1
|
Luo L, Xing Z, Li Y, Wang B, Dong N, Sun J, Wang S, Xu Y, He Y, Li L, Nan K, Ye Q. Injective hydrogel encapsulating dental pulp stem cells for the treatment of traumatic optic nerve injury. Front Bioeng Biotechnol 2025; 13:1528749. [PMID: 40070549 PMCID: PMC11893850 DOI: 10.3389/fbioe.2025.1528749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/04/2025] [Indexed: 03/14/2025] Open
Abstract
Objectives The study aimed to evaluate the effect of GeLMA/bFGF hydrogel loaded with dental pulp stem cells (DPSCs) on the repair and regeneration of traumatic optic nerve injury. Materials and methods GeLMA/bFGF hydrogel was photo-cross-linked by LED light. The physical-chemical properties and cytocompatibility of GeLMA/bFGF hydrogel after being squeezed (GeLMA/bFGF-SQ) were evaluated by SEM and degradation analyses, as well as live/dead and CCK-8 assays, respectively. The axon growth of PC12 cells was evaluated by MAP2 staining. The GeLMA/bFGF/DPSCs-SQ hydrogel was injected in situ into the lesion site to observe the repair of optic nerve injury. The number of retinal ganglion cells (RGCs) was calculated by βIII-tubulin staining. The length of regenerated axons was observed by CTB staining. Tissue recovery and axon growth of the optic nerve were observed by HE and TEM analyses, respectively. Results GeLMA/bFGF-SQ hydrogel had a porous structure and great degradability, as well as good cytocompatibility. Meanwhile, DPSCs-conditioned medium (DPSCs-CM) could promote the axon growth of PC12 cells. Moreover, the number of RGCs and the regeneration of axons of the optic nerve were the highest in the GeLMA/bFGF/DPSCs-SQ group. HE and TEM data revealed abundant newly and orderly arrangement of optic nerve axons that was observed in the damaged area of the GeLMA/bFGF/DPSCs-SQ group. Conclusion Transplantation of GeLMA/bFGF/DPSCs-SQ in situ provided an appropriate microenvironment for the repair and regeneration of injured optic nerves. Moreover, DPSCs combined with bFGF protected the RGCs from apoptosis and promoted optic nerve regeneration by secreting a series of neurotrophic factors.
Collapse
Affiliation(s)
- Lihua Luo
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhenjie Xing
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yao Li
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ben Wang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Na Dong
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiayi Sun
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shuimiao Wang
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yidi Xu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yan He
- Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Lingli Li
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Kaihui Nan
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qingsong Ye
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Stem Cells and Tissue Engineering, School of Stomatology, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
2
|
Liu X, Qian Z, Li Y, Wang Y, Zhang Y, Zhang Y, Enoch IVMV. Unveiling synergies: Integrating TCM herbal medicine and acupuncture with conventional approaches in stroke management. Neuroscience 2025; 567:109-122. [PMID: 39730019 DOI: 10.1016/j.neuroscience.2024.12.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/09/2024] [Accepted: 12/21/2024] [Indexed: 12/29/2024]
Abstract
This review explores the mechanisms and treatment strategies of ischemic stroke, a leading cause of morbidity and mortality worldwide. Ischemic stroke results from the obstruction of blood flow to the brain, leading to significant neurological impairment. The paper categorizes ischemic stroke into subtypes based on etiology, including cardioembolism and large artery atherosclerosis, and discusses the challenges of current therapeutic approaches. Conventional treatments like tissue plasminogen activator (tPA) and surgical interventions are limited by narrow windows and potential complications. The review highlights the promise of acupuncture, which offers neuroprotective benefits by promoting cerebral ischemic tolerance and neural regeneration. Integrating acupuncture with conventional treatments may enhance patient outcomes. Emphasis is placed on understanding the pathophysiology to develop targeted therapies that mitigate neuronal damage and enhance recovery.
Collapse
Affiliation(s)
- Xiliang Liu
- Department of Rehabilitation Medicine, Dezhou Traditional Chinese Medicine Hospital, Dezhou 253000, China
| | - Zhendong Qian
- Department of Rehabilitation Medicine, Dezhou Traditional Chinese Medicine Hospital, Dezhou 253000, China
| | - Yuxuan Li
- Department of Rehabilitation Medicine, Dezhou Traditional Chinese Medicine Hospital, Dezhou 253000, China
| | - Yanwei Wang
- Department of Rehabilitation Medicine, Dezhou Traditional Chinese Medicine Hospital, Dezhou 253000, China
| | - Yan Zhang
- Department of Rehabilitation Medicine, Dezhou Traditional Chinese Medicine Hospital, Dezhou 253000, China
| | - Yu Zhang
- Department of Rehabilitation Medicine, Dezhou Traditional Chinese Medicine Hospital, Dezhou 253000, China.
| | - Israel V M V Enoch
- Centre for Nanoscience and Genomics, Karunya Institute of Technology and Sciences (Deemed University), Coimbatore 641114, Tamil Nadu, India
| |
Collapse
|
3
|
Aly RM, Abohashem RS, Ahmed HH, Halim ASA. Combinatorial intervention with dental pulp stem cells and sulfasalazine in a rat model of ulcerative colitis. Inflammopharmacology 2024; 32:3863-3879. [PMID: 39078564 PMCID: PMC11550242 DOI: 10.1007/s10787-024-01532-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/08/2024] [Indexed: 07/31/2024]
Abstract
BACKGROUND Ulcerative colitis is an inflammatory bowel disease (IBD) that involves inflammation of the colon lining and rectum. Although a definitive cure for IBD has not been identified, various therapeutic approaches have been proposed to mitigate the symptomatic presentation of this disease, primarily focusing on reducing inflammation. The aim of the present study was to evaluate the therapeutic potential of combining dental pulp stem cells (DPSCs) with sulfasalazine in an acetic acid-induced ulcerative colitis rat model and to assess the impact of this combination on the suppression of inflammatory cytokines and the regulation of oxidative stress in vivo. METHODS Ulcerative colitis was induced in rats through transrectal administration of 3% acetic acid. The therapeutic effect of combining DPSCs and sulfasalazine on UC was evaluated by measuring the colonic weight/length ratio and edema markers; performing histopathological investigations of colon tissue; performing immunohistochemical staining for NF-κB-P65 and IL-1β; and evaluating oxidative stress and antioxidant indices via ELISA. Moreover, the proinflammatory markers NF-κB-P65, TNF-α and TLR-4 were assessed in colon tissue via ELISA. Furthermore, qRT‒PCR was used to estimate the expression levels of the TLR-4, NF-κB-P65, and MYD88 genes in colon tissue. RESULTS The investigated macroscopic and microscopic signs of inflammation were markedly improved after the combined administration of sulfasalazine and DPSCs, where a noticeable improvement in histological structure, with an intact mucosal epithelium and mild inflammatory infiltration in the mucosa and submucosa, with slight hemorrhage. The administration of either DPSCs or sulfasalazine, either individually or in combination, significantly reduced ROS levels and significantly increased XOD activity. The immunohistochemical results demonstrated that the combined administration of DPSCs and sulfasalazine attenuated NFκB-p65 and IL-1β expression. Finally, the combined administration of DPSCs and sulfasalazine significantly downregulated MyD88, NF-κB and TLR4 gene expression. CONCLUSIONS Cotreatment with DPSCs and sulfasalazine had synergistic effects on ulcerative colitis, and these effects were relieved.
Collapse
Affiliation(s)
- Riham M Aly
- Basic Dental Science Department, Oral & Dental Research Institute, National Research Centre, 33 El Bohouth St, Dokki, Giza, Egypt.
- Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Dokki, Giza, Egypt.
| | - Rehab S Abohashem
- Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Dokki, Giza, Egypt
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt
| | - Hanaa H Ahmed
- Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Dokki, Giza, Egypt
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt
| | - Alyaa S Abdel Halim
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
4
|
Naeimi A, Mousavi SF, Amini N, Golipoor M, Ghasemi Hamidabadi H. Therapeutic potential of melatonin-pretreated human dental pulp stem cells (hDPSCs) in an animal model of spinal cord injury. Sci Rep 2024; 14:28174. [PMID: 39548147 PMCID: PMC11568238 DOI: 10.1038/s41598-024-78077-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024] Open
Abstract
Dental pulp stem cells (DPSCs) show potential for treating neurodegenerative and traumatic diseases due to their neural crest origin. Melatonin (MT), an endogenous neurohormone with well-documented anti-inflammatory and antioxidant properties, has shown promising results with MSCs in terms of engraftment, proliferation, and neuronal differentiation in animal SCI models. However, the effects of melatonin preconditioning on human dental pulp stem cells (hDPSCs) for SCI treatment remain unclear. This study investigates the impact of melatonin preconditioning on hDPSCs engraftment, neural differentiation, and neurological function in rats with SCI. Forty-two male Sprague-Dawley rats were divided into six groups: Control, Sham, Model, Vehicle, Lesion Treatment A (SCI + hDPSCs), and Lesion Treatment B (SCI + MT-hDPSCs). After obtaining hDPSCs, stem cells were evaluated using flow cytometry. Cell viability was assessed using the MTT assay. SCI was induced in the Model, Vehicle, Lesion Treatment A, and Lesion Treatment B groups. The Lesion Treatment A and B groups received hDPSCs and hDPSCs pretreated with melatonin, respectively, 1 week after SCI, while the Vehicle group received only an intravenous injection of DMEM to simulate treatment. The other groups were used for behavioral testing. Immunohistochemistry (IHC) was employed to assess hDPSCs engraftment and differentiation at the SCI site. Motor function across the six groups was evaluated using the Basso, Beattie, and Bresnahan (BBB) score. Histological studies and cell counts confirmed hDPSCs implantation at the injury site, with a significantly higher presence in the MT-hDPSCs compared to hDPSCs (p < 0.01). IHC revealed that hDPSCs and MT-hDPSCs differentiated into neurons and astrocytes, with greater differentiation observed in the MT-hDPSCs compared to the hDPSCs (p < 0.01 and p < 0.05, respectively). Functional improvement was noted in both SCI + hDPSCs and SCI + MT-hDPSCs groups compared to SCI and Vehicle groups from Week 4 onward (p < 0.001). Significant differences were also observed between the SCI + hDPSCs and SCI + MT-hDPSCs groups starting from Week 7 (p < 0.01). Preconditioning hDPSCs with melatonin enhances engraftment, neuronal differentiation, and greater performance improvement compared to hDPSCs alone in the SCI animal model.
Collapse
Affiliation(s)
- Arvin Naeimi
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Seyedeh Fatemeh Mousavi
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Naser Amini
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mandana Golipoor
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| | - Hatef Ghasemi Hamidabadi
- Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
5
|
Yamada S, Al-Sharabi N, Torelli F, Volponi AA, Sandven L, Ueda M, Fristad I, Mustafa K. Harnessing the Antioxidative Potential of Dental Pulp Stem Cell-Conditioned Medium in Photopolymerized GelMA Hydrogels. Biomater Res 2024; 28:0084. [PMID: 39290361 PMCID: PMC11406670 DOI: 10.34133/bmr.0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024] Open
Abstract
Gelatin methacryloyl (GelMA) stands out for its biocompatibility, tunability, and functionality, being often selected as a scaffolding material. However, the biological modulations induced by its photocrosslinking process on mesenchymal stem cells as well as stress mitigation measures remain insufficiently explored. By using GelMA of Good Manufacturing Practice (GMP) grade, this study aimed (a) to achieve a comprehensive understanding of the biological effects of photocrosslinking process with a specific focus on oxidative stress and (b) to develop a strategy to mitigate the adverse effects by employing conditioned medium (CM) by dental pulp stem cells (DPSCs). Following photocrosslinking, pathways related to oxidative phosphorylation and DNA repair were enriched in the presence of DPSC-CM carrying various antioxidants such as peroxiredoxin (PRDX) 1-6 and superoxide dismutase type 1 (SOD1), while the control samples exhibited enrichment in inflammatory signaling pathways. Incorporating DPSC-CM into the hydrogel notably reduced the degree of cellular oxidation caused by photocrosslinking and stress responses, resulting in improved cell viability, growth, motility, and osteogenic differentiation, as well as fewer apoptotic and senescent cells compared to those without DPSC-CM. The deteriorated biocompatibility of freshly crosslinked GelMA hydrogel was confirmed by the disrupted vasculature of chorioallantoic membranes in chicken embryos after implantation, which was prevented by DPSC-CM. In conclusion, this study demonstrates the robust antioxidative effects of DPSC-CM, mitigating the negative effect of GelMA photocrosslinking processes.
