1
|
Reiter CR, Rebiai R, Kwak A, Marshall J, Wozniak D, Scesa G, Nguyen D, Rue E, Pathmasiri C, Pijewski R, van Breemen R, Cologna S, Crocker SJ, Givogri MI, Bongarzone ER. The Pathogenic Sphingolipid Psychosine is Secreted in Extracellular Vesicles in the Brain of a Mouse Model of Krabbe Disease. ASN Neuro 2022; 14:17590914221087817. [PMID: 35300522 PMCID: PMC8943320 DOI: 10.1177/17590914221087817] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 01/08/2023] Open
Abstract
Psychosine exerts most of its toxic effects by altering membrane dynamics with increased shedding of extracellular vesicles (EVs). In this study, we discovered that a fraction of psychosine produced in the brain of the Twitcher mouse, a model for Krabbe disease, is associated with secreted EVs. We evaluated the effects of attenuating EV secretion in the Twitcher brain by depleting ceramide production with an inhibitor of neutral sphingomyelinase 2, GW4869. Twitcher mice treated with GW4869 had decreased overall EV levels, reduced EV-associated psychosine and unexpectedly, correlated with increased disease severity. Notably, characterization of well-established, neuroanatomic hallmarks of disease pathology, such as demyelination and inflammatory gliosis, remained essentially unaltered in the brains of GW4869-treated Twitcher mice compared to vehicle-treated Twitcher controls. Further analysis of Twitcher brain pathophysiology is required to understand the mechanism behind early-onset disease severity in GW4869-treated mice. The results herein demonstrate that some pathogenic lipids like psychosine may be secreted using EV pathways. Our results highlight the relevance of this secretory mechanism as a possible contributor to spreading pathogenic lipids in neurological lipidoses.
Collapse
Affiliation(s)
- Cory R. Reiter
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Rima Rebiai
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Angelika Kwak
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Jeff Marshall
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Dylan Wozniak
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Giusepe Scesa
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Duc Nguyen
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Emily Rue
- Department of Pharmaceutical Science, College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Chandimal Pathmasiri
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Robert Pijewski
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Richard van Breemen
- Department of Pharmaceutical Science, College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Stephanie Cologna
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Stephen J. Crocker
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - M Irene Givogri
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Ernesto R Bongarzone
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
2
|
Dai Y, Tang H, Pang S. The Crucial Roles of Phospholipids in Aging and Lifespan Regulation. Front Physiol 2021; 12:775648. [PMID: 34887779 PMCID: PMC8650052 DOI: 10.3389/fphys.2021.775648] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/19/2021] [Indexed: 01/04/2023] Open
Abstract
Phospholipids are major membrane lipids that consist of lipid bilayers. This basic cellular structure acts as a barrier to protect the cell against various environmental insults and more importantly, enables multiple cellular processes to occur in subcellular compartments. Numerous studies have linked the complexity of membrane lipids to signal transductions, organelle functions, as well as physiological processes, and human diseases. Recently, crucial roles for membrane lipids in the aging process are beginning to emerge. In this study, we summarized current advances in our understanding of the relationship between membrane lipids and aging with an emphasis on phospholipid species. We surveyed how major phospholipid species change with age in different organisms and tissues, and some common patterns of membrane lipid change during aging were proposed. Further, the functions of different phospholipid molecules in regulating healthspan and lifespan, as well as their potential mechanisms of action, were also discussed.
