phosphorylation of tau by Ca2+ contributed to the cognitive decline of APP/PS1 Tg mice.
Collapse
Affiliation(s)
- Long-Long Cao
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Pei-Pei Guan
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yun-Yue Liang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Xue-Shi Huang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Pu Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
21
|
Role of PGE-2 and Other Inflammatory Mediators in Skin Aging and Their Inhibition by Topical Natural Anti-Inflammatories. COSMETICS 2019. [DOI: 10.3390/cosmetics6010006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Human skin aging is due to two types of aging processes, “intrinsic” (chronological) aging and “extrinsic” (external factor mediated) aging. While inflammatory events, triggered mainly by sun exposure, but also by pollutants, smoking and stress, are the principle cause of rapid extrinsic aging, inflammation also plays a key role in intrinsic aging. Inflammatory events in the skin lead to a reduction in collagen gene activity but an increase in activity of the genes for matrix metalloproteinases. Inflammation also alters proliferation rates of cells in all skin layers, causes thinning of the epidermis, a flattening of the dermo-epidermal junction, an increase in irregular pigment production, and, finally, an increased incidence of skin cancer. While a large number of inflammatory mediators, including IL-1, TNF-alpha and PGE-2, are responsible for many of these damaging effects, this review will focus primarily on the role of PGE-2 in aging. Levels of this hormone-like mediator increase quickly when skin is exposed to ultraviolet radiation (UVR), causing changes in genes needed for normal skin structure and function. Further, PGE-2 levels in the skin gradually increase with age, regardless of whether or not the skin is protected from UVR, and this smoldering inflammation causes continuous damage to the dermal matrix. Finally, and perhaps most importantly, PGE-2 is strongly linked to skin cancer. This review will focus on: (1) the role of inflammation, and particularly the role of PGE-2, in accelerating skin aging, and (2) current research on natural compounds that inhibit PGE-2 production and how these can be developed into topical products to retard or even reverse the aging process, and to prevent skin cancer.
Collapse
|
22
|
Milani C, Corsetto PA, Farina F, Botto L, Lonati E, Massimino L, Rizzo AM, Bulbarelli A, Palestini P. Early evidence of stress in immortalized neurons exposed to diesel particles: the role of lipid reshaping behind oxidative stress and inflammation. Toxicology 2018; 409:63-72. [PMID: 30055298 DOI: 10.1016/j.tox.2018.07.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/18/2018] [Accepted: 07/24/2018] [Indexed: 01/10/2023]
Abstract
Diesel combustion is the major source of fine particle road emission, whose solid fraction is represented by diesel exhaust particles (DEP). Many studies indicate the contribution of DEP to the onset of different neurological diseases, such as Alzheimer's disease (AD), identifying oxidative stress and neuroinflammation as two cardinal processes of brain damage. This study aimed to investigate the effects of different concentrations of DEP (10 μg/ml and 50 μg/ml) on the mouse HT22 cells treated for 3 h or 24 h. Our results demonstrated that DEP contributed to an increased oxidative stress, defined by overexpression of HO-1, Hsp70 and Cyp1b1 protein levels. Moreover, an inflammatory-related processes were also observed, as COX-2 and iNOS levels were higher in treated cells when compared to the control. Furthermore, our investigations highlighted the alteration of fatty acid composition, total cholesterol content in cells and media, and of membrane fluidity, suggesting a lipid reshaping after DEP treatment. Finally, we detected APP and BACE1 increase after 24 h of treatment with 50 μg/ml of DEP. Indeed, our results propose a role of acute exposure in the onset of a deleterious mechanism for AD neurodegeneration, even though no differences were observed in p-APP Thr668 levels, BACE1 activity and APP C-terminal fragment beta amount.
Collapse
Affiliation(s)
- Chiara Milani
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; NeuroMi, Milan Centre for Neuroscience, Department of Neurology and Neuroscience, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy.
