1
|
Dehbozorgi M, Maghsoudi MR, Mohammadi I, Firouzabadi SR, Mohammaditabar M, Oraee S, Aarabi A, Goodarzi M, Shafiee A, Bakhtiyari M. Incidence of anxiety after traumatic brain injury: a systematic review and meta-analysis. BMC Neurol 2024; 24:293. [PMID: 39174923 PMCID: PMC11340054 DOI: 10.1186/s12883-024-03791-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/01/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is defined as acquired cerebral damage caused by an external mechanical impact, which has the potential to lead to transient or enduring debilitation. TBI is associated with many forms of long-lasting psychiatric conditions, including anxiety disorders. As anxiety is highly debilitating by causing impaired social functioning and decreased quality of life for the afflicted, especially in the form of anxiety disorders such as generalized anxiety disorder, certain efforts have been made to explore the factors associated with it, and one such factor is TBI. METHODS We searched PubMed, Scopus, and Web of Science on January 26th, 2024 for observational case-control or cohort or cross-sectional studies assessing the incidence of anxiety symptoms or disorders in patients with TBI compared to healthy individuals or the same individuals if pre-TBI information regarding anxiety was available. We calculated the pooled incidence and relative risk (RR) and 95% confidence interval (95CI) using the inverse variance method. Publication bias was assessed using Eggers's regression test. Quality assessment was performed using the Newcastle-Ottawa scale. Sub-group analyses were conducted for the type of anxiety (anxiety disorder vs anxiety symptoms), TBI severity, and type of anxiety disorders. RESULTS The incidence rate of anxiety after traumatic brain injury was 17.45% (95CI: 12.59%, 22.31%) in a total of 705,024 individuals. Moreover, TBI patients were found to be 1.9 times as likely to have anxiety compared to their non-TBI counterparts [Random effects model RR = 1.90 [1.62; 2.23], p-value < 0.0001] using a population of 569,875 TBI cases and 1,640,312 non-TBI controls. Sub-group analysis revealed TBI severity was not associated with anxiety and generalized anxiety disorder was the most common type of anxiety disorder reported post-TBI. CONCLUSION Patients who have experienced a TBI exhibit a significantly greater incidence of anxiety symptoms and anxiety disorders in the aftermath when compared to healthy individuals.
Collapse
Affiliation(s)
| | - Mohammad Reza Maghsoudi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Ida Mohammadi
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mahdi Mohammaditabar
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Soroush Oraee
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aryan Aarabi
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mana Goodarzi
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arman Shafiee
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
- Alborz University of Medical Sciences, Karaj, Iran.
| | - Mahmood Bakhtiyari
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
2
|
Nanda U, Zhang G, Underhill D, Pangarkar S. Management of Pain and Headache After Traumatic Brain Injury. Phys Med Rehabil Clin N Am 2024; 35:573-591. [PMID: 38945652 DOI: 10.1016/j.pmr.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
This article will identify common causes of pain following traumatic brain injury (TBI), discuss current treatment strategies for these complaints, and help tailor treatments for both acute and chronic settings. We will also briefly discuss primary and secondary headache disorders, followed by common secondary pain disorders that may be related to trauma.
Collapse
Affiliation(s)
- Udai Nanda
- Department of Physical Medicine and Rehabilitation, Pain Management, Headache Center of Excellence, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA; Division of Physical Medicine and Rehabilitation, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA, USA.