Collapse
Affiliation(s)
- Shuntaro Yamada
- Center of Translational Oral Research, Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Niyaz Al-Sharabi
- Center of Translational Oral Research, Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Francesco Torelli
- Center of Translational Oral Research, Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Ana Angelova Volponi
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Linda Sandven
- The Molecular Imaging Center, Department of Biomedicine, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Minoru Ueda
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Nagoya University, Nagoya, Japan
- Saiseiken Co. Ltd., Tokyo, Japan
| | - Inge Fristad
- Center of Translational Oral Research, Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Kamal Mustafa
- Center of Translational Oral Research, Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
6
|
Eldeen GN, Elkhooly TA, El Bassyouni GT, Hamdy TM, Hawash AR, Aly RM. Enhancement of the chondrogenic differentiation capacity of human dental pulp stem cells via chondroitin sulfate-coated polycaprolactone-MWCNT nanofibers. Sci Rep 2024; 14:16396. [PMID: 39013921 PMCID: PMC11252133 DOI: 10.1038/s41598-024-66497-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/02/2024] [Indexed: 07/18/2024] Open
Abstract
Most of the conditions involving cartilaginous tissues are irreversible and involve degenerative processes. The aim of the present study was to fabricate a biocompatible fibrous and film scaffolds using electrospinning and casting techniques to induce chondrogenic differentiation for possible application in cartilaginous tissue regeneration. Polycaprolactone (PCL) electrospun nanofibrous scaffolds and PCL film were fabricated and incorporated with multi-walled carbon nanotubes (MWCNTs). Thereafter, coating of chondroitin sulfate (CS) on the fibrous and film structures was applied to promote chondrogenic differentiation of human dental pulp stem cells (hDPSCs). First, the morphology, hydrophilicity and mechanical properties of the scaffolds were characterized by scanning electron microscopy (SEM), spectroscopic characterization, water contact angle measurements and tensile strength testing. Subsequently, the effects of the fabricated scaffolds on stimulating the proliferation of human dental pulp stem cells (hDPSCs) and inducing their chondrogenic differentiation were evaluated via electron microscopy, flow cytometry and RT‒PCR. The results of the study demonstrated that the different forms of the fabricated PCL-MWCNTs scaffolds analyzed demonstrated biocompatibility. The nanofilm structures demonstrated a higher rate of cellular proliferation, while the nanofibrous architecture of the scaffolds supported the cellular attachment and differentiation capacity of hDPSCs and was further enhanced with CS addition. In conclusion, the results of the present investigation highlighted the significance of this combination of parameters on the viability, proliferation and chondrogenic differentiation capacity of hDPSCs seeded on PCL-MWCNT scaffolds. This approach may be applied when designing PCL-based scaffolds for future cell-based therapeutic approaches developed for chondrogenic diseases.
Collapse
Affiliation(s)
- Ghada Nour Eldeen
- Human Genetics and Genome Research Institute, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Tarek A Elkhooly
- Refractories, Ceramics, and Building Materials Department, National Research Centre, Dokki, Giza, 12622, Egypt
- Nanomedicine Research Unit, Faculty of Medicine, Delta University for Science and Technology, Gamasa, Egypt
| | - Gehan T El Bassyouni
- Refractories, Ceramics, and Building Materials Department, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Tamer M Hamdy
- Restorative and Dental Materials Department, Oral and Dental Research Institute, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Ahmed R Hawash
- Faculty of Medicine, Delta University for Science and Technology, Gamasa, Egypt
| | - Riham M Aly
- Basic Dental Science Department, Oral and Dental Research Institute, National Research Centre, 33 El Bohouth St., Dokki, Giza, 12622, Egypt.
- Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Dokki, Giza, 12622, Egypt.
| |
Collapse
|
7
|
El-Akabawy G, El-Kersh SOF, El-Kersh AOFO, Amin SN, Rashed LA, Abdel Latif N, Elshamey A, Abdallah MAAEM, Saleh IG, Hein ZM, El-Serafi I, Eid N. Dental pulp stem cells ameliorate D-galactose-induced cardiac ageing in rats. PeerJ 2024; 12:e17299. [PMID: 38799055 PMCID: PMC11127642 DOI: 10.7717/peerj.17299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/03/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Ageing is a key risk factor for cardiovascular disease and is linked to several alterations in cardiac structure and function, including left ventricular hypertrophy and increased cardiomyocyte volume, as well as a decline in the number of cardiomyocytes and ventricular dysfunction, emphasizing the pathological impacts of cardiomyocyte ageing. Dental pulp stem cells (DPSCs) are promising as a cellular therapeutic source due to their minimally invasive surgical approach and remarkable proliferative ability. AIM This study is the first to investigate the outcomes of the systemic transplantation of DPSCs in a D-galactose (D-gal)-induced rat model of cardiac ageing. Methods. Thirty 9-week-old Sprague-Dawley male rats were randomly assigned into three groups: control, ageing (D-gal), and transplanted groups (D-gal + DPSCs). D-gal (300 mg/kg/day) was administered intraperitoneally daily for 8 weeks. The rats in the transplantation group were intravenously injected with DPSCs at a dose of 1 × 106 once every 2 weeks. RESULTS The transplanted cells migrated to the heart, differentiated into cardiomyocytes, improved cardiac function, upregulated Sirt1 expression, exerted antioxidative effects, modulated connexin-43 expression, attenuated cardiac histopathological alterations, and had anti-senescent and anti-apoptotic effects. CONCLUSION Our results reveal the beneficial effects of DPSC transplantation in a cardiac ageing rat model, suggesting their potential as a viable cell therapy for ageing hearts.
Collapse
Affiliation(s)
- Gehan El-Akabawy
- Department of Basic Medical Sciences, College of Medicine, Ajman University, Ajman, United Arab Emirates
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- Department of Anatomy and Embryology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | | | | | - Shaimaa Nasr Amin
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
- Department of Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Laila Ahmed Rashed
- Department of Medical Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Noha Abdel Latif
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Cairo, Egypt
- Department of Medical Pharmacology, Armed Forces College of Medicine, Cairo, Egypt
| | - Ahmed Elshamey
- Samanoud General Hospital, Samannoud City, Samanoud, Gharbia, Egypt
| | | | - Ibrahim G. Saleh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Sinai University, Kantra, Ismailia, Egypt
| | - Zaw Myo Hein
- Department of Basic Medical Sciences, College of Medicine, Ajman University, Ajman, United Arab Emirates
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Ibrahim El-Serafi
- Department of Basic Medical Sciences, College of Medicine, Ajman University, Ajman, United Arab Emirates
| | - Nabil Eid
- Department of Anatomy, Division of Human Biology, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Jenkner S, Clark JM, Gronthos S, O’Hare Doig RL. Molars to Medicine: A Focused Review on the Pre-Clinical Investigation and Treatment of Secondary Degeneration following Spinal Cord Injury Using Dental Stem Cells. Cells 2024; 13:817. [PMID: 38786039 PMCID: PMC11119219 DOI: 10.3390/cells13100817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Spinal cord injury (SCI) can result in the permanent loss of mobility, sensation, and autonomic function. Secondary degeneration after SCI both initiates and propagates a hostile microenvironment that is resistant to natural repair mechanisms. Consequently, exogenous stem cells have been investigated as a potential therapy for repairing and recovering damaged cells after SCI and other CNS disorders. This focused review highlights the contributions of mesenchymal (MSCs) and dental stem cells (DSCs) in attenuating various secondary injury sequelae through paracrine and cell-to-cell communication mechanisms following SCI and other types of neurotrauma. These mechanistic events include vascular dysfunction, oxidative stress, excitotoxicity, apoptosis and cell loss, neuroinflammation, and structural deficits. The review of studies that directly compare MSC and DSC capabilities also reveals the superior capabilities of DSC in reducing the effects of secondary injury and promoting a favorable microenvironment conducive to repair and regeneration. This review concludes with a discussion of the current limitations and proposes improvements in the future assessment of stem cell therapy through the reporting of the effects of DSC viability and DSC efficacy in attenuating secondary damage after SCI.
Collapse
Affiliation(s)
- Sandra Jenkner
- School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide 5000, Australia; (S.J.); (S.G.)
- Neil Sachse Centre for Spinal Cord Research, Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide 5000, Australia;
| | - Jillian Mary Clark
- Neil Sachse Centre for Spinal Cord Research, Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide 5000, Australia;
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide 5000, Australia
| | - Stan Gronthos
- School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide 5000, Australia; (S.J.); (S.G.)
- Mesenchymal Stem Cell Laboratory, Precision Medicine Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide 5000, Australia
| | - Ryan Louis O’Hare Doig
- Neil Sachse Centre for Spinal Cord Research, Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide 5000, Australia;
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide 5000, Australia
| |
Collapse
|
9
|
Pratiwi DIN, Alhajlah S, Alawadi A, Hjazi A, Alawsi T, Almalki SG, Alsalamy A, Kumar A. Mesenchymal stem cells and their extracellular vesicles as emerging therapeutic tools in the treatment of ischemic stroke. Tissue Cell 2024; 87:102320. [PMID: 38342071 DOI: 10.1016/j.tice.2024.102320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/13/2024]
Abstract
Ischemic stroke (IS) is a neurological condition characterized by severe long-term consequences and an unfavorable prognosis for numerous patients. Despite advancements in stroke treatment, existing therapeutic approaches possess certain limitations. However, accumulating evidence suggests that mesenchymal stem/stromal cells (MSCs) hold promise as a potential therapy for various neurological disorders, including IS, owing to their advantageous properties, such as immunomodulation and tissue regeneration. Additionally, MSCs primarily exert their therapeutic effects through the release of extracellular vesicles (EVs), highlighting the significance of their paracrine activities. These EVs are small double-layered phospholipid membrane vesicles, carrying a diverse cargo of proteins, lipids, and miRNAs that enable effective cell-to-cell communication. Notably, EVs have emerged as attractive substitutes for stem cell therapy due to their reduced immunogenicity, lower tumorigenic potential, and ease of administration and handling. Hence, this review summarizes the current preclinical and clinical studies performed to investigate the safety and therapeutic potential of MSCs and their EVs derived from different sources, including bone marrow, adipose tissue, umbilical cord blood, and Wharton's jelly in IS.
Collapse
Affiliation(s)
| | - Sharif Alhajlah
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Ahmed Alawadi
- College of technical engineering, the Islamic University, Najaf, Iraq; College of technical engineering, the Islamic University of Al Diwaniyah, Iraq; College of technical engineering, the Islamic University of Babylon, Iraq
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Taif Alawsi
- Department of Laser and Optoelectronics Engineering, University of Technology, Baghdad, Iraq
| | - Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Ali Alsalamy
- College of technical engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named after the First President of Russia Boris Yeltsin, Ekaterinburg 620002, Russia
| |
Collapse
|
10
|
Wang Z, Huang M, Zhang Y, Jiang X, Xu L. Comparison of Biological Properties and Clinical Application of Mesenchymal Stem Cells from the Mesoderm and Ectoderm. Stem Cells Int 2023; 2023:4547875. [PMID: 37333060 PMCID: PMC10276766 DOI: 10.1155/2023/4547875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/04/2023] [Accepted: 05/23/2023] [Indexed: 06/20/2023] Open
Abstract
Since the discovery of mesenchymal stem cells (MSCs) in the 1970s, they have been widely used in the treatment of a variety of diseases because of their wide sources, strong differentiation potential, rapid expansion in vitro, low immunogenicity, and so on. At present, most of the related research is on mesoderm-derived MSCs (M-MSCs) such as bone marrow MSCs and adipose-derived MSCs. As a type of MSC, ectoderm-derived MSCs (E-MSCs) have a stronger potential for self-renewal, multidirectional differentiation, and immunomodulation and have more advantages than M-MSCs in some specific conditions. This paper analyzes the relevant research development of E-MSCs compared with that of M-MSCs; summarizes the extraction, discrimination and culture, biological characteristics, and clinical application of E-MSCs; and discusses the application prospects of E-MSCs. This summary provides a theoretical basis for the better application of MSCs from both ectoderm and mesoderm in the future.
Collapse
Affiliation(s)
- Zhenning Wang
- Medical School of Chinese PLA, Beijing 100853, China
- Department of Orthodontics, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Meng Huang
- Medical School of Chinese PLA, Beijing 100853, China
- Department of Orthodontics, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yu Zhang
- Medical School of Chinese PLA, Beijing 100853, China
- Department of Orthodontics, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiaoxia Jiang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Lulu Xu
- Department of Orthodontics, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
11
|
Fujii Y, Hatori A, Chikazu D, Ogasawara T. Application of Dental Pulp Stem Cells for Bone and Neural Tissue Regeneration in Oral and Maxillofacial Region. Stem Cells Int 2023; 2023:2026572. [PMID: 37035445 PMCID: PMC10076122 DOI: 10.1155/2023/2026572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 10/21/2022] [Accepted: 03/18/2023] [Indexed: 03/31/2023] Open
Abstract
In the oral and maxillofacial region, the treatment of severe bone defects, caused by fractures, cancers, congenital abnormalities, etc., remains a great challenge. In addition, neurological disorders are frequently accompanied by these bone defects or the treatments for them. Therefore, novel bone regenerative techniques and methods to repair nerve injury are eagerly sought. Among them, strategies using dental pulp stem cells (DPSCs) are promising options. Human DPSCs can be collected easily from extracted teeth and are now considered a type of mesenchymal stem cell with higher clonogenic and proliferative potential. DPSCs have been getting attention as a cell source for bone and nerve regeneration. In this article, we reviewed the latest studies on osteogenic or neural differentiation of DPSCs as well as bone or neural regeneration methods using DPSCs and discussed the potential of DPSCs for bone and nerve tissue regeneration.