| | | | - Francesca Farina
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; NeuroMi, Milan Centre for Neuroscience, Department of Neurology and Neuroscience, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy; Polaris Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Laura Botto
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; NeuroMi, Milan Centre for Neuroscience, Department of Neurology and Neuroscience, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy; Polaris Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Elena Lonati
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; NeuroMi, Milan Centre for Neuroscience, Department of Neurology and Neuroscience, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy
| | - Luca Massimino
- Division of Neuroscience, San Raffaele scientific institute, Milan, Italy
| | - Angela Maria Rizzo
- Departments of Pharmacology and Biomolecular Science, University of Milan, Milan, Italy
| | - Alessandra Bulbarelli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; NeuroMi, Milan Centre for Neuroscience, Department of Neurology and Neuroscience, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy; Polaris Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Paola Palestini
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; NeuroMi, Milan Centre for Neuroscience, Department of Neurology and Neuroscience, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy; Polaris Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
23
|
Abstract
Elevated levels of cyclooxygenase-2 (COX-2) and prostaglandins (PGs) are involved in the pathogenesis of Alzheimer's disease (AD), which is characterized by the accumulation of β-amyloid protein (Aβ) and tau hyperphosphorylation. However, the gaps in our knowledge of the roles of COX-2 and PGs in AD have not been filled. Here, we summarized the literature showing that COX-2 dysregulation obviously influences abnormal cleavage of β-amyloid precursor protein, aggregation and deposition of Aβ in β-amyloid plaques and the inclusion of phosphorylated tau in neurofibrillary tangles. Neuroinflammation, oxidative stress, synaptic plasticity, neurotoxicity, autophagy, and apoptosis have been assessed to elucidate the mechanisms of COX-2 regulation of AD. Notably, an imbalance of these factors ultimately produces cognitive decline. The current review substantiates our understanding of the mechanisms of COX-2-induced AD and establishes foundations for the design of feasible therapeutic strategies to treat AD.-Guan, P.-P., Wang, P. Integrated communications between cyclooxygenase-2 and Alzheimer's disease.
Collapse
Affiliation(s)
- Pei-Pei Guan
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Pu Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
24
|
Mechanisms of the active components from Korean pine nut preventing and treating d-galactose-induced aging rats. Biomed Pharmacother 2018; 103:680-690. [DOI: 10.1016/j.biopha.2018.04.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 04/08/2018] [Accepted: 04/09/2018] [Indexed: 01/01/2023] Open
|
25
|
Kim SY, Jung DW, Yoon HB, Lee HH, Lee JH, Shin JS, Lim D, Kim HJ, Pae AN, Park JH, Ryu JH, Lee KT, Lee JY. A Novel Phenylsulfonamide Ameliorates the Cognitive Impairment in Mice Induced by Scopolamine. B KOREAN CHEM SOC 2018. [DOI: 10.1002/bkcs.11486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Sun Young Kim
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences; Kyung Hee University; Seoul 02447 Republic of Korea
| | - Da Woon Jung
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences; Kyung Hee University; Seoul 02447 Republic of Korea
| | - Hong Bin Yoon
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences; Kyung Hee University; Seoul 02447 Republic of Korea
| | - Hwi-Ho Lee
- Department of Life and Nanopharmaceutical Science; Kyung Hee University; Seoul 02447 Republic of Korea
| | - Jeong-Hun Lee
- Department of Life and Nanopharmaceutical Science; Kyung Hee University; Seoul 02447 Republic of Korea
| | - Ji Sun Shin
- Department of Life and Nanopharmaceutical Science; Kyung Hee University; Seoul 02447 Republic of Korea
| | - Dami Lim
- KHU-KIST Department of Converging Science and Technology; Kyung Hee University; Seoul 02447 Republic of Korea
| | - Hyoung Ja Kim
- Molecular Recognition Research Center, Future Convergence Research Division; Korea Institute of Science and Technology; Seoul 02792 Republic of Korea
| | - Ae Nim Pae
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia; Korea Institute of Science and Technology; Seoul 02792 Republic of Korea
| | - Jeong Ho Park
- Department of Chemical & Biological Engineering; Hanbat National University; Daejeon 34158 Republic of Korea
| | - Jong Hoon Ryu
- Department of Life and Nanopharmaceutical Science; Kyung Hee University; Seoul 02447 Republic of Korea
| | - Kyung-Tae Lee
- Department of Life and Nanopharmaceutical Science; Kyung Hee University; Seoul 02447 Republic of Korea
| | - Jae Yeol Lee
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences; Kyung Hee University; Seoul 02447 Republic of Korea
- KHU-KIST Department of Converging Science and Technology; Kyung Hee University; Seoul 02447 Republic of Korea
| |
Collapse
|
26
|
Li P, Jiang H, Wu H, Wu D, Li H, Yu J, Lai J. AH6809 decreases production of inflammatory mediators by PGE 2 - EP2 - cAMP signaling pathway in an experimentally induced pure cerebral concussion in rats. Brain Res 2018; 1698:11-28. [PMID: 29792868 DOI: 10.1016/j.brainres.2018.05.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/19/2018] [Accepted: 05/20/2018] [Indexed: 12/31/2022]
Abstract
Increasing evidence suggests that PGE2 metabolic pathway is involved in pathological changes of the secondary brain injury after traumatic brain injury. However, the underlying mechanisms, in particular, the correlation between various key enzymes and the brain injury, has remained to be fully explored. More specifically, it remains to be ascertained whether AH6809 (an EP2 receptor antagonist) would interfere with the downstream of the PGE2, regulate the inflammatory mediators and improve neuronal damage in the hippocampus by PGE2 - EP2 - cAMP signaling pathway. The expression and pathological changes of cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), microsomal prostaglandin-E synthase-1 (mPGES-1), E-prostanoid receptor 2 (EP2), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and inducible nitricoxide synthase (iNOS) in the CA1 area of hippocampus were evaluated by immunohistochemistry, Western blot and RT-PCR after pure cerebral concussion (PCC) induced by a metal pendulum closed brain injury in rats followed by AH6809 treatment. The morphology and number of neurons in CA1 region were analyzed by cresyl violet staining. The concentration of prostaglandin E2 (PGE2) and cyclic adenosine monophosphate (cAMP) was assayed by ELISA. Many neurons in hippocampal CA1 area appeared to undergo necrosis and the number of neurons was concomitantly reduced after PCC injury. With the passage of time, the protein and mRNA expression of various key enzymes including COX-1, COX-2 and mPGES-1, EP2 receptor, and inflammatory mediators including TNF-α, IL-1β and iNOS was increased; meanwhile, the concentration of PGE2 and cAMP was enhanced. After PCC injury given AH6809 intervention, injury of neurons in hippocampal CA1 area was attenuated. The protein and mRNA expression of COX-1, COX-2, mPGES-1, EP2, TNF-α, IL-1β and iNOS was decreased, this was coupled with reduction of PGE2 and cAMP. The results suggest that PGE2 metabolic pathway is involved in secondary pathological changes of PCC. AH6809 improves the recovery of injured neurons in the hippocampal CA1 area and downregulates the inflammatory mediators by PGE2 - EP2 - cAMP signaling pathway.