| | - Grace Zhang
- Division of Physical Medicine and Rehabilitation, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - David Underhill
- Division of Physical Medicine and Rehabilitation, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Sanjog Pangarkar
- Division of Physical Medicine and Rehabilitation, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA, USA; Department of Physical Medicine and Rehabilitation, Pain Management, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| |
Collapse
|
3
|
Mace BE, Lassiter E, Arulraja EK, Chaparro E, Cantillana V, Gupta R, Faw TD, Laskowitz DT, Kolls BJ. Optimization of a translational murine model of closed-head traumatic brain injury. Neurol Res 2024; 46:304-317. [PMID: 38197610 DOI: 10.1080/01616412.2024.2302261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024]
Abstract
Traumatic brain injury (TBI) from closed-head trauma is a leading cause of disability, with limited effective interventions. Many TBI models impact brain parenchyma directly, and are limited by the fact that these forces do not recapitulate clinically relevant closed head injury. However, applying clinically relevant injury mechanics to the intact skull may lead to variability and as a result, preclinical modeling TBI remains a challenge. Current models often do not explore sex differences in TBI, which is critically important for translation to clinical practice. We systematically investigated sources of variability in a murine model of closed-head TBI and developed a framework to reduce variability across severity and sex. We manipulated pressure, dwell time, and displacement to determine effects on motor coordination, spatial learning, and neuronal damage in 10-week-old male and female mice. Increasing pressure beyond 70 psi had a ceiling effect on cellular and behavioral outcomes, while manipulating dwell time only affected behavioral performance. Increasing displacement precisely graded injury severity in both sexes across all outcomes. Physical signs of trauma occurred more frequently at higher displacements. Stratifying severity based on day-1 rotarod performance retained histological relationships and separated both sexes into injury severity cohorts with distinct patterns of behavioral recovery. Utilizing this stratification strategy, within-group rotarod variability over 6 days post-injury was reduced by 50%. These results have important implications for translational research in TBI and provide a framework for using this clinically relevant translational injury model in both male and female mice.
Collapse
Affiliation(s)
- Brian E Mace
- School of Medicine Department of Neurology, Brain Injury Translational Research Laboratory, Duke University, Durham, USA
| | - Eric Lassiter
- School of Medicine Department of Neurology, Brain Injury Translational Research Laboratory, Duke University, Durham, USA
| | | | - Eduardo Chaparro
- School of Medicine Department of Neurosurgery, Duke University, Durham, USA
| | - Viviana Cantillana
- School of Medicine Department of Neurology, Brain Injury Translational Research Laboratory, Duke University, Durham, USA
| | - Rupali Gupta
- School of Medicine Department of Neurology, Brain Injury Translational Research Laboratory, Duke University, Durham, USA
| | - Timothy D Faw
- School of Medicine Department of Orthopaedic Surgery, Duke University, Durham, USA
| | - Daniel T Laskowitz
- School of Medicine Department of Neurology, Brain Injury Translational Research Laboratory, Duke University, Durham, USA
- School of Medicine Department of Neurosurgery, Duke University, Durham, USA
| | - Brad J Kolls
- School of Medicine Department of Neurology, Brain Injury Translational Research Laboratory, Duke University, Durham, USA
| |
Collapse
|
4
|
Zheng L, Pang Q, Xu H, Guo H, Liu R, Wang T. The Neurobiological Links between Stress and Traumatic Brain Injury: A Review of Research to Date. Int J Mol Sci 2022; 23:ijms23179519. [PMID: 36076917 PMCID: PMC9455169 DOI: 10.3390/ijms23179519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
Neurological dysfunctions commonly occur after mild or moderate traumatic brain injury (TBI). Although most TBI patients recover from such a dysfunction in a short period of time, some present with persistent neurological deficits. Stress is a potential factor that is involved in recovery from neurological dysfunction after TBI. However, there has been limited research on the effects and mechanisms of stress on neurological dysfunctions due to TBI. In this review, we first investigate the effects of TBI and stress on neurological dysfunctions and different brain regions, such as the prefrontal cortex, hippocampus, amygdala, and hypothalamus. We then explore the neurobiological links and mechanisms between stress and TBI. Finally, we summarize the findings related to stress biomarkers and probe the possible diagnostic and therapeutic significance of stress combined with mild or moderate TBI.