Collapse
|
12
|
Chouaib B, Cuisinier F, Collart-Dutilleul PY. Dental stem cell-conditioned medium for tissue regeneration: Optimization of production and storage. World J Stem Cells 2022; 14:287-302. [PMID: 35662860 PMCID: PMC9136565 DOI: 10.4252/wjsc.v14.i4.287] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/19/2021] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSC) effects on tissue regeneration are mainly mediated by their secreted substances (secretome), inducing their paracrine activity. This Conditioned medium (CM), including soluble factors (proteins, nucleic acids, lipids) and extracellular vesicles is emerging as a potential alternative to cell therapy. However, the manufacturing of CM suffers from variable procedures and protocols leading to varying results between studies. Besides, there is no well-defined optimized procedure targeting specific applications in regenerative medicine. AIM To focus on conditioned medium produced from dental MSC (DMSC-CM), we reviewed the current parameters and manufacturing protocols, in order to propose a standardization and optimization of these manufacturing procedures. METHODS We have selected all publications investigating the effects of dental MSC secretome in in vitro and in vivo models of tissue regeneration, in accordance with the PRISMA guidelines. RESULTS A total of 351 results were identified. And based on the inclusion criteria described above, 118 unique articles were included in the systematic review. DMSC-CM production was considered at three stages: before CM recovery (cell sources for CM), during CM production (culture conditions) and after production (CM treatment). CONCLUSION No clear consensus could be recovered as evidence-based methods, but we were able to describe the most commonly used protocols: donors under 30 years of age, dental pulp stem cells and exfoliated deciduous tooth stem cells with cell passage between 1 and 5, at a confluence of 70% to 80%. CM were often collected during 48 h, and stored at -80 °C. It is important to point out that the preconditioning environment had a significant impact on DMSC-CM content and efficiency.
Collapse
Affiliation(s)
- Batoul Chouaib
- Laboratory Bioengineering and Nanosciences UR_UM104, University of Montpellier, Montpellier 34000, France
| | - Frédéric Cuisinier
- Laboratory Bioengineering and Nanosciences UR_UM104, University of Montpellier, Montpellier 34000, France
| | | |
Collapse
|
13
|
Gugliandolo A, Mazzon E. Dental Mesenchymal Stem Cell Secretome: An Intriguing Approach for Neuroprotection and Neuroregeneration. Int J Mol Sci 2021; 23:ijms23010456. [PMID: 35008878 PMCID: PMC8745761 DOI: 10.3390/ijms23010456] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are known for their beneficial effects and regenerative potential. In particular, dental-derived MSCs have the advantage of easier accessibility and a non-invasive isolation method. Moreover, thanks to their neural crest origin, dental MSCs seem to have a more prominent neuroregenerative potential. Indeed, in basal conditions they also express neuronal markers. However, it is now well known that the beneficial actions of MSCs depend, at least in part, on their secretome, referring to all the bioactive molecules released in the conditioned medium (CM) or in extracellular vesicles (EVs). In this review we focus on the applications of the secretome derived from dental MSCs for neuroregeneration and neuroprotection. The secretomes of different dental MSCs have been tested for their effects for neuroregenerative purposes, and the secretomes of dental pulp stem cells and stem cells from human exfoliated deciduous teeth are the most studied. Both the CM and EVs obtained from dental MSCs showed that they are able to promote neurite outgrowth and neuroprotective effects. Interestingly, dental-derived MSC secretome showed stronger neuroregenerative and neuroprotective effects compared to that obtained from other MSC sources. For these reasons, the secretome obtained from dental MSCs may represent a promising approach for neuroprotective treatments.
Collapse
|
14
|
Hurd MD, Goel I, Sakai Y, Teramura Y. Current status of ischemic stroke treatment: From thrombolysis to potential regenerative medicine. Regen Ther 2021; 18:408-417. [PMID: 34722837 PMCID: PMC8517544 DOI: 10.1016/j.reth.2021.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/16/2021] [Accepted: 09/29/2021] [Indexed: 12/22/2022] Open
Abstract
Ischemic stroke is a major cause of death and disability worldwide and is expected to increase in the future with the aging population. Currently, there are no clinically available treatments for damage sustained during an ischemic stroke, but much research is being conducted in this area. In this review, we will introduce current ischemic stroke treatments along with their limitations, as well as research on potential short and long-term future treatments. There are advantages and disadvantages in these potential treatments, but our understanding of these methods and their effectiveness in clinical trials are improving. We are confident that some future treatments introduced in this review will become commonly used in clinical settings in the future.
Collapse
Affiliation(s)
- Mason Daniel Hurd
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Isha Goel
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yasuyuki Sakai
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yuji Teramura
- Cellular and Molecular Biotechnology Research Institute (CMB), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central fifth, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
- Department of Immunology, Genetics and Pathology (IGP), Uppsala University, Dag Hammarskjölds väg 20, SE-751 85, Uppsala, Sweden
| |
Collapse
|
15
|
Al-Serwi RH, El-Kersh AOFO, El-Akabawy G. Human dental pulp stem cells attenuate streptozotocin-induced parotid gland injury in rats. Stem Cell Res Ther 2021; 12:577. [PMID: 34775989 PMCID: PMC8591949 DOI: 10.1186/s13287-021-02646-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 10/27/2021] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Diabetes mellitus causes deterioration in the body, including serious damage of the oral cavity related to salivary gland dysfunction, characterised by hyposalivation and xerostomia. Human dental pulp stem cells (hDPSCs) represent a promising therapy source, due to the easy, minimally invasive surgical access to these cells and their high proliferative capacity. It was previously reported that the trophic support mediated by these cells can rescue the functional and structural alterations of damaged salivary glands. However, potential differentiation and paracrine effects of hDPSCs in diabetic-induced parotid gland damage have not been investigated. Our study aimed to investigate the therapeutic effects of intravenous transplantation of hDPSCs on parotid gland injury in a rat model of streptozotocin (STZ)-induced type 1 diabetes. METHODS Thirty Sprague-Dawley male rats were randomly categorised into three groups: control, diabetic (STZ), and transplanted (STZ + hDPSCs). The hDPSCs or the vehicles were injected into the rats' tail veins, 7 days after STZ injection. Fasting blood glucose levels were monitored weekly. A glucose tolerance test was performed, and the parotid gland weight, salivary flow rate, oxidative stress indices, parotid gland histology, and caspase-3, vascular endothelial growth factor, proliferating cell nuclear antigen, neuronal nitric oxide synthase, endothelial nitric oxide synthase, and tetrahydrobiopterin biosynthetic enzyme expression levels in parotid tissues were assessed 28 days post-transplantation. RESULTS Transplantation of hDPSCs decreased blood glucose, improved parotid gland weight and salivary flow rate, and reduced oxidative stress. The cells migrated to the STZ-injured parotid gland and differentiated into acinar, ductal, and myoepithelial cells. Moreover, hDPSCs downregulated the expression of caspase-3 and upregulated the expression of vascular endothelial growth factor and proliferating cell nuclear antigen, likely exerting pro-angiogenic and anti-apoptotic effects and promoting endogenous regeneration. In addition, the transplanted cells enhanced the parotid nitric oxide-tetrahydrobiopterin pathway. CONCLUSIONS Our results showed that hDPSCs migrated to and survived within the STZ-injured parotid gland, where functional and morphological damage was prevented due to the restoration of normal glucose levels, differentiation into parotid cell populations, and stimulation of paracrine-mediated regeneration. Thus, hDPSCs may have potential in the treatment of diabetes-induced parotid gland injury.
Collapse
Affiliation(s)
- Rasha H Al-Serwi
- Oral Basic Sciences, College of Dentistry, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
- Oral Biology Department, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | | | - Gehan El-Akabawy
- Department of Basic Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia.
- Department of Anatomy and Embryology, Faculty of Medicine, Menoufia University, Menoufia, Egypt.
| |
Collapse
|
16
|
Al Madhoun A, Sindhu S, Haddad D, Atari M, Ahmad R, Al-Mulla F. Dental Pulp Stem Cells Derived From Adult Human Third Molar Tooth: A Brief Review. Front Cell Dev Biol 2021; 9:717624. [PMID: 34712658 PMCID: PMC8545885 DOI: 10.3389/fcell.2021.717624] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022] Open
Abstract
The fields of regenerative medicine and stem cell-based tissue engineering have the potential of treating numerous tissue and organ defects. The use of adult stem cells is of particular interest when it comes to dynamic applications in translational medicine. Recently, dental pulp stem cells (DPSCs) have been traced in third molars of adult humans. DPSCs have been isolated and characterized by several groups. DPSCs have promising characteristics including self-renewal capacity, rapid proliferation, colony formation, multi-lineage differentiation, and pluripotent gene expression profile. Nevertheless, genotypic, and phenotypic heterogeneities have been reported for DPSCs subpopulations which may influence their therapeutic potentials. The underlying causes of DPSCs' heterogeneity remain poorly understood; however, their heterogeneity emerges as a consequence of an interplay between intrinsic and extrinsic cellular factors. The main objective of the manuscript is to review the current literature related to the human DPSCs derived from the third molar, with a focus on their physiological properties, isolation procedures, culture conditions, self-renewal, proliferation, lineage differentiation capacities and their prospective advances use in pre-clinical and clinical applications.
Collapse
Affiliation(s)
- Ashraf Al Madhoun
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
- Department of Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman, Kuwait
| | - Sardar Sindhu
- Department of Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman, Kuwait
- Department of Immunology and Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Dania Haddad
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| | - Maher Atari
- Biointelligence Technology Systems S.L., Barcelona, Spain
| | - Rasheed Ahmad
- Department of Immunology and Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| |
Collapse
|
17
|
Li S, Luo L, He Y, Li R, Xiang Y, Xing Z, Li Y, Albashari AA, Liao X, Zhang K, Gao L, Ye Q. Dental pulp stem cell-derived exosomes alleviate cerebral ischaemia-reperfusion injury through suppressing inflammatory response. Cell Prolif 2021; 54:e13093. [PMID: 34231932 PMCID: PMC8349657 DOI: 10.1111/cpr.13093] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/11/2022] Open
Abstract
Objectives The study aimed to determine whether dental pulp stem cell‐derived exosomes (DPSC‐Exos) exert protective effects against cerebral ischaemia‐reperfusion (I/R) injury and explore its underlying mechanism. Materials and Methods Exosomes were isolated from the culture medium of human DPSC. Adult male C57BL/6 mice were subjected to 2 hours transient middle cerebral artery occlusion (tMCAO) injury followed by 2 hours reperfusion, after which singular injection of DPSC‐Exos via tail vein was administrated. Brain oedema, cerebral infarction and neurological impairment were measured on day 7 after exosomes injection. Then, oxygen‐glucose deprivation–reperfusion (OGD/R) induced BV2 cells were studied to analyse the therapeutic effects of DPSC‐Exos on I/R injury in vitro. Protein levels of TLR4, MyD88, NF‐κB p65, HMGB1, IL‐6, IL‐1β and TNF‐α were determined by western blot or enzyme‐linked immunosorbent assay. The cytoplasmic translocation of HMGB1 was detected by immunofluorescence staining. Results DPSC‐Exos alleviated brain oedema, cerebral infarction and neurological impairment in I/R mice. DPSC‐Exos inhibited the I/R‐mediated expression of TLR4, MyD88 and NF‐κB significantly. DPSC‐Exos also reduced the protein expression of IL‐6, IL‐1β and TNF‐α compared with those of the control both in vitro and in vivo. Meanwhile, DPSC‐Exos markedly decreased the HMGB1 cytoplasmic translocation induced by I/R damage. Conclusions DPSC‐Exos can ameliorate I/R‐induced cerebral injury in mice. Its anti‐inflammatory mechanism might be related with the inhibition of the HMGB1/TLR4/MyD88/NF‐κB pathway.
Collapse
Affiliation(s)
- Song Li
- Department of Neurosurgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China.,School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Lihua Luo
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yan He
- Lab of Regenerative Medicine, Tianyou Hospital, Wuhan University, of Science and Technology, Wuhan, China
| | - Ruohan Li
- Centre of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yangfan Xiang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Zhenjie Xing
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yejian Li
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | | | - Xiangyan Liao
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Keke Zhang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Liang Gao
- Department of Shanghai Tenth People's Hospital Clinical Medical College, Nanjing Medical University, Nanjing, China.,Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Qingsong Ye
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China.,Centre of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
18
|
Bagheri-Mohammadi S. Protective effects of mesenchymal stem cells on ischemic brain injury: therapeutic perspectives of regenerative medicine. Cell Tissue Bank 2021; 22:249-262. [PMID: 33231840 DOI: 10.1007/s10561-020-09885-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 11/12/2020] [Indexed: 12/19/2022]
Abstract
Cerebral ischemic injury as the main manifestation of stroke can occur in stroke patients (70-80%). Nowadays, the main therapeutic strategy used for ischemic brain injury treatment aims to achieve reperfusion, neuroprotection, and neurorecovery. Also, angiogenesis as a therapeutic approach maybe represents a promising tool to enhance the prognosis of cerebral ischemic stroke. Unfortunately, although many therapeutic approaches as a life-saving gateway for cerebral ischemic injuries like pharmacotherapy and surgical treatments are widely used, they all fail to restore or regenerate damaged neurons in the brain. So, the suitable therapeutic approach would focus on regenerating the lost cells and restore the normal function of the brain. Currently, stem cell-based regenerative medicine introduced a new paradigm approach in cerebral ischemic injuries treatment. Today, in experimental researches, different types of stem cells such as mesenchymal stem cells have been applied. Therefore, stem cell-based regenerative medicine provides the opportunity to inquire and develop a more effective and safer therapeutic approach with the capability to produce and regenerate new neurons in damaged tissues.