Collapse
Affiliation(s)
- Yucan Dai
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Haiqing Tang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Shanshan Pang
- School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
3
|
Sural-Fehr T, Singh H, Cantuti-Catelvetri L, Zhu H, Marshall MS, Rebiai R, Jastrzebski MJ, Givogri MI, Rasenick MM, Bongarzone ER. Inhibition of the IGF-1-PI3K-Akt-mTORC2 pathway in lipid rafts increases neuronal vulnerability in a genetic lysosomal glycosphingolipidosis. Dis Model Mech 2019; 12:dmm036590. [PMID: 31036560 PMCID: PMC6550048 DOI: 10.1242/dmm.036590] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 04/11/2019] [Indexed: 12/25/2022] Open
Abstract
Glycosphingolipid (GSL) accumulation is implicated in the neuropathology of several lysosomal conditions, such as Krabbe disease, and may also contribute to neuronal and glial dysfunction in adult-onset conditions such as Parkinson's disease, Alzheimer's disease and multiple sclerosis. GSLs accumulate in cellular membranes and disrupt their structure; however, how membrane disruption leads to cellular dysfunction remains unknown. Using authentic cellular and animal models for Krabbe disease, we provide a mechanism explaining the inactivation of lipid raft (LR)-associated IGF-1-PI3K-Akt-mTORC2, a pathway of crucial importance for neuronal function and survival. We show that psychosine, the GSL that accumulates in Krabbe disease, leads to a dose-dependent LR-mediated inhibition of this pathway by uncoupling IGF-1 receptor phosphorylation from downstream Akt activation. This occurs by interfering with the recruitment of PI3K and mTORC2 to LRs. Akt inhibition can be reversed by sustained IGF-1 stimulation, but only during a time window before psychosine accumulation reaches a threshold level. Our study shows a previously unknown connection between LR-dependent regulation of mTORC2 activity at the cell surface and a genetic neurodegenerative disease. Our results show that LR disruption by psychosine desensitizes cells to extracellular growth factors by inhibiting signal transmission from the plasma membrane to intracellular compartments. This mechanism serves also as a mechanistic model to understand how alterations of the membrane architecture by the progressive accumulation of lipids undermines cell function, with potential implications in other genetic sphingolipidoses and adult neurodegenerative conditions. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Tuba Sural-Fehr
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Harinder Singh
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | - Hongling Zhu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Michael S Marshall
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Rima Rebiai
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Martin J Jastrzebski
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Maria I Givogri
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Mark M Rasenick
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ernesto R Bongarzone
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
4
|
Zulueta Díaz YDLM, Caby S, Bongarzone ER, Fanani ML. Psychosine remodels model lipid membranes at neutral pH. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2515-2526. [PMID: 30267657 DOI: 10.1016/j.bbamem.2018.09.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 01/01/2023]
Abstract
β-Galactosylsphingosine or psychosine (PSY) is a single chain sphingolipid with a cationic group, which is degraded in the lysosome lumen by β-galactosylceramidase during sphingolipid biosynthesis. A deficiency of this enzyme activity results in Krabbe's disease and PSY accumulation. This favors its escape to extralysosomal spaces, with its pH changing from acidic to neutral. We studied the interaction of PSY with model lipid membranes in neutral conditions, using phospholipid vesicles and monolayers as classical model systems, as well as a complex lipid mixture that mimics the lipid composition of myelin. At pH 7.4, when PSY is mainly neutral, it showed high surface activity, self-organizing into large structures, probably lamellar in nature, with a CMC of 38 ± 3 μM. When integrated into phospholipid membranes, PSY showed preferential partition into disordered phases, shifting phase equilibrium. The presence of PSY reduces the compactness of the membrane, making it more easily compressible. It also induces lipid domain disruption in vesicles composed of the main myelin lipids. The surface electrostatics of lipid membranes was altered by PSY in a complex manner. A shift to positive zeta potential values evidenced its presence in the vesicles. Furthermore, the increase of surface potential and surface water structuring observed may be a consequence of its location at the interface of the positively charged layer. As Krabbe's disease is a demyelinating process, PSY alteration of the membrane phase state, lateral lipid distribution and surface electrostatics appears important to the understanding of myelin destabilization at the supramolecular level.