Collapse
Affiliation(s)
- Ping Li
- College of Forensic Science, Xi'an Jiaotong University, Key Laboratory of Ministry of Public Health for Forensic Science, Xi'an 710061, Shaanxi, PR China; Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming 650500, Yunnan, PR China
| | - Hongyan Jiang
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming 650500, Yunnan, PR China
| | - Haiying Wu
- Department of Emergency and Intensive Care Unit, The First Affiliated Hospital, Kunming Medical University, Kunming 650032, Yunnan, PR China
| | - Deye Wu
- Department of Human Anatomy and Histology/Embryology, Qilu Medical University, 246 West Outer Ring Road, Boshan Economic and Technological Development Zone, Zibo 255213, Shandong, PR China
| | - Hengxi Li
- Department of Anatomy and Histology/Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming 650500, Yunnan, PR China
| | - Jianyun Yu
- College of Forensic Science and Key Laboratory of Brain Injury, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming 650500, Yunnan, PR China
| | - Jianghua Lai
- College of Forensic Science, Xi'an Jiaotong University, Key Laboratory of Ministry of Public Health for Forensic Science, Xi'an 710061, Shaanxi, PR China.
| |
Collapse
|
27
|
Fish oil feeding attenuates neuroinflammatory gene expression without concomitant changes in brain eicosanoids and docosanoids in a mouse model of Alzheimer's disease. Brain Behav Immun 2018; 69:74-90. [PMID: 29109025 DOI: 10.1016/j.bbi.2017.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/16/2017] [Accepted: 11/02/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Neuroinflammation is a recognized hallmark of Alzheimer's disease, along with accumulation of amyloid-β plaques, neurofibrillary tangles and synaptic loss. n-3 polyunsaturated fatty acids (PUFA) and molecules derived from them, including eicosapentaenoic acid-derived eicosanoids and docosahexaenoic acid-derived docosanoids, are known to have both anti-inflammatory and pro-resolving properties, while human observational data links consumption of these fatty acids to a decreased risk of Alzheimer's disease. Few studies have examined the neuroinflammation-modulating effects of n-3 PUFA feeding in an Alzheimer's disease-related model, and none have investigated whether these effects are mediated by changes in brain eicosanoids and docosanoids. Here, we use both a fat-1 transgenic mouse and a fish oil feeding model to study the impact of increasing tissue n-3 PUFA on neuroinflammation and the production of pro-inflammatory and pro-resolving lipid mediators. METHODS Fat-1 mice, transgenic animals that can convert n-6 to n-3 PUFA, and their wildtype littermates were fed diets containing either fish oil (high n-3 PUFA) or safflower oil (negligible n-3 PUFA) from weaning to 12 weeks. Animals then underwent intracerebroventricular infusion of either amyloid-β 1-40 or a control peptide. Hippocampi were collected from non-surgery and surgery animals 10 days after infusion. Microarray was used to measure enrichment of inflammation-associated gene categories and expression of genes involved in the synthesis of lipid mediators. Results were validated by real-time PCR in a separate cohort of animals. Lipid mediators were measured via liquid chromatography tandem mass spectrometry. RESULTS Fat-1 and wildtype mice fed fish oil had higher total hippocampal DHA than wildtype mice fed the safflower oil diet. The safflower-fed mice, but not the fat-1 or fish oil-fed mice, had significantly increased expression in gene ontology categories associated with inflammation in response to amyloid-β infusion. These effects were independent of changes in the expression of genes involved in the synthesis of eicosanoids or docosanoids in any group. Gene expression was replicated upon validation in the wildtype safflower and fish oil-fed, but not the fat-1 mice. Protectin, maresin and D and E series resolvins were not detected in any sample. There were no major differences in levels of other eicosanoids or docosanoids between any of the groups in response to amyloid-β infusion. CONCLUSIONS Fish oil feeding decreases neuroinflammatory gene expression in response to amyloid-β. Neither amyloid-β infusion or increasing brain DHA affects the brain concentrations of specialized pro-resolving mediators in this model, or the concentrations of most other eicosanoids and docosanoids.