Collapse
Affiliation(s)
- Saeid Bagheri-Mohammadi
- Department of Physiology and Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Physiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
- Departments of Applied Cell Sciences, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
19
|
Zhou G, Wang Y, Gao S, Fu X, Cao Y, Peng Y, Zhuang J, Hu J, Shao A, Wang L. Potential Mechanisms and Perspectives in Ischemic Stroke Treatment Using Stem Cell Therapies. Front Cell Dev Biol 2021; 9:646927. [PMID: 33869200 PMCID: PMC8047216 DOI: 10.3389/fcell.2021.646927] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/05/2021] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke (IS) remains one of the major causes of death and disability due to the limited ability of central nervous system cells to regenerate and differentiate. Although several advances have been made in stroke therapies in the last decades, there are only a few approaches available to improve IS outcome. In the acute phase of IS, mechanical thrombectomy and the administration of tissue plasminogen activator have been widely used, while aspirin or clopidogrel represents the main therapy used in the subacute or chronic phase. However, in most cases, stroke patients fail to achieve satisfactory functional recovery under the treatments mentioned above. Recently, cell therapy, especially stem cell therapy, has been considered as a novel and potential therapeutic strategy to improve stroke outcome through mechanisms, including cell differentiation, cell replacement, immunomodulation, neural circuit reconstruction, and protective factor release. Different stem cell types, such as mesenchymal stem cells, marrow mononuclear cells, and neural stem cells, have also been considered for stroke therapy. In recent years, many clinical and preclinical studies on cell therapy have been carried out, and numerous results have shown that cell therapy has bright prospects in the treatment of stroke. However, some cell therapy issues are not yet fully understood, such as its optimal parameters including cell type choice, cell doses, and injection routes; therefore, a closer relationship between basic and clinical research is needed. In this review, the role of cell therapy in stroke treatment and its mechanisms was summarized, as well as the function of different stem cell types in stroke treatment and the clinical trials using stem cell therapy to cure stroke, to reveal future insights on stroke-related cell therapy, and to guide further studies.
Collapse
Affiliation(s)
- Guoyang Zhou
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongjie Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shiqi Gao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiongjie Fu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yang Cao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yucong Peng
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianfeng Zhuang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Junwen Hu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lin Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
Miceli V, Bertani A, Chinnici CM, Bulati M, Pampalone M, Amico G, Carcione C, Schmelzer E, Gerlach JC, Conaldi PG. Conditioned Medium from Human Amnion-Derived Mesenchymal Stromal/Stem Cells Attenuating the Effects of Cold Ischemia-Reperfusion Injury in an In Vitro Model Using Human Alveolar Epithelial Cells. Int J Mol Sci 2021; 22:510. [PMID: 33419219 PMCID: PMC7825633 DOI: 10.3390/ijms22020510] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/30/2020] [Accepted: 01/03/2021] [Indexed: 02/07/2023] Open
Abstract
The clinical results of lung transplantation (LTx) are still less favorable than other solid organ transplants in both the early and long term. The fragility of the lungs limits the procurement rate and can favor the occurrence of ischemia-reperfusion injury (IRI). Ex vivo lung perfusion (EVLP) with Steen SolutionTM (SS) aims to address problems, and the implementation of EVLP to alleviate the activation of IRI-mediated processes has been achieved using mesenchymal stromal/stem cell (MSC)-based treatments. In this study, we investigated the paracrine effects of human amnion-derived MSCs (hAMSCs) in an in vitro model of lung IRI that includes cold ischemia and normothermic EVLP. We found that SS enriched by a hAMSC-conditioned medium (hAMSC-CM) preserved the viability and delayed the apoptosis of alveolar epithelial cells (A549) through the downregulation of inflammatory factors and the upregulation of antiapoptotic factors. These effects were more evident using the CM of 3D hAMSC cultures, which contained an increased amount of immunosuppressive and growth factors compared to both 2D cultures and encapsulated-hAMSCs. To conclude, we demonstrated an in vitro model of lung IRI and provided evidence that a hAMSC-CM attenuated IRI effects by improving the efficacy of EVLP, leading to strategies for a potential implementation of this technique.
Collapse
Affiliation(s)
- Vitale Miceli
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (M.B.); (P.G.C.)
| | - Alessandro Bertani
- Thoracic Surgery and Lung Transplantation Unit, Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione, 90127 Palermo, Italy;
| | - Cinzia Maria Chinnici
- Regenerative Medicine Unit, Fondazione Ri.MED, 90127 Palermo, Italy; (C.M.C.); (M.P.); (G.A.); (C.C.)
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS–ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| | - Matteo Bulati
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (M.B.); (P.G.C.)
| | - Mariangela Pampalone
- Regenerative Medicine Unit, Fondazione Ri.MED, 90127 Palermo, Italy; (C.M.C.); (M.P.); (G.A.); (C.C.)
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS–ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| | - Giandomenico Amico
- Regenerative Medicine Unit, Fondazione Ri.MED, 90127 Palermo, Italy; (C.M.C.); (M.P.); (G.A.); (C.C.)
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS–ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| | - Claudia Carcione
- Regenerative Medicine Unit, Fondazione Ri.MED, 90127 Palermo, Italy; (C.M.C.); (M.P.); (G.A.); (C.C.)
| | - Eva Schmelzer
- Department of Surgery, School of Medicine, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219-3130, USA; (E.S.); (J.C.G.)
| | - Jörg C. Gerlach
- Department of Surgery, School of Medicine, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219-3130, USA; (E.S.); (J.C.G.)
- Department of Bioengineering, School of Medicine, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219-3130, USA
| | - Pier Giulio Conaldi
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (M.B.); (P.G.C.)
| |
Collapse
|
21
|
Akhoundzadeh K, Vakili A. Effect of stem cells-based therapy on astrogliosis in stroke subjected-mice. Stem Cell Investig 2020; 7:21. [PMID: 33437841 DOI: 10.21037/sci-2020-031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 12/08/2020] [Indexed: 01/18/2023]
Abstract
This study was planned to continue our previous study to assess effect of combination therapy bone marrow stromal cells (BMSCs) with exercise (EX) and triiodothyronine (T3) on stroke-induced astrogliosis in mice. Stroke subjected-mice were divided into five monotherapy groups including sham, control, BMSCs, EX and T3; and three combination therapy groups including BMSCs + EX, BMSCs + T3 and BMSCs + EX + T3. Astrogliosis was assessed in ipsilateral hemisphere at day 7 after MCAO. Combination therapy BMSCs with EX and T3 could significantly decrease stroke-induced astrogliosis. However, monotherapy with BMSCs or EX also improved changes of glial fibrillary acidic protein (GFAP)-positive cells following stroke. Combination therapy BMSCs with EX and T3 didn't have any added effect on astrogliosis compared to monotherapy with BMSCs or EX. With comparing the present findings with the results of neurobehavioral functioning in our earlier study, it seems that decrease of astrogliosis could be helpful for stroke recovery.
Collapse
Affiliation(s)
- Kobra Akhoundzadeh
- Faculty of Nursing, Qom University of Medical Sciences, Qom, Iran.,Physiology Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Abedin Vakili
- Physiology Research Center, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
22
|
Abuarqoub D, Aslam N, Almajali B, Shajrawi L, Jafar H, Awidi A. Neuro-regenerative potential of dental stem cells: a concise review. Cell Tissue Res 2020; 382:267-279. [PMID: 32725424 DOI: 10.1007/s00441-020-03255-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 07/06/2020] [Indexed: 10/23/2022]
Abstract
This review will summarize the research information regarding the regenerative potential of dental stem cells for the treatment of neurodegenerative disorders. As compared to existing treatment modalities, the stem cell therapy seems promising, and accumulating evidences about the differentiation of stem cells into various lineages are proving it. The incidence of neurodegenerative diseases such as Alzheimer's, Parkinson's, stroke, and peripheral neuropathy is increasing due to the rise in life expectancies of people which have put a huge burden on economies. Finding a promising treatment could benefit not only the patients but also the communities. Dental stem cells hold a great potential to differentiate into neuronal cells. Many studies have reported the differentiation potential of the dental stem cells with the presence of neuronal lineage markers. In this review, we conferred how the use of dental stem cells can benefit the above-mentioned bedridden diseases.
Collapse
Affiliation(s)
- Duaa Abuarqoub
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan. .,Cell Therapy Center, The University of Jordan, Amman, Jordan.
| | - Nazneen Aslam
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Bayan Almajali
- School of Medicine, The University of Jordan, Amman, Jordan
| | - Leen Shajrawi
- School of Medicine, The University of Jordan, Amman, Jordan
| | - Hanan Jafar
- Cell Therapy Center, The University of Jordan, Amman, Jordan.,School of Medicine, The University of Jordan, Amman, Jordan
| | - Abdalla Awidi
- Cell Therapy Center, The University of Jordan, Amman, Jordan. .,School of Medicine, The University of Jordan, Amman, Jordan.
| |
Collapse
|
23
|
Stavely R, Nurgali K. The emerging antioxidant paradigm of mesenchymal stem cell therapy. Stem Cells Transl Med 2020; 9:985-1006. [PMID: 32497410 PMCID: PMC7445024 DOI: 10.1002/sctm.19-0446] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/05/2020] [Accepted: 04/20/2020] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (multipotent stromal cells; MSCs) have been under investigation for the treatment of diverse diseases, with many promising outcomes achieved in animal models and clinical trials. The biological activity of MSC therapies has not been fully resolved which is critical to rationalizing their use and developing strategies to enhance treatment efficacy. Different paradigms have been constructed to explain their mechanism of action, including tissue regeneration, trophic/anti-inflammatory secretion, and immunomodulation. MSCs rarely engraft and differentiate into other cell types after in vivo administration. Furthermore, it is equivocal whether MSCs function via the secretion of many peptide/protein ligands as their therapeutic properties are observed across xenogeneic barriers, which is suggestive of mechanisms involving mediators conserved between species. Oxidative stress is concomitant with cellular injury, inflammation, and dysregulated metabolism which are involved in many pathologies. Growing evidence supports that MSCs exert antioxidant properties in a variety of animal models of disease, which may explain their cytoprotective and anti-inflammatory properties. In this review, evidence of the antioxidant effects of MSCs in in vivo and in vitro models is explored and potential mechanisms of these effects are discussed. These include direct scavenging of free radicals, promoting endogenous antioxidant defenses, immunomodulation via reactive oxygen species suppression, altering mitochondrial bioenergetics, and donating functional mitochondria to damaged cells. Modulation of the redox environment and oxidative stress by MSCs can mediate their anti-inflammatory and cytoprotective properties and may offer an explanation to the diversity in disease models treatable by MSCs and how these mechanisms may be conserved between species.
Collapse
Affiliation(s)
- Rhian Stavely
- Institute for Health and Sport, Victoria University, Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, Victoria, Australia.,Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, Victoria, Australia.,Department of Medicine Western Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia.,Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, Victoria, Australia
| |
Collapse
|
24
|
El Moshy S, Radwan IA, Rady D, Abbass MMS, El-Rashidy AA, Sadek KM, Dörfer CE, Fawzy El-Sayed KM. Dental Stem Cell-Derived Secretome/Conditioned Medium: The Future for Regenerative Therapeutic Applications. Stem Cells Int 2020; 2020:7593402. [PMID: 32089709 PMCID: PMC7013327 DOI: 10.1155/2020/7593402] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/23/2019] [Accepted: 01/10/2020] [Indexed: 12/13/2022] Open
Abstract
Regenerative medicine literature has proposed mesenchymal stem/progenitor cell- (MSC-) mediated therapeutic approaches for their great potential in managing various diseases and tissue defects. Dental MSCs represent promising alternatives to nondental MSCs, owing to their ease of harvesting with minimally invasive procedures. Their mechanism of action has been attributed to their cell-to-cell contacts as well as to the paracrine effect of their secreted factors, namely, secretome. In this context, dental MSC-derived secretome/conditioned medium could represent a unique cell-free regenerative and therapeutic approach, with fascinating advantages over parent cells. This article reviews the application of different populations of dental MSC secretome/conditioned medium in in vitro and in vivo animal models, highlights their significant implementation in treating different tissue' diseases, and clarifies the significant bioactive molecules involved in their regenerative potential. The analysis of these recent studies clearly indicate that dental MSCs' secretome/conditioned medium could be effective in treating neural injuries, for dental tissue regeneration, in repairing bone defects, and in managing cardiovascular diseases, diabetes mellitus, hepatic regeneration, and skin injuries, through regulating anti-inflammatory, antiapoptotic, angiogenic, osteogenic, and neurogenic mediators.