Collapse
Affiliation(s)
- Yenisleidy de Las Mercedes Zulueta Díaz
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Ciudad Universitaria, Haya de la Torre y Medina Allende, Córdoba X5000HUA, Argentina
| | - Sofia Caby
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ernesto R Bongarzone
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, United States of America; Departamento de Química Biológica, IQUIFIB, Universidad Nacional de Buenos Aires, Buenos Aires, Argentina
| | - María Laura Fanani
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Ciudad Universitaria, Haya de la Torre y Medina Allende, Córdoba X5000HUA, Argentina.
| |
Collapse
|
5
|
α-Synuclein interacts directly but reversibly with psychosine: implications for α-synucleinopathies. Sci Rep 2018; 8:12462. [PMID: 30127535 PMCID: PMC6102231 DOI: 10.1038/s41598-018-30808-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/01/2018] [Indexed: 12/27/2022] Open
Abstract
Aggregation of α-synuclein, the hallmark of α-synucleinopathies such as Parkinson’s disease, occurs in various glycosphingolipidoses. Although α-synuclein aggregation correlates with deficiencies in the lysosomal degradation of glycosphingolipids (GSL), the mechanism(s) involved in this aggregation remains unclear. We previously described the aggregation of α-synuclein in Krabbe’s disease (KD), a neurodegenerative glycosphingolipidosis caused by lysosomal deficiency of galactosyl-ceramidase (GALC) and the accumulation of the GSL psychosine. Here, we used a multi-pronged approach including genetic, biophysical and biochemical techniques to determine the pathogenic contribution, reversibility, and molecular mechanism of aggregation of α-synuclein in KD. While genetic knock-out of α-synuclein reduces, but does not completely prevent, neurological signs in a mouse model of KD, genetic correction of GALC deficiency completely prevents α-synuclein aggregation. We show that psychosine forms hydrophilic clusters and binds the C-terminus of α-synuclein through its amino group and sugar moiety, suggesting that psychosine promotes an open/aggregation-prone conformation of α-synuclein. Dopamine and carbidopa reverse the structural changes of psychosine by mediating a closed/aggregation-resistant conformation of α-synuclein. Our results underscore the therapeutic potential of lysosomal correction and small molecules to reduce neuronal burden in α-synucleinopathies, and provide a mechanistic understanding of α-synuclein aggregation in glycosphingolipidoses.
Collapse
|
6
|
Downs CA, Dang VD, Johnson NM, Denslow N, Alli AA. Hydrogen Peroxide Stimulates Exosomal Cathepsin B Regulation of the Receptor for Advanced Glycation End-Products (RAGE). J Cell Biochem 2018; 119:599-606. [PMID: 28618037 PMCID: PMC11632669 DOI: 10.1002/jcb.26219] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/14/2017] [Indexed: 01/03/2023]
Abstract
Exosomes are nano-sized vesicles that are secreted into the extracellular environment. These vesicles contain various biological effector molecules that can regulate intracellular signaling pathways in recipient cells. The aim of this study was to examine a correlation between exosomal cathepsin B activity and the receptor for advanced glycation end-products (RAGE). Type 1 alveolar epithelial (R3/1) cells were treated with or without hydrogen peroxide and exosomes isolated from the cell conditioned media were characterized by NanoSight analysis. Lipidomic and proteomic analysis showed exosomes released from R3/1 cells exposed to oxidative stress induced by hydrogen peroxide or vehicle differ in their lipid and protein content, respectively. Cathepsin B activity was detected in exosomes isolated from hydrogen peroxide treated cells. The mRNA and protein expression of RAGE increased in cultured R3/1 cells treated with exosomes containing active cathepsin B while depletion of exosomal cathepsin B attenuated RAGE mRNA and protein expression. These results suggest exosomal cathepsin B regulates RAGE in type 1 alveolar cells under conditions of oxidative stress. J. Cell. Biochem. 119: 599-606, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Charles A. Downs
- College of Nursing, Biobehavioral Healthscience Division & College of Medicine, Department of Medicine Division of Translational & Regenerative Medicine, The University of Arizona, Tucson, AZ
| | - Viet D. Dang
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville Florida
| | - Nicholle M Johnson
- College of Nursing, Biobehavioral Healthscience Division & College of Medicine, Department of Medicine Division of Translational & Regenerative Medicine, The University of Arizona, Tucson, AZ
| | - Nancy Denslow
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville Florida
| | - Abdel A. Alli
- Department of Physiology and Functional Genomics and Department of Medicine Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida College of Medicine, Gainesville Florida
| |
Collapse
|
7
|
Sural-Fehr T, Bongarzone ER. How membrane dysfunction influences neuronal survival pathways in sphingolipid storage disorders. J Neurosci Res 2017; 94:1042-8. [PMID: 27638590 DOI: 10.1002/jnr.23763] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 04/22/2016] [Accepted: 04/25/2016] [Indexed: 12/21/2022]
Abstract