Collapse
|
28
|
Abstract
Prostaglandin E2 (PGE2) has been thought to be an important mediator of inflammation in peripheral tissues, but recent studies clearly show the involvement of PGE2 in inflammatory brain diseases. In some animal models of brain disease, the genetic disruption and chemical inhibition of cyclooxygenase (COX)-2 resulted in the reduction of PGE2 and amelioration of symptoms, and it had been thought that PGE2 produced by COX-2 may be involved in the progression of injuries. However, COX-2 produces not only PGE2, but also some other prostanoids, and thus the protective effects of COX-2 inhibition, as well as severe side effects, may be caused by the inhibition of prostanoids other than PGE2. Therefore, to elucidate the role of PGE2, studies of microsomal prostaglandin E synthase-1 (mPGES-1), an inducible terminal enzyme for PGE2 synthesis, have recently been an active area of research. Studies from mPGES-1 deficient mice provide compelling evidence for its role in a variety of inflammatory brain diseases, such as ischemic stroke, Alzheimer's disease and epilepsy, and clues for developing new therapeutic treatments for brain diseases by targeting mPGES-1. Considering that COX inhibitors may non-selectively suppress the production of many types of prostanoids that are essential for normal physiological functioning of the brain and peripheral tissues, as well as induce gastro-intestinal, renal and cardiovascular complications, mPGES-1 inhibitors are expected to be injury-selective and have fewer side-effects when treating human brain diseases. Thus, this paper focuses on recent studies that have demonstrated the involvement of mPGES-1 in pathological brain diseases.
Collapse
Affiliation(s)
- Yuri Ikeda-Matsuo
- Laboratory of Pharmacology, Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Hokuriku University
| |
Collapse
|
29
|
Zheng SQ, Gong ZY, Lu CD, Wang P. Prostaglandin I 2 is responsible for ameliorating prostaglandin E 2 stress in stimulating the expression of tumor necrosis factor α in a β-amyloid protein -dependent mechanism. Oncotarget 2017; 8:102801-102819. [PMID: 29262525 PMCID: PMC5732691 DOI: 10.18632/oncotarget.18462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 05/08/2017] [Indexed: 01/01/2023] Open
Abstract
Cyclooxygenase-2 (COX-2) has been found to be induced during the early stage of Alzheimer's disease (AD). Using mouse-derived astrocyte and APP/PS1 transgenic (Tg) mice as model systems, we firstly elucidated the mechanisms underlying COX-2 metabolic production including prostaglandin (PG)E2- and PGI2-mediated tumor necrosis factor α (TNF-α) regulation. Specifically, PGE2 accumulation in astrocyte activated the p38 and JNK/c-Jun signaling pathways via phosphorylation, resulting in TNF-α expression. In contrast, the administration of PGI2 attenuated the effects of PGE2 in stimulating the production of TNF-α by inhibiting the activity of TNF-α promoter and the binding activity of AP1 on the promoter of TNF-α. Moreover, our data also showed that not only Aβ1-42 oligomers but also Aβ1-42 fibrils have the ability to involve in mediating the antagonistic effects of PGE2 and PGI2 on regulating the expression of TNF-α via a p38- and JNK/c-Jun-dependent, AP1-transactivating mechanism. Reciprocally, the production of TNF-α finally accelerated the deposition of β-amyloid protein (Aβ)1-42 in β-amyloid plaques (APs), which contribute to the cognitive decline of AD.