Collapse
Affiliation(s)
- Sara El Moshy
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo, Egypt
- Stem cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - Israa Ahmed Radwan
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo, Egypt
- Stem cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - Dina Rady
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo, Egypt
- Stem cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - Marwa M. S. Abbass
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo, Egypt
- Stem cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - Aiah A. El-Rashidy
- Stem cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo, Egypt
- Biomaterials Department, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - Khadiga M. Sadek
- Stem cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo, Egypt
- Biomaterials Department, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - Christof E. Dörfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, Kiel, Germany
| | - Karim M. Fawzy El-Sayed
- Stem cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo, Egypt
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, Kiel, Germany
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Cairo University, Cairo, Egypt
| |
Collapse
|
25
|
Mukhamedshina Y, Shulman I, Ogurcov S, Kostennikov A, Zakirova E, Akhmetzyanova E, Rogozhin A, Masgutova G, James V, Masgutov R, Lavrov I, Rizvanov A. Mesenchymal Stem Cell Therapy for Spinal Cord Contusion: A Comparative Study on Small and Large Animal Models. Biomolecules 2019; 9:E811. [PMID: 31805639 PMCID: PMC6995633 DOI: 10.3390/biom9120811] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/05/2019] [Accepted: 11/26/2019] [Indexed: 12/19/2022] Open
Abstract
Here, we provide a first comparative study of the therapeutic potential of allogeneic mesenchymal stem cells derived from bone marrow (BM-MSCs), adipose tissue (AD-MSCs), and dental pulp (DP-MSCs) embedded in fibrin matrix, in small (rat) and large (pig) spinal cord injury (SCI) models during subacute period of spinal contusion. Results of behavioral, electrophysiological, and histological assessment as well as immunohistochemistry and real-time polymerase chain reaction analysis suggest that application of AD-MSCs combined with a fibrin matrix within the subacute period in rats (2 weeks after injury), provides significantly higher post-traumatic regeneration compared to a similar application of BM-MSCs or DP-MSCs. Within the rat model, use of AD-MSCs resulted in a marked change in: (1) restoration of locomotor activity and conduction along spinal axons; (2) reduction of post-traumatic cavitation and enhancing tissue retention; and (3) modulation of microglial and astroglial activation. The effect of an autologous application of AD-MSCs during the subacute period after spinal contusion was also confirmed in pigs (6 weeks after injury). Effects included: (1) partial restoration of the somatosensory spinal pathways; (2) reduction of post-traumatic cavitation and enhancing tissue retention; and (3) modulation of astroglial activation in dorsal root entry zone. However, pigs only partially replicated the findings observed in rats. Together, these results indicate application of AD-MSCs embedded in fibrin matrix at the site of SCI during the subacute period can facilitate regeneration of nervous tissue in rats and pigs. These results, for the first time, provide robust support for the use of AD-MSC to treat subacute SCI.
Collapse
Affiliation(s)
- Yana Mukhamedshina
- Clinical Research Center for Precision and Regenerative Medicine, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (I.S.); (S.O.); (A.K.); (E.Z.); (E.A.); (A.R.); (G.M.); (R.M.); (I.L.); (A.R.)
- Department of Histology, Cytology, and Embryology, Kazan State Medical University, 420012 Kazan, Russia
| | - Iliya Shulman
- Clinical Research Center for Precision and Regenerative Medicine, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (I.S.); (S.O.); (A.K.); (E.Z.); (E.A.); (A.R.); (G.M.); (R.M.); (I.L.); (A.R.)
- Republic Clinical Hospital, 420138 Kazan, Russia
| | - Sergei Ogurcov
- Clinical Research Center for Precision and Regenerative Medicine, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (I.S.); (S.O.); (A.K.); (E.Z.); (E.A.); (A.R.); (G.M.); (R.M.); (I.L.); (A.R.)
- Republic Clinical Hospital, 420138 Kazan, Russia
| | - Alexander Kostennikov
- Clinical Research Center for Precision and Regenerative Medicine, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (I.S.); (S.O.); (A.K.); (E.Z.); (E.A.); (A.R.); (G.M.); (R.M.); (I.L.); (A.R.)
| | - Elena Zakirova
- Clinical Research Center for Precision and Regenerative Medicine, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (I.S.); (S.O.); (A.K.); (E.Z.); (E.A.); (A.R.); (G.M.); (R.M.); (I.L.); (A.R.)
| | - Elvira Akhmetzyanova
- Clinical Research Center for Precision and Regenerative Medicine, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (I.S.); (S.O.); (A.K.); (E.Z.); (E.A.); (A.R.); (G.M.); (R.M.); (I.L.); (A.R.)
| | - Alexander Rogozhin
- Clinical Research Center for Precision and Regenerative Medicine, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (I.S.); (S.O.); (A.K.); (E.Z.); (E.A.); (A.R.); (G.M.); (R.M.); (I.L.); (A.R.)
- Department of Neurology, Kazan State Medical Academy–Branch Campus of the Federal State Budgetary Edicational Institution of Father Professional Education «Russian Medical Academy of Continuous Professional Education», 420012 Kazan, Russia
| | - Galina Masgutova
- Clinical Research Center for Precision and Regenerative Medicine, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (I.S.); (S.O.); (A.K.); (E.Z.); (E.A.); (A.R.); (G.M.); (R.M.); (I.L.); (A.R.)
| | - Victoria James
- Division of Biomedical Science, School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK;
| | - Ruslan Masgutov
- Clinical Research Center for Precision and Regenerative Medicine, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (I.S.); (S.O.); (A.K.); (E.Z.); (E.A.); (A.R.); (G.M.); (R.M.); (I.L.); (A.R.)
- Republic Clinical Hospital, 420138 Kazan, Russia
| | - Igor Lavrov
- Clinical Research Center for Precision and Regenerative Medicine, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (I.S.); (S.O.); (A.K.); (E.Z.); (E.A.); (A.R.); (G.M.); (R.M.); (I.L.); (A.R.)
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Albert Rizvanov
- Clinical Research Center for Precision and Regenerative Medicine, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (I.S.); (S.O.); (A.K.); (E.Z.); (E.A.); (A.R.); (G.M.); (R.M.); (I.L.); (A.R.)
| |
Collapse
|
26
|
Hsiao CH, Ji ATQ, Chang CC, Chien MH, Lee LM, Ho JHC. Mesenchymal stem cells restore the sperm motility from testicular torsion-detorsion injury by regulation of glucose metabolism in sperm. Stem Cell Res Ther 2019; 10:270. [PMID: 31445515 PMCID: PMC6708217 DOI: 10.1186/s13287-019-1351-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/11/2019] [Accepted: 07/22/2019] [Indexed: 02/06/2023] Open
Abstract
Background Testicular torsion is an urological emergency that may lead to infertility due to ischemic injury. Promptly surgical correction by orchiopexy is the only way to avoid infertility and no effective treatment for restoration of spermatogenesis. We previously reported that mesenchymal stem cells (MSCs), through local injection upon testicular torsion-detorsion, restored the spermatogenesis without differentiation into sperm. In this study, molecular mechanisms of MSCs in regulating germ cell activity induced by testicular torsion-detorsion were investigated. Methods Sixteen male Sprague-Dawley rats 6–8 weeks old received left testis 720° torsion for 3 h followed by detorsion with or without MSCs. Right inguinal skin incision without testicular torsion served as control. MSCs with 3 × 104 cells were locally injected into left testis 30 min before detorsion. Three days after the surgery, orchiectomy was executed and the testis, epididymis, and sperm were separated to each other. Functional assessments on sperm included counting sperm amount and sperm motility, staining F-actin, and quantifying adenosine triphosphate (ATP) content. The hallmarks of glycogenesis and glycolysis in each tissue segment were measured by Western blot. Results Testicular torsion-detorsion significantly decreased the amount of sperm, inhibited the motility, declined the F-actin expression, and reduced the content of ATP in sperm. Local injection of MSCs improved sperm function, particularly in sperm motility. With MSCs, ATP content and F-actin were preserved after testicular torsion-detorsion. MSCs significantly reversed the imbalance of glycolysis in sperm and testis induced by testicular torsion-detorsion, as evidenced by increasing the expression of phosphoglycerate kinase 2 and glyceraldehyde-3-phosphate dehydrogenase-spermatogenic, activating Akt, and increasing glycogen synthase kinase 3 (GSK3), which led to the increase in glycolysis cascades and ATP production. Human stem cell factor contributed the activation of Akt/GSK3 axis when sperm suffered from testicular torsion-detorsion-induced germ cell injury. Conclusions Local injection of MSCs into a testis damaged by testicular torsion-detorsion restores sperm function mainly through the improvement of sperm motility and energy. MSCs reversed the imbalance of glycogenesis and glycolysis in sperm by regulating Akt/GSK3 axis. Thus, MSCs may potentially rescue torsion-detorsion-induced infertility via local injection.
Collapse
Affiliation(s)
- Chi-Hao Hsiao
- Graduate Institute of Clinical Medicine, Taipei Medical University, #250 Wu-Hsing Street, Taipei, 110, Taiwan.,Department of Urology, Wan Fang Hospital, Taipei Medical University, #111, Section 3, Hsing-Long Road, Taipei, 116, Taiwan
| | - Andrea Tung-Qian Ji
- Center for Stem Cell Research, Wan Fang Hospital, Taipei Medical University, #111, Section 3, Hsing-Long Road, Taipei, 116, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, No.201, Sec.2, Shih-Pai Rd. Peitou, Taipei, 11221, Taiwan
| | - Chih-Cheng Chang
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Pulmonary, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, #291, Zhongzheng Road, Zhonghe District, New Taipei City, 235, Taiwan
| | - Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, Taipei Medical University, #250 Wu-Hsing Street, Taipei, 110, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Liang-Ming Lee
- Department of Urology, Wan Fang Hospital, Taipei Medical University, #111, Section 3, Hsing-Long Road, Taipei, 116, Taiwan
| | - Jennifer Hui-Chun Ho
- Graduate Institute of Clinical Medicine, Taipei Medical University, #250 Wu-Hsing Street, Taipei, 110, Taiwan. .,Center for Stem Cell Research, Wan Fang Hospital, Taipei Medical University, #111, Section 3, Hsing-Long Road, Taipei, 116, Taiwan. .,Institute of Clinical Medicine, National Yang-Ming University, No.201, Sec.2, Shih-Pai Rd. Peitou, Taipei, 11221, Taiwan.
| |
Collapse
|
27
|
Lan X, Sun Z, Chu C, Boltze J, Li S. Dental Pulp Stem Cells: An Attractive Alternative for Cell Therapy in Ischemic Stroke. Front Neurol 2019; 10:824. [PMID: 31428038 PMCID: PMC6689980 DOI: 10.3389/fneur.2019.00824] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022] Open
Abstract
Ischemic stroke is a major cause of disability and mortality worldwide, but effective restorative treatments are very limited at present. Regenerative medicine research revealed that stem cells are promising therapeutic options. Dental pulp stem cells (DPSCs) are autologously applicable cells that origin from the neural crest and exhibit neuro-ectodermal features next to multilineage differentiation potentials. DPSCs are of increasing interest since they are relatively easy to obtain, exhibit a strong proliferation ability, and can be cryopreserved for a long time without losing their multi-directional differentiation capacity. Besides, use of DPSCs can avoid fundamental problems such as immune rejection, ethical controversy, and teratogenicity. Therefore, DPSCs provide a tempting prospect for stroke treatment.
Collapse
Affiliation(s)
- Xiaoyan Lan
- Department of Neurology, Dalian Municipal Central Hospital Affiliated to Dalian Medical University, Dalian, China
| | - Zhengwu Sun
- Department of Pharmacy, Dalian Municipal Central Hospital Affiliated to Dalian Medical University, Dalian, China
| | - Chengyan Chu
- Department of Neurology, Dalian Municipal Central Hospital Affiliated to Dalian Medical University, Dalian, China
| | - Johannes Boltze
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Shen Li
- Department of Neurology, Dalian Municipal Central Hospital Affiliated to Dalian Medical University, Dalian, China
| |
Collapse
|
28
|
Baez-Jurado E, Hidalgo-Lanussa O, Barrera-Bailón B, Sahebkar A, Ashraf GM, Echeverria V, Barreto GE. Secretome of Mesenchymal Stem Cells and Its Potential Protective Effects on Brain Pathologies. Mol Neurobiol 2019; 56:6902-6927. [PMID: 30941733 DOI: 10.1007/s12035-019-1570-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/18/2019] [Indexed: 02/06/2023]
Abstract
Previous studies have indicated that mesenchymal stem cells (MSCs) have a fundamental role in the repair and regeneration of damaged tissues. There is strong evidence showing that much of the beneficial effects of these cells are due to the secretion of bioactive molecules-besides microRNAs, hormones, and neurotrophins-with anti-inflammatory, immunoregulatory, angiogenic, and trophic effects. These factors have been reported by many studies to possess protective effects on the nervous tissue. Although the beneficial effects of the secretory factors of MSCs have been suggested for various neurological diseases, their actions on astrocytic cells are not well understood. Hence, it is important to recognize the specific effects of MSCs derived from adipose tissue, in addition to the differences presented by the secretome, depending on the source and methods of analysis. In this paper, the different sources of MSCs and their main characteristics are described, as well as the most significant advances in regeneration and protection provided by the secretome of MSCs. Also, we discuss the possible neuroprotective mechanisms of action of the MSC-derived biomolecules, with special emphasis on the effect of MSCs derived from adipose tissue and their impact on glial cells and brain pathologies.