Collapse
Affiliation(s)
- Lexin Zheng
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Qiuyu Pang
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Heng Xu
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Hanmu Guo
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Rong Liu
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Tao Wang
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
- Shanghai Key Lab of Forensic Medicine, Key Lab of Forensic Science, Ministry of Justice, China (Academy of Forensic Science), Shanghai 200063, China
- Correspondence:
| |
Collapse
|
5
|
Sanchez CM, Titus DJ, Wilson NM, Freund JE, Atkins CM. Early Life Stress Exacerbates Outcome after Traumatic Brain Injury. J Neurotrauma 2021; 38:555-565. [PMID: 32862765 PMCID: PMC8020564 DOI: 10.1089/neu.2020.7267] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The neurocognitive impairments associated with mild traumatic brain injury (TBI) often resolve within 1-2 weeks; however, a subset of people exhibit persistent cognitive dysfunction for weeks to months after injury. The factors that contribute to these persistent deficits are unknown. One potential risk factor for worsened outcome after TBI is a history of stress experienced by a person early in life. Early life stress (ELS) includes maltreatment such as neglect, and interferes with the normal construction of cortical and hippocampal circuits. We hypothesized that a history of ELS contributes to persistent learning and memory dysfunction following a TBI. To explore this interaction, we modeled ELS by separating Sprague Dawley pups from their nursing mothers from post-natal days 2-14 for 3 h daily. At 2 months of age, male rats received sham surgery or mild to moderate parasagittal fluid-percussion brain injury. We found that the combination of ELS with TBI in adulthood impaired hippocampal-dependent learning, as assessed with contextual fear conditioning, the water maze task, and spatial working memory. Cortical atrophy was significantly exacerbated in TBI animals exposed to ELS compared with normal-reared TBI animals. Changes in corticosterone in response to restraint stress were prolonged in TBI animals that received ELS compared with TBI animals that were normally reared or sham animals that received ELS. Our findings indicate that ELS is a risk factor for worsened outcome after TBI, and results in persistent learning and memory deficits, worsened cortical pathology, and an exacerbation of the hormonal stress response.
Collapse
Affiliation(s)
- Chantal M. Sanchez
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - David J. Titus
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Nicole M. Wilson
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Julie E. Freund
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Coleen M. Atkins
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
6
|
Popovitz J, Mysore SP, Adwanikar H. Neural Markers of Vulnerability to Anxiety Outcomes after Traumatic Brain Injury. J Neurotrauma 2020; 38:1006-1022. [PMID: 33050836 DOI: 10.1089/neu.2020.7320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Anxiety outcomes after traumatic brain injury (TBI) are complex, and the underlying neural mechanisms are poorly understood. Here, we developed a multi-dimensional behavioral profiling approach to investigate anxiety-like outcomes in mice that takes into account individual variability. Departing from the tradition of comparing outcomes in TBI versus sham groups, we identified a subgroup within the TBI group that is vulnerable to anxiety dysfunction, and present increased exploration of the anxiogenic zone compared to sham controls or resilient injured animals, by applying dimensionality reduction, clustering, and post hoc validation to behavioral data obtained from multiple assays for anxiety at several post-injury time points. These vulnerable animals expressed distinct molecular profiles in the corticolimbic network, with downregulation in gamma-aminobutyric acid and glutamate and upregulation in neuropeptide Y markers. Indeed, among vulnerable animals, not resilient or sham controls, severity of anxiety-related outcomes correlated strongly with expression of molecular markers. Our results establish a foundational approach, with predictive power, for reliably identifying maladaptive anxiety outcomes after TBI and uncovering neural signatures of vulnerability to anxiety.