Collapse
Affiliation(s)
- Shao-Qin Zheng
- The College of Life and Health Sciences, Northeastern University, Shenyang, P. R. China
| | - Zi-Yi Gong
- The College of Life and Health Sciences, Northeastern University, Shenyang, P. R. China
| | - Chen-Di Lu
- The College of Life and Health Sciences, Northeastern University, Shenyang, P. R. China
| | - Pu Wang
- The College of Life and Health Sciences, Northeastern University, Shenyang, P. R. China
| |
Collapse
|
30
|
Bhatia HS, Roelofs N, Muñoz E, Fiebich BL. Alleviation of Microglial Activation Induced by p38 MAPK/MK2/PGE 2 Axis by Capsaicin: Potential Involvement of other than TRPV1 Mechanism/s. Sci Rep 2017; 7:116. [PMID: 28273917 PMCID: PMC5428011 DOI: 10.1038/s41598-017-00225-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/14/2017] [Indexed: 12/13/2022] Open
Abstract
Exaggerated inflammatory responses in microglia represent one of the major risk factors for various central nervous system’s (CNS) associated pathologies. Release of excessive inflammatory mediators such as prostaglandins and cytokines are the hallmark of hyper-activated microglia. Here we have investigated the hitherto unknown effects of capsaicin (cap) - a transient receptor potential vanilloid 1 (TRPV1) agonist- in murine primary microglia, organotypic hippocampal slice cultures (OHSCs) and human primary monocytes. Results demonstrate that cap (0.1–25 µM) significantly (p < 0.05) inhibited the release of prostaglandin E2 (PGE2), 8-iso-PGF2α, and differentially regulated the levels of cytokines (TNF-α, IL-6 & IL-1β). Pharmacological blockade (via capsazepine & SB366791) and genetic deficiency of TRPV1 (TRPV1−/−) did not prevent cap-mediated suppression of PGE2 in activated microglia and OHSCs. Inhibition of PGE2 was partially dependent on the reduced levels of PGE2 synthesising enzymes, COX-2 and mPGES-1. To evaluate potential molecular targets, we discovered that cap significantly suppressed the activation of p38 MAPK and MAPKAPK2 (MK2). Altogether, we demonstrate that cap alleviates excessive inflammatory events by targeting the PGE2 pathway in in vitro and ex vivo immune cell models. These findings have broad relevance in understanding and paving new avenues for ongoing TRPV1 based drug therapies in neuroinflammatory-associated diseases.
Collapse
Affiliation(s)
- Harsharan S Bhatia
- Department of Psychiatry and Psychotherapy, University of Freiburg Medical School, Hauptstrasse 5, D-79104, Freiburg, Germany. .,VivaCell Biotechnology GmbH, Ferdinand-Porsche-Strasse 5, D-79211, Denzlingen, Germany.
| | - Nora Roelofs
- Department of Psychiatry and Psychotherapy, University of Freiburg Medical School, Hauptstrasse 5, D-79104, Freiburg, Germany
| | - Eduardo Muñoz
- Maimonides Biomedical Research Institute of Córdoba, Reina Sofía University Hospital, Department of Cell Biology, Physiology and Immunology, University of Córdoba, Avda Menéndez Pidal s/n., 14004, Córdoba, Spain.,VivaCell Biotechnology España, Parque Científico Tecnológico Rabanales 21, 14014, Córdoba, Spain
| | - Bernd L Fiebich
- Department of Psychiatry and Psychotherapy, University of Freiburg Medical School, Hauptstrasse 5, D-79104, Freiburg, Germany.,VivaCell Biotechnology GmbH, Ferdinand-Porsche-Strasse 5, D-79211, Denzlingen, Germany
| |
Collapse
|
31
|
Maingret V, Barthet G, Deforges S, Jiang N, Mulle C, Amédée T. PGE 2 -EP3 signaling pathway impairs hippocampal presynaptic long-term plasticity in a mouse model of Alzheimer's disease. Neurobiol Aging 2017; 50:13-24. [DOI: 10.1016/j.neurobiolaging.2016.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 10/03/2016] [Accepted: 10/09/2016] [Indexed: 10/20/2022]
|
32
|
HARA S. Prostaglandin terminal synthases as novel therapeutic targets. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2017; 93:703-723. [PMID: 29129850 PMCID: PMC5743848 DOI: 10.2183/pjab.93.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 07/21/2017] [Indexed: 06/07/2023]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) exert their anti-inflammatory and anti-tumor effects by reducing prostaglandin (PG) production via the inhibition of cyclooxygenase (COX). However, the gastrointestinal, renal and cardiovascular side effects associated with the pharmacological inhibition of the COX enzymes have focused renewed attention onto other potential targets for NSAIDs. PGH2, a COX metabolite, is converted to each PG species by species-specific PG terminal synthases. Because of their potential for more selective modulation of PG production, PG terminal synthases are now being investigated as a novel target for NSAIDs. In this review, I summarize the current understanding of PG terminal synthases, with a focus on microsomal PGE synthase-1 (mPGES-1) and PGI synthase (PGIS). mPGES-1 and PGIS cooperatively exacerbate inflammatory reactions but have opposing effects on carcinogenesis. mPGES-1 and PGIS are expected to be attractive alternatives to COX as therapeutic targets for several diseases, including inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Shuntaro HARA