Collapse
Affiliation(s)
- Eliana Baez-Jurado
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - Oscar Hidalgo-Lanussa
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - Biviana Barrera-Bailón
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Valentina Echeverria
- Facultad de Ciencias de la Salud, Universidad San Sebastian, Lientur 1457, 4080871, Concepción, Chile.,Research & Development Service, Bay Pines VA Healthcare System, Bay Pines, FL, 33744, USA
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia.
| |
Collapse
|
29
|
Akhoundzadeh K, Vakili A, Sameni HR. Bone Marrow Stromal Cells With Exercise and Thyroid Hormone Effect on Post-Stroke Injuries in Middle-aged Mice. Basic Clin Neurosci 2019; 10:73-84. [PMID: 31031895 PMCID: PMC6484183 DOI: 10.32598/bcn.9.10.355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 01/25/2018] [Accepted: 06/12/2018] [Indexed: 12/22/2022] Open
Abstract
Introduction: Based on our previous findings, the treatment of stem cells alone or in combination with thyroid hormone (T3) and mild exercise could effectively reduce the risk of stroke damage in young mice. However, it is unclear whether this treatment is effective in aged or middle-aged mice. Therefore, this study designed to assess whether combination of Bone Marrow Stromal Cells (BMSCs) with T3 and mild treadmill exercise can decrease stroke complications in middle-aged mice. Methods: Under laser Doppler flowmetry monitoring, transient focal cerebral ischemia was produced by right Middle Cerebral Artery Occlusion (MCAO) for 45 min followed by 7 days of reperfusion in middle-aged mice. BMSCs (1×105) were injected into the right cerebral ventricle 24 h after MCAO, followed by daily injection of triiodothyronine (T3) (20 μg/100 g/d SC) and 6 days of running on a treadmill. Infarct size, neurological function, apoptotic cells and expression levels of Glial Fibrillary Acidic Protein (GFAP) were evaluated 1 week after stroke. Results: Post-ischemic treatment with BMSCs or with T3 and or mild treadmill exercise alone or in combination did not significantly change neurological function, infarct size, and apoptotic cells 7 days after ischemia in middle-aged mice (P>0.05). However, the expression of GFAP significantly reduced after treatment with BMSCs and or T3 (P<0.01). Conclusion: Our findings indicate that post-stroke treatment BMSCs with exercise and thyroid hormone cannot reverse neuronal damage 7 days after ischemia in middle-aged mice. These findings further support that age is an important variable in stroke treatment
Collapse
Affiliation(s)
- Kobra Akhoundzadeh
- Physiology Research Center, Semnan University of Medical Sciences, Semnan, Iran.,Department of Nursing, School of Nursing & Midwifery, Qom University of Medical Sciences, Qom, Iran
| | - Abedin Vakili
- Physiology Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Hamid Reza Sameni
- Nervous System Stems Cells Research Center, Department of Anatomical Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
30
|
Mitochondrial Neuroglobin Is Necessary for Protection Induced by Conditioned Medium from Human Adipose-Derived Mesenchymal Stem Cells in Astrocytic Cells Subjected to Scratch and Metabolic Injury. Mol Neurobiol 2018; 56:5167-5187. [PMID: 30536184 DOI: 10.1007/s12035-018-1442-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/29/2018] [Indexed: 12/27/2022]
Abstract
Astrocytes are specialized cells capable of regulating inflammatory responses in neurodegenerative diseases or traumatic brain injury. In addition to playing an important role in neuroinflammation, these cells regulate essential functions for the preservation of brain tissue. Therefore, the search for therapeutic alternatives to preserve these cells and maintain their functions contributes in some way to counteract the progress of the injury and maintain neuronal survival in various brain pathologies. Among these strategies, the conditioned medium from human adipose-derived mesenchymal stem cells (CM-hMSCA) has been reported with a potential beneficial effect against several neuropathologies. In this study, we evaluated the potential effect of CM-hMSCA in a model of human astrocytes (T98G cells) subjected to scratch injury. Our findings demonstrated that CM-hMSCA regulates the cytokines IL-2, IL-6, IL-8, IL-10, GM-CSF, and TNF-α, downregulates calcium at the cytoplasmic level, and regulates mitochondrial dynamics and the respiratory chain. These actions are accompanied by modulation of the expression of different proteins involved in signaling pathways such as AKT/pAKT and ERK1/2/pERK, and may mediate the localization of neuroglobin (Ngb) at the cellular level. We also confirmed that Ngb mediated the protective effects of CM-hMSCA through regulation of proteins involved in survival pathways and oxidative stress. In conclusion, regulation of brain inflammation combined with the recovery of fundamental cellular aspects in the face of injury makes CM-hMSCA a promising candidate for the protection of astrocytes in brain pathologies.
Collapse
|
31
|
Kichenbrand C, Velot E, Menu P, Moby V. Dental Pulp Stem Cell-Derived Conditioned Medium: An Attractive Alternative for Regenerative Therapy. TISSUE ENGINEERING PART B-REVIEWS 2018; 25:78-88. [PMID: 30156475 DOI: 10.1089/ten.teb.2018.0168] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSC) have a lot of potential in regenerative medicine, and MSC-based therapies are currently explored in numerous research fields. Among these cells, deciduous or permanent dental pulp-MSC represent a promising option in tissue engineering. This expectation is based on their capacity to self-renew, to repair various damaged tissues and organs due to their multipotency, as well as their ability to modulate immune system. They present other advantages such as the harvesting by a simple, painless, and noninvasive procedure and the absence of ethical considerations. The role played by these cells in the reparative process is mainly attributed to paracrine mechanisms mediated by their secreted factors, namely the secretome. The secreted factors can be found in the cell culture medium, called conditioned medium (CM). Moreover, CM presents many advantages compared with cells such as possible use in allogeneic therapies. This minireview aims at investigating the therapeutic use of dental pulp MSC-derived CM to develop cell-free therapies. The analysis of the available literature illustrates its massive panel of potential applications: mainly reduction of inflammation, promotion of angiogenesis and neurogenesis, reduction of stroke or ischemia, and organ regeneration. Furthermore, studies often highlight its superiority over the other sources of CM derived from other stem cells for the same applications. Dental pulp MSC-derived CM is an attractive, noninvasive, and acellular tool for therapeutic approaches in regenerative medicine. This promising novel approach should be further explored for clinical applications.
Collapse
Affiliation(s)
- Charlène Kichenbrand
- 1 CNRS UMR 7365, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Université de Lorraine, Biopôle de l'Université de Lorraine, Vandoeuvre-Lès-Nancy, France.,2 CHRU de Nancy-Service Odontologie, Vandœuvre-lès-Nancy, France.,3 Faculté d'Odontologie, Université de Lorraine, Nancy, France
| | - Emilie Velot
- 1 CNRS UMR 7365, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Université de Lorraine, Biopôle de l'Université de Lorraine, Vandoeuvre-Lès-Nancy, France.,4 Faculté de Pharmacie, Nancy, France
| | - Patrick Menu
- 1 CNRS UMR 7365, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Université de Lorraine, Biopôle de l'Université de Lorraine, Vandoeuvre-Lès-Nancy, France.,4 Faculté de Pharmacie, Nancy, France
| | - Vanessa Moby
- 1 CNRS UMR 7365, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Université de Lorraine, Biopôle de l'Université de Lorraine, Vandoeuvre-Lès-Nancy, France.,2 CHRU de Nancy-Service Odontologie, Vandœuvre-lès-Nancy, France.,3 Faculté d'Odontologie, Université de Lorraine, Nancy, France
| |
Collapse
|
32
|
Raza SS, Wagner AP, Hussain YS, Khan MA. Mechanisms underlying dental-derived stem cell-mediated neurorestoration in neurodegenerative disorders. Stem Cell Res Ther 2018; 9:245. [PMID: 30257724 PMCID: PMC6158826 DOI: 10.1186/s13287-018-1005-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Neurodegenerative disorders have a complex pathology and are characterized by a progressive loss of neuronal architecture in the brain or spinal cord. Neuroprotective agents have demonstrated promising results at the preclinical stage, but this has not been confirmed at the clinical stage. Thus far, no neuroprotective drug that can prevent neuronal degeneration in patients with neurodegenerative disorders is available. MAIN BODY Recent studies have focused on neurorestorative measures, such as cell-based therapy, rather than neuroprotective treatment. The utility of cell-based approaches for the treatment of neurodegenerative disorders has been explored extensively, and the results have been somewhat promising with regard to reversing the outcome. Because of their neural crest origin, ease of harvest, accessibility, ethical suitability, and potential to differentiate into the neurogenic lineage, dental-derived stem cells (DSCs) have become an attractive source for cell-based neurorestoration therapies. In the present review, we summarize the possible use of DSC-based neurorestoration therapy as an alternative treatment for neurodegenerative disorders, with a particular emphasis on the mechanism underlying recovery in neurodegenerative disorders. CONCLUSION Transplantation research in neurodegenerative diseases should aim to understand the mechanism providing benefits both at the molecular and functional level. Due to their ease of accessibility, plasticity, and ethical suitability, DSCs hold promise to overcome the existing challenges in the field of neurodegeneration through multiple mechanisms, such as cell replacement, bystander effect, vasculogenesis, synaptogenesis, immunomodulation, and by inhibiting apoptosis.
Collapse
Affiliation(s)
- Syed Shadab Raza
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era Medical College & Hospital, Era University, Lucknow, Uttar Pradesh, 226003, India. .,Department of Stem Cell Biology and Regenerative Medicine, Era University, Lucknow, 226003, India.
| | - Aurel Popa Wagner
- Departmentof Dental Materials, RUHS College of Dental Sciences, Subhash Nagar, Jaipur, Rajasthan, 302002, India.,Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy Craiova, Craiova, Romania.,School of Medicine, Griffith University, Southport, QLD, Australia
| | - Yawer S Hussain
- Department of Neurology, Chair of Vascular Neurology and Dementia, Essen University Hospital, Essen, Germany
| | - Mohsin Ali Khan
- Era Medical College & Hospital, Era University, Lucknow, Uttar Pradesh, 226003, India
| |
Collapse
|
33
|
Ge L, Wang Y, Cao Y, Li G, Sun R, Teng P, Wang Y, Bi Y, Guo Z, Yuan Y, Yu D. MiR-429 improved the hypoxia tolerance of human amniotic cells by targeting HIF-1α. Biotechnol Lett 2018; 40:1477-1486. [PMID: 30145667 DOI: 10.1007/s10529-018-2604-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/21/2018] [Indexed: 11/30/2022]
Abstract
MicroRNA-429(miR-429) plays an important role in mesenchymal stem cells. Hypoxia-inducible factor 1α (HIF-1α) is a nuclear transcription factor that regulates the proliferation, apoptosis and tolerance to hypoxia of mesenchymal stem cells. HIF-1α is also a target gene of miR-429. We investigated whether miR-429 plays a role in hypoxia tolerance with HIF-1α in human amniotic mesenchymal stem cells (hAMSCs). The expression of miR-429 was increased by hypoxia in hAMSCs. miR-429 expression resulted in decreased HIF-1α protein level, but little effect on HIF-1α mRNA. While overexpression of HIF-1α increased the survival rate and exhibited anti-apoptosis effects in hAMSCs under hypoxia, co-expression of miR-429 reduced survival and increased apoptosis. However, miR-429 silencing with HIF-1α overexpression stimulated cell survival and reduced apoptosis. Co-expression of HIF-1α and miR-429 reduced VEGF and Bcl-2 proteins and increased Bax and C-Caspase-3 levels in hAMSCs under hypoxia compared with cells expressing only HIF-1α; cells with HIF-1α overexpression and miR-429 silencing showed the opposite effects. These results indicate that HIF-1α and angomiR-429 reciprocally antagonized each other, while HIF-1α and antagomiR-429 interacted with each other to regulate survival and apoptosis in hAMSCs under hypoxia. miR-429 increased VEGF and Bcl-2 protein levels and decreased Bax and cleaved Caspase-3 protein levels by promoting the synthesis of HIF-1α. These results indicate that miR-429 negatively regulates the survival and anti-apoptosis ability of hAMSCs by mediating HIF-1α expression and improves the ability of hAMSCs to tolerate hypoxia.
Collapse
Affiliation(s)
- Lihao Ge
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, 121001, China
| | - Yuyan Wang
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, 121001, China
| | - Yang Cao
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, 121001, China
| | - Gang Li
- Department of Orthopedics, Tongji University School of Medicine, Shanghai Tenth People's Hospital, Shanghai, 200092, China
| | - Rui Sun
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, 121001, China
| | - Peng Teng
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, 121001, China
| | - Yansong Wang
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, 121001, China
| | - Yunlong Bi
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, 121001, China
| | - Zhanpeng Guo
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, 121001, China
| | - Yajiang Yuan
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, 121001, China
| | - Deshui Yu
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, 121001, China.
| |
Collapse
|
34
|
Potential Roles of Dental Pulp Stem Cells in Neural Regeneration and Repair. Stem Cells Int 2018; 2018:1731289. [PMID: 29853908 PMCID: PMC5964589 DOI: 10.1155/2018/1731289] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/22/2018] [Indexed: 12/22/2022] Open
Abstract
This review summarizes current advances in dental pulp stem cells (DPSCs) and their potential applications in the nervous diseases. Injured adult mammalian nervous system has a limited regenerative capacity due to an insufficient pool of precursor cells in both central and peripheral nervous systems. Nerve growth is also constrained by inhibitory factors (associated with central myelin) and barrier tissues (glial scarring). Stem cells, possessing the capacity of self-renewal and multicellular differentiation, promise new therapeutic strategies for overcoming these impediments to neural regeneration. Dental pulp stem cells (DPSCs) derive from a cranial neural crest lineage, retain a remarkable potential for neuronal differentiation, and additionally express multiple factors that are suitable for neuronal and axonal regeneration. DPSCs can also express immunomodulatory factors that stimulate formation of blood vessels and enhance regeneration and repair of injured nerve. These unique properties together with their ready accessibility make DPSCs an attractive cell source for tissue engineering in injured and diseased nervous systems. In this review, we interrogate the neuronal differentiation potential as well as the neuroprotective, neurotrophic, angiogenic, and immunomodulatory properties of DPSCs and its application in the injured nervous system. Taken together, DPSCs are an ideal stem cell resource for therapeutic approaches to neural repair and regeneration in nerve diseases.