Collapse
Affiliation(s)
- Juliana Popovitz
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Shreesh P Mysore
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland, USA
| | - Hita Adwanikar
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Fucich EA, Mayeux JP, McGinn MA, Gilpin NW, Edwards S, Molina PE. A Novel Role for the Endocannabinoid System in Ameliorating Motivation for Alcohol Drinking and Negative Behavioral Affect after Traumatic Brain Injury in Rats. J Neurotrauma 2019; 36:1847-1855. [PMID: 30638118 DOI: 10.1089/neu.2018.5854] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injury (TBI) is associated with psychiatric dysfunction-including pain, cognitive impairment, anxiety, and increased alcohol use. We previously demonstrated that inhibiting endocannabinoid degradation post-TBI with JZL184 attenuates neuroinflammation and neuronal hyperexcitability at the site of injury and improves neurobehavioral recovery. This study aimed to determine the effect of JZL184 on post-TBI behavioral changes related to psychiatric dysfunction and post-TBI neuroadaptations in brain regions associated with these behaviors. We hypothesized that JZL184 would attenuate post-TBI behavioral and neural changes in alcohol-drinking rats. Adult male Wistar rats were trained to operantly self-administer alcohol before receiving lateral fluid percussion injury. Thirty minutes post-TBI, rats received JZL184 (16 mg/kg, i.p.) or vehicle. Spatial memory (Y-maze), anxiety-like behavior (open field), alcohol motivation (progressive ratio responding), and mechanosensitivity (Von Frey) were measured 3-10 days post-injury, and ventral striatum (VS) and central amygdala (CeA) tissue were collected for western blot analysis of phosphorylated glutamate receptor subunit 1 (GluR1) and glucocorticoid receptor (GR). TBI impaired spatial memory, increased anxiety-like behavior, and increased motivated alcohol drinking. JZL184 prevented these changes. TBI also increased phosphorylated GluR1 and GR in the CeA (but not the VS) compared with sham controls. JZL184 attenuated post-TBI GR phosphorylation in the CeA. These findings suggest that TBI produces comorbid cognitive dysfunction, increased alcohol motivation, and anxiety-like behavior, possibly related to amygdala dysfunction, and these changes are prevented by systemic post-TBI endocannabinoid degradation inhibition. Thus, boosting endocannabinoid tone post-TBI may represent a viable therapeutic strategy for TBI-related psychiatric comorbidities such as alcohol use disorder and anxiety.
Collapse
Affiliation(s)
- Elizabeth A Fucich
- 1 Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana.,2 Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Jacques P Mayeux
- 1 Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana.,2 Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - M Adrienne McGinn
- 1 Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana.,2 Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Nicholas W Gilpin
- 1 Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana.,2 Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Scott Edwards
- 1 Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana.,2 Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Patricia E Molina
- 1 Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana.,2 Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| |
Collapse
|
8
|
Kaplan GB, Leite-Morris KA, Wang L, Rumbika KK, Heinrichs SC, Zeng X, Wu L, Arena DT, Teng YD. Pathophysiological Bases of Comorbidity: Traumatic Brain Injury and Post-Traumatic Stress Disorder. J Neurotrauma 2017; 35:210-225. [PMID: 29017388 DOI: 10.1089/neu.2016.4953] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The high rates of traumatic brain injury (TBI) and post-traumatic stress disorder (PTSD) diagnoses encountered in recent years by the United States Veterans Affairs Healthcare System have increased public awareness and research investigation into these conditions. In this review, we analyze the neural mechanisms underlying the TBI/PTSD comorbidity. TBI and PTSD present with common neuropsychiatric symptoms including anxiety, irritability, insomnia, personality changes, and memory problems, and this overlap complicates diagnostic differentiation. Interestingly, both TBI and PTSD can be produced by overlapping pathophysiological changes that disrupt neural connections termed the "connectome." The neural disruptions shared by PTSD and TBI and the comorbid condition include asymmetrical white matter tract abnormalities and gray matter changes in the basolateral amygdala, hippocampus, and prefrontal cortex. These neural circuitry dysfunctions result in behavioral changes that include executive function and memory impairments, fear retention, fear extinction deficiencies, and other disturbances. Pathophysiological etiologies can be identified using experimental models of TBI, such as fluid percussion or blast injuries, and for PTSD, using models of fear conditioning, retention, and extinction. In both TBI and PTSD, there are discernible signs of neuroinflammation, excitotoxicity, and oxidative damage. These disturbances produce neuronal death and degeneration, axonal injury, and dendritic spine dysregulation and changes in neuronal morphology. In laboratory studies, various forms of pharmacological or psychological treatments are capable of reversing these detrimental processes and promoting axonal repair, dendritic remodeling, and neurocircuitry reorganization, resulting in behavioral and cognitive functional enhancements. Based on these mechanisms, novel neurorestorative therapeutics using anti-inflammatory, antioxidant, and anticonvulsant agents may promote better outcomes for comorbid TBI and PTSD.