Sphingolipidoses are a class of inherited diseases that result from the toxic accumulation of undigested sphingolipids in lysosomes and other cellular membranes. Sphingolipids are particularly enriched in cells of the nervous system, and their excessive accumulation during disease has a significant impact on the nervous system. Neuronal dysfunction followed by neurological compromise is a common feature in many of these diseases; however, the underlying mechanisms that cause vulnerability of neurons are not fully understood. The plasma membrane plays a critical role in regulating cellular survival pathways, and its dysfunction has been implicated in neuronal failure in various adult-onset neuropathies. In the context of sphingolipidoses, we hypothesize that gradual accumulation of undigested lipids in plasma membranes causes local disruptions in lipid raft domains, leading to deregulation of multiple signaling pathways important for neuronal survival and function. We propose that defects in downstream signaling as a result of membrane dysfunction are common mechanisms underlying neuronal vulnerability in sphingolipid storage disorders with neurological compromise. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tuba Sural-Fehr
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois.
| | - Ernesto R Bongarzone
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
8
|
Cantuti-Castelvetri L, Bongarzone ER. Synaptic failure: The achilles tendon of sphingolipidoses. J Neurosci Res 2017; 94:1031-6. [PMID: 27638588 DOI: 10.1002/jnr.23753] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/01/2016] [Accepted: 04/01/2016] [Indexed: 11/07/2022]
Abstract
The presence of life-threatening neurological symptoms in more than two-thirds of lysosomal storage diseases (LSDs) underscores how vulnerable the nervous system is to lysosomal failure. Neurological dysfunction in LSDs has historically been attributed to the disruption of neuronal and glial homeostasis resulting from the progressive jamming of the endosomal/lysosomal pathway. In neurons, a dysfunctional endosomal-lysosomal system can elicit dire consequences. Given that neurons are largely postmitotic after birth, one can clearly understand that the inability of these cells to proliferate obliterates any possibility of diluting stored lysosomal material by means of cellular division. At its most advanced stage, this situation constitutes a terminal factor in neuronal life, resulting in cell death. However, synaptic deficits in the absence of classical neuronal cell death appear to be common features during the early stages in many LSDs, particularly sphingolipidoses. In essence, failure of synapses to convey their messages, even without major structural damage to the neuronal bodies, is a form of physiological death. This concept of dying-back neuropathology is highly relevant not only for understanding the dynamics of the neurological decline in these diseases, but, more importantly; it might also constitute an important target for molecular therapies to protect perhaps the "Achilles" point in the entire physiological architecture of the brain, thus avoiding an irreversible journey to neuronal demise. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ludovico Cantuti-Castelvetri
- Max Planck Institute of Experimental Medicine, Department of Cellular and Molecular Neurobiology, Göttingen, Germany
| | - Ernesto R Bongarzone
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
9
|
D’Auria L, Reiter C, Ward E, Moyano AL, Marshall MS, Nguyen D, Scesa G, Hauck Z, van Breemen R, Givogri MI, Bongarzone ER. Psychosine enhances the shedding of membrane microvesicles: Implications in demyelination in Krabbe's disease. PLoS One 2017; 12:e0178103. [PMID: 28531236 PMCID: PMC5439731 DOI: 10.1371/journal.pone.0178103] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/06/2017] [Indexed: 12/22/2022] Open
Abstract
In prior studies, our laboratory showed that psychosine accumulates and disrupts lipid rafts in brain membranes of Krabbe’s disease. A model of lipid raft disruption helped explaining psychosine’s effects on several signaling pathways important for oligodendrocyte survival and differentiation but provided more limited insight in how this sphingolipid caused demyelination. Here, we have studied how this cationic inverted coned lipid affects the fluidity, stability and structure of myelin and plasma membranes. Using a combination of cutting-edge imaging techniques in non-myelinating (red blood cell), and myelinating (oligodendrocyte) cell models, we show that psychosine is sufficient to disrupt sphingomyelin-enriched domains, increases the rigidity of localized areas in the plasma membrane, and promotes the shedding of membranous microvesicles. The same physicochemical and structural changes were measured in myelin membranes purified from the mutant mouse Twitcher, a model for Krabbe’s disease. Areas of higher rigidity were measured in Twitcher myelin and correlated with higher levels of psychosine and of myelin microvesiculation. These results expand our previous analyses and support, for the first time a pathogenic mechanism where psychosine’s toxicity in Krabbe disease involves deregulation of cell signaling not only by disruption of membrane rafts, but also by direct local destabilization and fragmentation of the membrane through microvesiculation. This model of membrane disruption may be fundamental to introduce focal weak points in the myelin sheath, and consequent diffuse demyelination in this leukodystrophy, with possible commonality to other demyelinating disorders.