Collapse
|
35
|
Marei MK, El Backly RM. Dental Mesenchymal Stem Cell-Based Translational Regenerative Dentistry: From Artificial to Biological Replacement. Front Bioeng Biotechnol 2018; 6:49. [PMID: 29770323 PMCID: PMC5941981 DOI: 10.3389/fbioe.2018.00049] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/11/2018] [Indexed: 12/13/2022] Open
Abstract
Dentistry is a continuously changing field that has witnessed much advancement in the past century. Prosthodontics is that branch of dentistry that deals with replacing missing teeth using either fixed or removable appliances in an attempt to simulate natural tooth function. Although such "replacement therapies" appear to be easy and economic they fall short of ever coming close to their natural counterparts. Complications that arise often lead to failures and frequent repairs of such devices which seldom allow true physiological function of dental and oral-maxillofacial tissues. Such factors can critically affect the quality of life of an individual. The market for dental implants is continuously growing with huge economic revenues. Unfortunately, such treatments are again associated with frequent problems such as peri-implantitis resulting in an eventual loss or replacement of implants. This is particularly influential for patients having co-morbid diseases such as diabetes or osteoporosis and in association with smoking and other conditions that undoubtedly affect the final treatment outcome. The advent of tissue engineering and regenerative medicine therapies along with the enormous strides taken in their associated interdisciplinary fields such as stem cell therapy, biomaterial development, and others may open arenas to enhancing tissue regeneration via designing and construction of patient-specific biological and/or biomimetic substitutes. This review will overview current strategies in regenerative dentistry while overviewing key roles of dental mesenchymal stem cells particularly those of the dental pulp, until paving the way to precision/translational regenerative medicine therapies for future clinical use.
Collapse
Affiliation(s)
- Mona K Marei
- Department of Removable Prosthodontics, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.,Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Rania M El Backly
- Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.,Endodontics, Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| |
Collapse
|
36
|
Ge L, Yu D, Su R, Cao Y. [Effects of hypoxia-inducible factor 1α on hypoxic tolerance of human amniotic mesenchymal stem cells]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2018; 32:264-269. [PMID: 29806273 PMCID: PMC8414270 DOI: 10.7507/1002-1892.201710104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 02/05/2018] [Indexed: 12/13/2022]
Abstract
Objective Under hypoxic conditions, the survival and apoptosis of human amniotic mesenchymal stem cells (hAMSCs) were observed by transient transfection of hypoxia-inducible factor 1α (HIF-1α) gene, to investigate the effect of HIF-1α on hypoxic tolerance of hAMSCs. Methods The hAMSCs were isolated and cultured from amniotic membrane tissue from voluntary donors who were treated with cesarean section. And the morphological observation by inverted phase contrast microscope and immunofluorescence detection of the expressions of stem cell markers OCT-4 and NANOG were performed to identify the cultured cells. The third generation hAMSCs were treated with 200 μmol/L CoCl 2, and transient transfection of plasmids were added according to the following grouping: group A was hAMSCs blank group; group B was pcDNA3.1 negative control group; group C was short hairpin RNA (shRNA) negative control group; group D was shRNA-HIF-1α interference group; group E was pcDNA3.1-HIF-1α over expression group. Cell survival rate of each group was measured by cell counting kit 8 (CCK-8) at 12, 24, 48 hours after hypoxia treatment. Flow cytometry was used to detect apoptosis rate of each group at 24 hours after hypoxia treatment. The expression levels of HIF-1α, vascular endothelial growth factor (VEGF), B-cell lymphoma 2 (Bcl-2), Bax, and cleaved Caspase-3 (C-Caspase-3) proteins were detected by Western blot at 24 hours after hypoxia treatment. Results CCK-8 assay showed that the cell survival rate of group D was significantly lower than those of groups A and C at all time points after hypoxia treatment; while the cell survival rate in group E was significantly increased than those in groups A and B, and the diffrences at 24 hours were significant ( P<0.05). In group E, the cell survival rate at 24 hours was significantly higher than those at 12 and 48 hours ( P<0.05). The results of flow cytometry showed that the apoptosis rate in group D was significantly higher than those in groups A and C ( P<0.05), and the apoptosis rate in group E was significantly lower than those in groups A and B ( P<0.05). Western blot showed that the expressions of HIF-1α, VEGF, and Bcl-2 proteins in group D were significantly decreased when compared with those in groups A and C, and the expressions of Bax and C-Caspase-3 proteins were significantly increased ( P<0.05). On the contrary, the expressions of HIF-1α, VEGF, and Bcl-2 proteins in group E were significantly higher than those in groups A and B, and the expressions of Bax and C-Caspase-3 proteins were significantly decreased ( P<0.05). Conclusion Overexpression of HIF-1α gene can significantly improve hAMSCs tolerance to hypoxia, the mechanism may be related to up-regulation of VEGF and Bcl-2 expressions, and down-regulation of Bax and C-Caspase-3 expressions.
Collapse
Affiliation(s)
- Lihao Ge
- Department of Orthopedics, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou Liaoning, 121001, P.R.China
| | - Deshui Yu
- Jinzhou Medical University, Jinzhou Liaoning, 121001,
| | - Ruichao Su
- Department of Orthopedics, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou Liaoning, 121001, P.R.China
| | - Yang Cao
- Department of Orthopedics, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou Liaoning, 121001, P.R.China
| |
Collapse
|
37
|
Baez-Jurado E, Hidalgo-Lanussa O, Guio-Vega G, Ashraf GM, Echeverria V, Aliev G, Barreto GE. Conditioned Medium of Human Adipose Mesenchymal Stem Cells Increases Wound Closure and Protects Human Astrocytes Following Scratch Assay In Vitro. Mol Neurobiol 2017; 55:5377-5392. [PMID: 28936798 DOI: 10.1007/s12035-017-0771-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/11/2017] [Indexed: 12/16/2022]
Abstract
Astrocytes perform essential functions in the preservation of neural tissue. For this reason, these cells can respond with changes in gene expression, hypertrophy, and proliferation upon a traumatic brain injury event (TBI). Different therapeutic strategies may be focused on preserving astrocyte functions and favor a non-generalized and non-sustained protective response over time post-injury. A recent strategy has been the use of the conditioned medium of human adipose mesenchymal stem cells (CM-hMSCA) as a therapeutic strategy for the treatment of various neuropathologies. However, although there is a lot of information about its effect on neuronal protection, studies on astrocytes are scarce and its specific action in glial cells is not well explored. In the present study, the effects of CM-hMSCA on human astrocytes subjected to scratch assay were assessed. Our findings indicated that CM-hMSCA improved cell viability, reduced nuclear fragmentation, and preserved mitochondrial membrane potential. These effects were accompanied by morphological changes and an increased polarity index thus reflecting the ability of astrocytes to migrate to the wound stimulated by CM-hMSCA. In conclusion, CM-hMSCA may be considered as a promising therapeutic strategy for the protection of astrocyte function in brain pathologies.
Collapse
Affiliation(s)
- Eliana Baez-Jurado
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia
| | - Oscar Hidalgo-Lanussa
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia
| | - Gina Guio-Vega
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Valentina Echeverria
- Research & Development Service, Bay Pines VA Healthcare System, Bay Pines, FL, 33744, USA.,Fac. Cs de la Salud, Universidad San Sebastián, Lientur 1457, 4080871, Concepción, Chile
| | - Gjumrakch Aliev
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, Moscow Region, 142432, Russia.,GALLY International Biomedical Research Consulting LLC, San Antonio, TX, 78229, USA.,School of Health Science and Healthcare Administration, University of Atlanta, Johns Creek, GA, 30097, USA
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia. .,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile.
| |
Collapse
|
38
|
Stem cell therapy for abrogating stroke-induced neuroinflammation and relevant secondary cell death mechanisms. Prog Neurobiol 2017; 158:94-131. [PMID: 28743464 DOI: 10.1016/j.pneurobio.2017.07.004] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 07/18/2017] [Accepted: 07/18/2017] [Indexed: 12/13/2022]
Abstract
Ischemic stroke is a leading cause of death worldwide. A key secondary cell death mechanism mediating neurological damage following the initial episode of ischemic stroke is the upregulation of endogenous neuroinflammatory processes to levels that destroy hypoxic tissue local to the area of insult, induce apoptosis, and initiate a feedback loop of inflammatory cascades that can expand the region of damage. Stem cell therapy has emerged as an experimental treatment for stroke, and accumulating evidence supports the therapeutic efficacy of stem cells to abrogate stroke-induced inflammation. In this review, we investigate clinically relevant stem cell types, such as hematopoietic stem cells (HSCs), mesenchymal stem cells (MSCs), endothelial progenitor cells (EPCs), very small embryonic-like stem cells (VSELs), neural stem cells (NSCs), extraembryonic stem cells, adipose tissue-derived stem cells, breast milk-derived stem cells, menstrual blood-derived stem cells, dental tissue-derived stem cells, induced pluripotent stem cells (iPSCs), teratocarcinoma-derived Ntera2/D1 neuron-like cells (NT2N), c-mycER(TAM) modified NSCs (CTX0E03), and notch-transfected mesenchymal stromal cells (SB623), comparing their potential efficacy to sequester stroke-induced neuroinflammation and their feasibility as translational clinical cell sources. To this end, we highlight that MSCs, with a proven track record of safety and efficacy as a transplantable cell for hematologic diseases, stand as an attractive cell type that confers superior anti-inflammatory effects in stroke both in vitro and in vivo. That stem cells can mount a robust anti-inflammatory action against stroke complements the regenerative processes of cell replacement and neurotrophic factor secretion conventionally ascribed to cell-based therapy in neurological disorders.
Collapse
|
39
|
Baez-Jurado E, Vega GG, Aliev G, Tarasov VV, Esquinas P, Echeverria V, Barreto GE. Blockade of Neuroglobin Reduces Protection of Conditioned Medium from Human Mesenchymal Stem Cells in Human Astrocyte Model (T98G) Under a Scratch Assay. Mol Neurobiol 2017; 55:2285-2300. [PMID: 28332151 DOI: 10.1007/s12035-017-0481-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/03/2017] [Indexed: 12/25/2022]
Abstract
Previous studies have indicated that paracrine factors (conditioned medium) increase wound closure and reduce reactive oxygen species in a traumatic brain injury in vitro model. Although the beneficial effects of conditioned medium from human adipose tissue-derived mesenchymal stem cells (hMSCA-CM) have been previously suggested for various neurological diseases, their actions on astrocytic cells are not well understood. In this study, we have explored the effect of hMSCA-CM on human astrocyte model (T98G cells) subjected to scratch assay. Our results indicated that hMSCA-CM improved cell viability, reduced nuclear fragmentation, attenuated the production of reactive oxygen species, and preserved mitochondrial membrane potential and ultrastructural parameters. In addition, hMSCA-CM upregulated neuroglobin in T98G cells and the genetic silencing of this protein prevented the protective action of hMSCA-CM on damaged cells, suggesting that neuroglobin is mediating, at least in part, the protective effect of hMSCA-CM. Overall, this evidence suggests that the use of hMSCA-CM is a promising therapeutic strategy for the protection of astrocytic cells in central nervous system (CNS) pathologies.
Collapse
Affiliation(s)
- Eliana Baez-Jurado
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - Gina Guio Vega
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | - Gjumrakch Aliev
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, 142432, Russia
- GALLY International Biomedical Research Consulting LLC, San Antonio, TX, 78229, USA
- School of Health Science and Healthcare Administration, University of Atlanta, Johns Creek, GA, 30097, USA
| | - Vadim V Tarasov
- Institute of Pharmacy and Translational Medicine, Sechenov First Moscow State Medical University, 2-4 Bolshaya Pirogovskaya st., 119991, Moscow, Russia
| | - Paula Esquinas
- Facultad Medicina Veterinaria y Zootecnia, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Valentina Echeverria
- Facultad Ciencias de la Salud, Universidad San Sebastián, Lientur 1457, 4030000, Concepción, Chile
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia.