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, Tokyo, Japan
| |
Collapse
|
33
|
Thomas MH, Pelleieux S, Vitale N, Olivier JL. Dietary arachidonic acid as a risk factor for age-associated neurodegenerative diseases: Potential mechanisms. Biochimie 2016; 130:168-177. [PMID: 27473185 DOI: 10.1016/j.biochi.2016.07.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 07/24/2016] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease and associated diseases constitute a major public health concern worldwide. Nutrition-based, preventive strategies could possibly be effective in delaying the occurrence of these diseases and lower their prevalence. Arachidonic acid is the second major polyunsaturated fatty acid (PUFA) and several studies support its involvement in Alzheimer's disease. The objective of this review is to examine how dietary arachidonic acid contributes to Alzheimer's disease mechanisms and therefore to its prevention. First, we explore the sources of neuronal arachidonic acid that could potentially originate from either the conversion of linoleic acid, or from dietary sources and transfer across the blood-brain-barrier. In a second part, a brief overview of the role of the two main agents of Alzheimer's disease, tau protein and Aβ peptide is given, followed by the examination of the relationship between arachidonic acid and the disease. Third, the putative mechanisms by which arachidonic acid could influence Alzheimer's disease occurrence and evolution are presented. The conclusion is devoted to what remains to be determined before integrating arachidonic acid in the design of preventive strategies against Alzheimer's disease and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Mélanie H Thomas
- Unité de Recherche Aliment et Fonctionnalité des Produits Animaux (URAFPA), INRA USC 0340, Université de Lorraine, Nancy, France
| | - Sandra Pelleieux
- Unité de Recherche Aliment et Fonctionnalité des Produits Animaux (URAFPA), INRA USC 0340, Université de Lorraine, Nancy, France
| | - Nicolas Vitale
- Institut des Neurosciences Cellulaires et Intégratives (INCI), UPR CNRS 3212, Université de Strasbourg, Strasbourg, France
| | - Jean Luc Olivier
- Unité de Recherche Aliment et Fonctionnalité des Produits Animaux (URAFPA), INRA USC 0340, Université de Lorraine, Nancy, France.
| |
Collapse
|
34
|
How can we address the controversies surrounding the use of NSAIDS in neurodegeneration? Future Med Chem 2016; 8:1153-5. [PMID: 27357618 DOI: 10.4155/fmc-2016-0084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
35
|
Dey A, Kang X, Qiu J, Du Y, Jiang J. Anti-Inflammatory Small Molecules To Treat Seizures and Epilepsy: From Bench to Bedside. Trends Pharmacol Sci 2016; 37:463-484. [PMID: 27062228 DOI: 10.1016/j.tips.2016.03.001] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/03/2016] [Accepted: 03/07/2016] [Indexed: 12/22/2022]
Abstract
As a crucial component of brain innate immunity, neuroinflammation initially contributes to neuronal tissue repair and maintenance. However, chronic inflammatory processes within the brain and associated blood-brain barrier (BBB) impairment often cause neurotoxicity and hyperexcitability. Mounting evidence points to a mutual facilitation between inflammation and epilepsy, suggesting that blocking the undesired inflammatory signaling within the brain might provide novel strategies to treat seizures and epilepsy. Neuroinflammation is primarily characterized by the upregulation of proinflammatory mediators in epileptogenic foci, among which cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2), interleukin-1β (IL-1β), transforming growth factor-β (TGF-β), toll-like receptor 4 (TLR4), high-mobility group box 1 (HMGB1), and tumor necrosis factor-α (TNF-α) have been extensively studied. Small molecules that specifically target these key proinflammatory perpetrators have been evaluated for antiepileptic and antiepileptogenic effects in animal models. These important preclinical studies provide new insights into the regulation of inflammation in epileptic brains and guide drug discovery efforts aimed at developing novel anti-inflammatory therapies for seizures and epilepsy.
Collapse
Affiliation(s)
- Avijit Dey
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, OH 45267-0514, USA
| | - Xu Kang
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, OH 45267-0514, USA
| | - Jiange Qiu
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, OH 45267-0514, USA
| | - Yifeng Du
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, OH 45267-0514, USA
| | - Jianxiong Jiang
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, OH 45267-0514, USA.