Collapse
Affiliation(s)
- Ludovic D’Auria
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois, Chicago, Illinois, United States of America
| | - Cory Reiter
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois, Chicago, Illinois, United States of America
| | - Emma Ward
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois, Chicago, Illinois, United States of America
| | - Ana Lis Moyano
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois, Chicago, Illinois, United States of America
| | - Michael S. Marshall
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois, Chicago, Illinois, United States of America
| | - Duc Nguyen
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois, Chicago, Illinois, United States of America
| | - Giuseppe Scesa
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois, Chicago, Illinois, United States of America
| | - Zane Hauck
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois, Chicago, Illinois, United States of America
| | - Richard van Breemen
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois, Chicago, Illinois, United States of America
| | - Maria I. Givogri
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois, Chicago, Illinois, United States of America
| | - Ernesto R. Bongarzone
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois, Chicago, Illinois, United States of America
- Departamento de Química Biologica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
10
|
Zhu H, Ornaghi F, Belin S, Givogri MI, Wrabetz L, Bongarzone ER. Generation of a LacZ reporter transgenic mouse line for the stereological analysis of oligodendrocyte loss in galactosylceramidase deficiency. J Neurosci Res 2016; 94:1520-1530. [PMID: 27426866 PMCID: PMC5069144 DOI: 10.1002/jnr.23839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/10/2016] [Accepted: 06/27/2016] [Indexed: 11/11/2022]
Abstract
Krabbe's disease is a leukodystrophy resulting from deficiency of galactosylceramidase and the accumulation of galactosylsphingosine (psychosine) in the nervous system. Psychosine is believed to cause central demyelination by killing oligodendrocytes. Quantitative analysis of this process is lacking. To address this, we generated a new transgenic reporter twitcher line in which myelinating oligodendrocytes are genetically marked by the expression of LacZ under control of the myelin basic protein (MBP) promoter. MBP-LacZ-twitcher transgenic mice were used for unbiased stereological quantification of β-galactosidase+ oligodendrocytes in the spinal cord. As expected, we found decreased numbers of these cells in mutant cords, paralleling the severity of clinical disease. The decrease of oligodendrocytes does not correlate well with the increase of psychosine. The new MBP-LacZ-twitcher line will be a useful genetic tool for measuring changes in oligodendrocyte numbers in different regions of the mutant CNS and in preclinical trials of therapies to prevent demyelination. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hongling Zhu
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Francesca Ornaghi
- San Raffaele Scientific Institute, Milano, Italy
- Hunter James Kelly Research Institute, University at Buffalo School of Medicine and Biomedical Sciences, Buffalo, New York
| | - Sophie Belin
- Hunter James Kelly Research Institute, University at Buffalo School of Medicine and Biomedical Sciences, Buffalo, New York
| | - Maria I Givogri
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Lawrence Wrabetz
- Hunter James Kelly Research Institute, University at Buffalo School of Medicine and Biomedical Sciences, Buffalo, New York
| | - Ernesto R Bongarzone
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|