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile.
| |
Collapse
|
40
|
Surgical Procedure for Extracting Pig Teeth for Isolation and Cultivation of Mesenchymal Stem Cells from Dental Pulp for Regenerative Therapy Applications. BIONANOSCIENCE 2017. [DOI: 10.1007/s12668-016-0297-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
41
|
Song M, Lee JH, Bae J, Bu Y, Kim EC. Human Dental Pulp Stem Cells Are More Effective Than Human Bone Marrow-Derived Mesenchymal Stem Cells in Cerebral Ischemic Injury. Cell Transplant 2017; 26:1001-1016. [PMID: 28105979 DOI: 10.3727/096368916x694391] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We compared the therapeutic effects and mechanism of transplanted human dental pulp stem cells (hDPSCs) and human bone marrow-derived mesenchymal stem cells (hBM-MSCs) in a rat stroke model and an in vitro model of ischemia. Rats were intravenously injected with hDPSCs or hBM-MSCs 24 h after middle cerebral artery occlusion (MCAo), and both groups showed improved functional recovery and reduced infarct volume versus control rats, but the hDPSC group showed greater reduction in infarct volume than the hBM-MSC group. The positive area for the endothelial cell marker was greater in the lesion boundary areas in the hDPSC group than in the hBM-MSC group. Administration of hDPSCs to rats with stroke significantly decreased reactive gliosis, as evidenced by the attenuation of MCAo-induced GFAP+/nestin+ and GFAP+/Musashi-1+ cells, compared with hBM-MSCs. In vivo findings were confirmed by in vitro data illustrating that hDPSCs showed superior neuroprotective, migratory, and in vitro angiogenic effects in oxygen-glucose deprivation (OGD)-injured human astrocytes (hAs) versus hBM-MSCs. Comprehensive comparative bioinformatics analyses from hDPSC- and hBM-MSC-treated in vitro OGD-injured hAs were examined by RNA sequencing technology. In gene ontology and KEGG pathway analyses, significant pathways in the hDPSC-treated group were the MAPK and TGF-β signaling pathways. Thus, hDPSCs may be a better cell therapy source for ischemic stroke than hBM-MSCs.
Collapse
|
42
|
Chan HH, Wathen CA, Ni M, Zhuo S. Stem cell therapies for ischemic stroke: current animal models, clinical trials and biomaterials. RSC Adv 2017. [DOI: 10.1039/c7ra00336f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
We report the facilitation of stem cell therapy in stroke by tissue engineering and applications of biomaterials.
Collapse
Affiliation(s)
- Hugh H. Chan
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education & Fujian Provincial Key Laboratory of Photonics Technology
- Fujian Normal University
- Fuzhou 350007
- P. R. China
- Department of Neuroscience
| | | | - Ming Ni
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education & Fujian Provincial Key Laboratory of Photonics Technology
- Fujian Normal University
- Fuzhou 350007
- P. R. China
| | - Shuangmu Zhuo
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education & Fujian Provincial Key Laboratory of Photonics Technology
- Fujian Normal University
- Fuzhou 350007
- P. R. China
| |
Collapse
|
43
|
The Neurovascular Properties of Dental Stem Cells and Their Importance in Dental Tissue Engineering. Stem Cells Int 2016; 2016:9762871. [PMID: 27688777 PMCID: PMC5027319 DOI: 10.1155/2016/9762871] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/01/2016] [Indexed: 12/16/2022] Open
Abstract
Within the field of tissue engineering, natural tissues are reconstructed by combining growth factors, stem cells, and different biomaterials to serve as a scaffold for novel tissue growth. As adequate vascularization and innervation are essential components for the viability of regenerated tissues, there is a high need for easily accessible stem cells that are capable of supporting these functions. Within the human tooth and its surrounding tissues, different stem cell populations can be distinguished, such as dental pulp stem cells, stem cells from human deciduous teeth, stem cells from the apical papilla, dental follicle stem cells, and periodontal ligament stem cells. Given their straightforward and relatively easy isolation from extracted third molars, dental stem cells (DSCs) have become an attractive source of mesenchymal-like stem cells. Over the past decade, there have been numerous studies supporting the angiogenic, neuroprotective, and neurotrophic effects of the DSC secretome. Together with their ability to differentiate into endothelial cells and neural cell types, this makes DSCs suitable candidates for dental tissue engineering and nerve injury repair.
Collapse
|
44
|
Friend or Foe? Resident Microglia vs Bone Marrow-Derived Microglia and Their Roles in the Retinal Degeneration. Mol Neurobiol 2016; 54:4094-4112. [PMID: 27318678 DOI: 10.1007/s12035-016-9960-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/06/2016] [Indexed: 01/10/2023]
Abstract
Microglia are immune cells in the central nervous system (CNS) that originate from the yolk sac in an embryo. The renewal of the microglia pool in the adult eye consists of two components. In addition to the self-proliferation of resident cells, microglia in the CNS also derive from the bone marrow (BM). BM-derived cells pass through the blood-brain barrier (BBB) or blood-retina barrier (BRB) and differentiate into microglia under specific conditions which involves a complex mechanism. Recent studies have widely investigated the role of resident microglia and BM-derived microglia in the retinal degenerative disease. Both two cell types play dual roles and share many similar functions. However, resident microglia tend to polarize to the M1 phenotype which is pro-inflammatory and neurotoxic, whereas BM-derived microglia mainly polarize to the neuroprotective M2 phenotype in retinal degeneration. The molecular mechanism that underlines the invasion of peripheral cells has led to extensive discussions. In addition to the BBB and BRB disruption, many signaling pathways are involved in this process. Based on these studies, we discuss the roles of these two types of microglia in retinal degeneration disease and the potential clinical application of BM-derived microglia, which may benefit future therapies.
Collapse
|
45
|
Cho YA, Kim DS, Song M, Bae WJ, Lee S, Kim EC. Protein Interacting with Never in Mitosis A-1 Induces Glutamatergic and GABAergic Neuronal Differentiation in Human Dental Pulp Stem Cells. J Endod 2016; 42:1055-61. [PMID: 27178251 DOI: 10.1016/j.joen.2016.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 03/28/2016] [Accepted: 04/02/2016] [Indexed: 01/09/2023]
Abstract
INTRODUCTION The purpose of this study was to investigate the role of protein interacting with never in mitosis A-1 (PIN1) in the neuronal or glial differentiation of human dental pulp stem cells (hDPSCs) and whether PIN1 can regulate determination of neuronal sub-phenotype. METHODS After magnetic-activated cell sorting to separate CD34(+)/c-kit(+)/STRO-1(+) hDPSCs, cells were cultured in neurogenic medium. Differentiation was measured as Nissl staining and marker protein or mRNA expression by reverse transcriptase polymerase chain reaction, immunofluorescence, and flow cytometric analysis. RESULTS PIN1 mRNA levels were upregulated in a time-dependent fashion during neurogenic differentiation. The PIN1 inhibitor juglone suppressed neuronal differentiation but promoted glial differentiation as assessed by the number of Nissl-positive cells and mRNA expression of neuronal markers (nestin, βIII-tubulin, and NeuN) and a glial marker (glial fibrillary acidic protein). Conversely, overexpression of PIN1 by infection with adenovirus-PIN1 increased neuronal differentiation but decreased glial differentiation. Moreover, PIN1 overexpression increased the percentage of glutamatergic and GABAergic cells but decreased that of dopaminergic cells among total NeuN-positive hDPSCs. CONCLUSIONS This is the first study to demonstrate that PIN1 overexpression induced glutamatergic and GABAergic neuronal differentiation but suppressed glial differentiation of hDPSCs, suggesting that enhancing PIN expression is important to obtain human glutamatergic and GABAergic neurons from hDPSCs.
Collapse
Affiliation(s)
- Young-Ah Cho
- Department of Oral and Maxillofacial Pathology and Research Center for Tooth and Periodontal Tissue Regeneration (MRC), School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Duck-Su Kim
- Department of Conservative Dentistry, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Miyeoun Song
- Department of Oral and Maxillofacial Pathology and Research Center for Tooth and Periodontal Tissue Regeneration (MRC), School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Won-Jung Bae
- Department of Oral and Maxillofacial Pathology and Research Center for Tooth and Periodontal Tissue Regeneration (MRC), School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Soojung Lee
- Department of Oral Physiology, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Eun-Cheol Kim
- Department of Oral and Maxillofacial Pathology and Research Center for Tooth and Periodontal Tissue Regeneration (MRC), School of Dentistry, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
46
|
Bianco J, De Berdt P, Deumens R, des Rieux A. Taking a bite out of spinal cord injury: do dental stem cells have the teeth for it? Cell Mol Life Sci 2016; 73:1413-37. [PMID: 26768693 PMCID: PMC11108394 DOI: 10.1007/s00018-015-2126-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/16/2015] [Accepted: 12/22/2015] [Indexed: 12/15/2022]
Abstract
Dental stem cells are an emerging star on a stage that is already quite populated. Recently, there has been a lot of hype concerning these cells in dental therapies, especially in regenerative endodontics. It is fitting that most research is concentrated on dental regeneration, although other uses for these cells need to be explored in more detail. Being a true mesenchymal stem cell, their capacities could also prove beneficial in areas outside their natural environment. One such field is the central nervous system, and in particular, repairing the injured spinal cord. One of the most formidable challenges in regenerative medicine is to restore function to the injured spinal cord, and as yet, a cure for paralysis remains to be discovered. A variety of approaches have already been tested, with graft-based strategies utilising cells harbouring appropriate properties for neural regeneration showing encouraging results. Here we present a review focusing on properties of dental stem cells that endorse their use in regenerative medicine, with particular emphasis on repairing the damaged spinal cord.
Collapse
Affiliation(s)
- John Bianco
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, Avenue Mounier, 73, B1 73.12, 1200, Brussels, Belgium.
- Integrated Center for Cell Therapy and Regenerative Medicine, International Clinical Research Center (FNUSA-ICRC), St. Anne's University Hospital Brno, Pekařská 53, 656 91, Brno, Czech Republic.
| | - Pauline De Berdt
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, Avenue Mounier, 73, B1 73.12, 1200, Brussels, Belgium
| | - Ronald Deumens
- Institute of Neuroscience, Université catholique de Louvain, Avenue Hippocrate B1.54.10, 1200, Brussels, Belgium
| | - Anne des Rieux
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, Avenue Mounier, 73, B1 73.12, 1200, Brussels, Belgium
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348, Louvain-La-Neuve, Belgium
| |
Collapse
|
47
|
Lian M, Zhang Y, Shen Q, Xing J, Lu X, Huang D, Cao P, Shen S, Zheng K, Zhang J, Chen J, Wang Y, Feng G, Feng X. JAB1 accelerates odontogenic differentiation of dental pulp stem cells. J Mol Histol 2016; 47:317-24. [DOI: 10.1007/s10735-016-9672-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/14/2016] [Indexed: 01/09/2023]
|
48
|
Yang W, Yang Y, Yang JY, Liang M, Song J. Treatment with bone marrow mesenchymal stem cells combined with plumbagin alleviates spinal cord injury by affecting oxidative stress, inflammation, apoptotis and the activation of the Nrf2 pathway. Int J Mol Med 2016; 37:1075-82. [PMID: 26936518 DOI: 10.3892/ijmm.2016.2498] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 02/12/2016] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the protective effect exerted by bone marrow mesenchymal stem cells (BMSCs) in combination with plumbagin on spinal cord injury (SCI) and explore the mechanism behind this protective effect. Firstly, BMSCs were extracted from male Sprague-Dawley rats, cultured in vitro, and identified by hematoxylin. Sprague-Dawley rats were then randomly divided into a control group, SCI model group, BMSC-treated group, a plumbagin-treated group, and a BMSC and plumbagin-treated group. After treatment with BMSCs combined with plumbagin, a Basso, Beattie and Bresnahan (BBB) test was carried out and the spinal cord water content was examined in order to analyze the effect of BMSCs combined with plumbagin on SCI. The myeloperoxidase (MPO), superoxide dismutase (SOD), malondialdehyde (MDA), nuclear factor-κB (NF-κB) p65 unit, tumor necrosis factor-α (TNF-α) levels were also detected. Moreover, nuclear factor erythroid 2‑related factor 2 (Nrf2), phosphoinositide 3-kinase (PI3K), phosphorylated (p-)Akt, p-p38 mitogen-activated protein kinase (MAPK), and p-extracellular-signal-regulated kinase (ERK) protein expression levels were measured using western blot analysis. Treatment with BMSCs combined with plumbagin significantly improved locomotor recovery and reduced the spinal cord water content after SCI. The increased MPO, MDA, NF-κB p65 and TNF-α levels were significantly suppressed and the decreased SOD was significantly increased in SCI rats. The suppression of Nrf2, p-Akt and p-ERK, as well as the promotion of p-p38 MAPK, were reversed by treatment with BMSCs combined with plumbagin. These effects suggest that treatment with BMSCs combined with plumbagin alleviates SCI through its effects on oxidative stress, inflammation, apoptotis and activation of the Nrf2 pathway.
Collapse
Affiliation(s)
- Wencheng Yang
- The Second Department of Orthopedics, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Yan Yang
- The Second Department of Orthopedics, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Jian-Yi Yang
- The Second Department of Orthopedics, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Ming Liang
- The Second Department of Orthopedics, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Jiangtao Song
- The Second Department of Orthopedics, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| |
Collapse
|
49
|
Demirci S, Doğan A, Şahin F. Dental Stem Cells vs. Other Mesenchymal Stem Cells: Their Pluripotency and Role in Regenerative Medicine. DENTAL STEM CELLS 2016. [DOI: 10.1007/978-3-319-28947-2_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
50
|
Cryopreservation and Banking of Dental Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 951:199-235. [DOI: 10.1007/978-3-319-45457-3_17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|