| |
Collapse
|
36
|
Pathophysiological Roles of Cyclooxygenases and Prostaglandins in the Central Nervous System. Mol Neurobiol 2015; 53:4754-71. [PMID: 26328537 DOI: 10.1007/s12035-015-9355-3] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 07/07/2015] [Indexed: 01/01/2023]
Abstract
Cyclooxygenases (COXs) oxidize arachidonic acid to prostaglandin (PG) G2 and H2 followed by PG synthases that generates PGs and thromboxane (TX) A2. COXs are divided into COX-1 and COX-2. In the central nervous system, COX-1 is constitutively expressed in neurons, astrocytes, and microglial cells. COX-2 is upregulated in these cells under pathophysiological conditions. In hippocampal long-term potentiation, COX-2, PGE synthase, and PGE2 are induced in post-synaptic neurons. PGE2 acts pre-synaptic EP2 receptor, generates cAMP, stimulates protein kinase A, modulates voltage-dependent calcium channel, facilitates glutamatergic synaptic transmission, and potentiates long-term plasticity. PGD2, PGE2, and PGI2 exhibit neuroprotective effects via Gs-coupled DP1, EP2/EP4, and IP receptors, respectively. COX-2, PGD2, PGE2, PGF2α, and TXA2 are elevated in stroke. COX-2 inhibitors exhibit neuroprotective effects in vivo and in vitro models of stroke, Alzheimer's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, epilepsy, and schizophrenia, suggesting neurotoxicities of COX products. PGE2, PGF2α, and TXA2 can contribute to the neurodegeneration via EP1, FP, and TP receptors, respectively, which are coupled with Gq, stimulate phospholipase C and cleave phosphatidylinositol diphosphate to produce inositol triphosphate and diacylglycerol. Inositol triphosphate binds to inositol triphosphate receptor in endoplasmic reticulum, releases calcium, and results in increasing intracellular calcium concentrations. Diacylglycerol activates calcium-dependent protein kinases. PGE2 disrupts Ca(2+) homeostasis by impairing Na(+)-Ca(2+) exchange via EP1, resulting in the excess Ca(2+) accumulation. Neither PGE2, PGF2α, nor TXA2 causes neuronal cell death by itself, suggesting that they might enhance the ischemia-induced neurodegeneration. Alternatively, PGE2 is non-enzymatically dehydrated to a cyclopentenone PGA2, which induces neuronal cell death. Although PGD2 induces neuronal apoptosis after a lag time, neither DP1 nor DP2 is involved in the neurotoxicity. As well as PGE2, PGD2 is non-enzymatically dehydrated to a cyclopentenone 15-deoxy-Δ(12,14)-PGJ2, which induces neuronal apoptosis without a lag time. However, neurotoxicities of these cyclopentenones are independent of their receptors. The COX-2 inhibitor inhibits both the anchorage-dependent and anchorage-independent growth of glioma cell lines regardless of COX-2 expression, suggesting that some COX-2-independent mechanisms underlie the antineoplastic effect of the inhibitor. PGE2 attenuates this antineoplastic effect, suggesting that the predominant mechanism is COX-dependent. COX-2 or EP1 inhibitors show anti-neoplastic effects. Thus, our review presents evidences for pathophysiological roles of cyclooxygenases and prostaglandins in the central nervous system.
Collapse
|
37
|
Hosono T, Mouri A, Nishitsuji K, Jung CG, Kontani M, Tokuda H, Kawashima H, Shibata H, Suzuki T, Nabehsima T, Michikawa M. Arachidonic or Docosahexaenoic Acid Diet Prevents Memory Impairment in Tg2576 Mice. J Alzheimers Dis 2015; 48:149-62. [DOI: 10.3233/jad-150341] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Takashi Hosono
- Department of Chemistry and Life Science, Nihon University Graduate School of Bioresource Sciences, Fujisawa, Japan
- Department of Alzheimer’s Disease, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Akihiro Mouri
- Division of Clinical Sciences and Neuropsychopharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
- NPO Japanese Drug Organization of Appropriate Use and Research, Nagoya, Japan
| | - Kazuchika Nishitsuji
- Department of Alzheimer’s Disease, National Center for Geriatrics and Gerontology, Obu, Japan
- Department of Molecular Pathology, Institute of Biomedical Science, The University of Tokushima Graduate School, Tokushima, Japan
| | - Cha-Gyun Jung
- Department of Alzheimer’s Disease, National Center for Geriatrics and Gerontology, Obu, Japan
- Department of Neurophysiology and Brain Science, Nagoya City University, School of Medical Sciences, Nagoya, Japan
| | - Masanori Kontani
- Institute for Health Care Science, Suntory Wellness Ltd., Osaka, Japan
| | - Hisanori Tokuda
- Institute for Health Care Science, Suntory Wellness Ltd., Osaka, Japan
| | - Hiroshi Kawashima
- Institute for Health Care Science, Suntory Wellness Ltd., Osaka, Japan
| | - Hiroshi Shibata
- Institute for Health Care Science, Suntory Wellness Ltd., Osaka, Japan
| | - Toshiharu Suzuki
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Toshitaka Nabehsima
- NPO Japanese Drug Organization of Appropriate Use and Research, Nagoya, Japan
- Nabeshima Laboratory, Department of Pharmacy, Meijyo University, Nagoya, Japan
| | - Makoto Michikawa
- Department of Alzheimer’s Disease, National Center for Geriatrics and Gerontology, Obu, Japan
- Department of Biochemistry, Nagoya City University, School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
38
|
Gupta A, Chaudhary N, Kakularam KR, Pallu R, Polamarasetty A. The Augmenting Effects of Desolvation and Conformational Energy Terms on the Predictions of Docking Programs against mPGES-1. PLoS One 2015; 10:e0134472. [PMID: 26305898 PMCID: PMC4549307 DOI: 10.1371/journal.pone.0134472] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 07/10/2015] [Indexed: 01/03/2023] Open
Abstract
In this study we introduce a rescoring method to improve the accuracy of docking programs against mPGES-1. The rescoring method developed is a result of extensive computational study in which different scoring functions and molecular descriptors were combined to develop consensus and rescoring methods. 127 mPGES-1 inhibitors were collected from literature and were segregated into training and external test sets. Docking of the 27 training set compounds was carried out using default settings in AutoDock Vina, AutoDock, DOCK6 and GOLD programs. The programs showed low to moderate correlation with the experimental activities. In order to introduce the contributions of desolvation penalty and conformation energy of the inhibitors various molecular descriptors were calculated. Later, rescoring method was developed as empirical sum of normalised values of docking scores, LogP and Nrotb. The results clearly indicated that LogP and Nrotb recuperate the predictions of these docking programs. Further the efficiency of the rescoring method was validated using 100 test set compounds. The accurate prediction of binding affinities for analogues of the same compounds is a major challenge for many of the existing docking programs; in the present study the high correlation obtained for experimental and predicted pIC50 values for the test set compounds validates the efficiency of the scoring method.