Collapse
Affiliation(s)
- Gary B Kaplan
- 1 Mental Health Service , VA Boston Healthcare System, Brockton, Massachusetts.,2 Department of Psychiatry, Boston University School of Medicine , Boston, Massachusetts.,3 Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine , Boston, Massachusetts
| | - Kimberly A Leite-Morris
- 2 Department of Psychiatry, Boston University School of Medicine , Boston, Massachusetts.,3 Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine , Boston, Massachusetts.,4 Research Service, VA Boston Healthcare System , Jamaica Plain, Massachusetts
| | - Lei Wang
- 5 Division of Spinal Cord Injury Research, VA Boston Healthcare System , West Roxbury, Massachusetts.,6 Departments of Physical Medicine and Rehabilitation and Neurosurgery, Harvard Medical School , Boston, Massachusetts
| | - Kendra K Rumbika
- 7 Research Service, VA Boston Healthcare System , West Roxbury, Massachusetts
| | - Stephen C Heinrichs
- 7 Research Service, VA Boston Healthcare System , West Roxbury, Massachusetts
| | - Xiang Zeng
- 5 Division of Spinal Cord Injury Research, VA Boston Healthcare System , West Roxbury, Massachusetts.,6 Departments of Physical Medicine and Rehabilitation and Neurosurgery, Harvard Medical School , Boston, Massachusetts
| | - Liquan Wu
- 5 Division of Spinal Cord Injury Research, VA Boston Healthcare System , West Roxbury, Massachusetts.,6 Departments of Physical Medicine and Rehabilitation and Neurosurgery, Harvard Medical School , Boston, Massachusetts
| | - Danielle T Arena
- 7 Research Service, VA Boston Healthcare System , West Roxbury, Massachusetts
| | - Yang D Teng
- 5 Division of Spinal Cord Injury Research, VA Boston Healthcare System , West Roxbury, Massachusetts.,6 Departments of Physical Medicine and Rehabilitation and Neurosurgery, Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
9
|
Irvine KA, Clark JD. Chronic Pain After Traumatic Brain Injury: Pathophysiology and Pain Mechanisms. PAIN MEDICINE 2017; 19:1315-1333. [DOI: 10.1093/pm/pnx153] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Karen-Amanda Irvine
- Veterans Affairs Palo Alto Health Care System, Anesthesiology Service, Palo Alto, California
- Department of Anesthesiology, Pain and Perioperative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - J David Clark
- Veterans Affairs Palo Alto Health Care System, Anesthesiology Service, Palo Alto, California
- Department of Anesthesiology, Pain and Perioperative Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
10
|
Prager EM, Wynn GH, Ursano RJ. The tenth annual amygdala, stress, and PTSD conference: "The amygdala: Dysfunction, hyperfunction, and connectivity". J Neurosci Res 2016; 94:433-6. [PMID: 27091310 DOI: 10.1002/jnr.23742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | - Gary H Wynn
- Center for the Study of Traumatic Stress, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Program in Neuroscience, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Robert J Ursano
- Center for the Study of Traumatic Stress, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Program in Neuroscience, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|