Collapse
Affiliation(s)
- Ashish Gupta
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala, Himachal Pradesh– 176215, India
| | - Neha Chaudhary
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala, Himachal Pradesh– 176215, India
| | - Kumar Reddy Kakularam
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana– 500046, India
| | - Reddanna Pallu
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana– 500046, India
| | - Aparoy Polamarasetty
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala, Himachal Pradesh– 176215, India
- * E-mail:
| |
Collapse
|
39
|
Li X, Melief E, Postupna N, Montine KS, Keene CD, Montine TJ. Prostaglandin E2 receptor subtype 2 regulation of scavenger receptor CD36 modulates microglial Aβ42 phagocytosis. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 185:230-9. [PMID: 25452117 DOI: 10.1016/j.ajpath.2014.09.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 09/14/2014] [Accepted: 09/18/2014] [Indexed: 12/18/2022]
Abstract
Recent studies underline the potential relevance of microglial innate immune activation in Alzheimer disease. Primary mouse microglia that lack prostaglandin E2 receptor subtype 2 (EP2) show decreased innate immune-mediated neurotoxicity and increased amyloid β (Aβ) peptide phagocytosis, features that were replicated in vivo. Here, we tested the hypothesis that scavenger receptor CD36 is an effector of EP2-regulated Aβ phagocytosis. CD36 expression was 143-fold greater in mouse primary microglia than in primary astrocytes. Three different means of suppressing EP2 signaling increased and an agonist of EP2 decreased CD36 expression in primary wild-type microglia. Activation of Toll-like receptor (TLR) 3, TLR4, and TLR7, but not TLR2 or TLR9, reduced primary microglial CD36 transcription and cell surface CD36 protein and reduced Aβ42 phagocytosis as well. At each step, the effects of innate immune activation on CD36 were reversed by at least 50% by an EP2 antagonist, and this partial rescue of microglia Aβ42 phagocytosis was largely mediated by CD36 activity. Finally, we showed in hippocampus of wild-type mice that innate immune activation suppressed CD36 expression by an EP2-dependent mechanism. Taken together with results of others that found brain clearance of Aβ peptides and behavioral improvements mediated by CD36 in mice, regulation of CD36-mediated Aβ phagocytosis by suppression of EP2 signaling may provide a new approach to suppressing some aspects of Alzheimer disease pathogenesis.
Collapse
Affiliation(s)
- Xianwu Li
- Department of Pathology, University of Washington, Seattle, Washington.
| | - Erica Melief
- Department of Pathology, University of Washington, Seattle, Washington
| | - Nadia Postupna
- Department of Pathology, University of Washington, Seattle, Washington
| | | | - C Dirk Keene
- Department of Pathology, University of Washington, Seattle, Washington
| | - Thomas J Montine
- Department of Pathology, University of Washington, Seattle, Washington
| |
Collapse
|
40
|
Korotkova M, Jakobsson PJ. Characterization of Microsomal Prostaglandin E Synthase 1 Inhibitors. Basic Clin Pharmacol Toxicol 2013; 114:64-9. [DOI: 10.1111/bcpt.12162] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 09/19/2013] [Indexed: 01/22/2023]
Affiliation(s)
- Marina Korotkova
- Rheumatology Unit; Department of Medicine; Karolinska Institutet; Stockholm Sweden
| | - Per-Johan Jakobsson
- Rheumatology Unit; Department of Medicine; Karolinska Institutet; Stockholm Sweden
| |
Collapse
|
41
|
Affiliation(s)
- Yuri Ikeda-Matsuo
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University
| |
Collapse
|