1
|
Pan J, Huang J, Chen Y, Jiang N, Guo Y, Zhang J, Zhou S, Pu H, Deng Q, Hu B, Zhou Q. Genetic Evidence of Causal Effect between C1q/TNF-Related Protein-1 and Atherosclerosis: a Bidirectional and Multivariate Mendelian Randomization Study. J Atheroscler Thromb 2025; 32:630-648. [PMID: 39617479 PMCID: PMC12055506 DOI: 10.5551/jat.65313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/03/2024] [Indexed: 05/02/2025] Open
Abstract
AIMS To investigate the causal relationship between C1q/TNF-related protein-1 (CTRP1) and atherosclerosis across various vascular sites, informed by studies connecting CTRP1 to coronary artery disease. METHODS Summary statistics of CTRP1 from the available genome-wide association studies and atherosclerosis in classic vascular sites (including cerebral, coronary, and other arteries) from the FinnGen biobank were extracted for a primary MR analysis, and the analysis was replicated using Ischemic Stroke cohort (large artery atherosclerosis) for validation. The inverse variance-weighted method was used for primary assessment. Sensitivity analysis was performed by Cochrane's Q test and leave-one-out analysis. Potential pleiotropic effects were assessed by MR-Egger intercept and MR-PRESSO global test. Additionally, multivariable MR (MVMR) analysis was performed to investigate the independent effect of CTRP1 on atherosclerosis after removing confounding factors. RESULTS Reliable causal evidence was found for CTRP1 involvement in three atherosclerosis endpoints: causal effects of CTRP1 on cerebral atherosclerosis (OR=1.31, CI:1.04-1.66; FDR_P=0.0222)], coronary atherosclerosis (OR=1.13, CI: 1.08-1.19; FDR_P=2.86e-07), and atherosclerosis at other sites (OR=1.06, CI:1.02-1.11; FDR_P=0.0125). The validation cohort further confirmed its causal effect on large-artery atherosclerosis (OR=1.10, CI:1.03-1.18; FDR_P=0.0115). The reverse MR analysis did not support the causal effect of atherosclerosis on CTRP1. Moreover, the MVMR analysis, adjusting for confounders (CTRP3, CTRP5, and CTRP9A), highlighted a significant independent causal effect of CTRP1 remaining on atherosclerosis. CONCLUSION CTRP1 may represent a promising target for preventing and treating systemic atherosclerosis.
Collapse
Affiliation(s)
- Juhong Pan
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jia Huang
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yueying Chen
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| | - Nan Jiang
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuxin Guo
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ji Zhang
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shiyuan Zhou
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| | - Huan Pu
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qing Deng
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bo Hu
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qing Zhou
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Zhang YQ, Zhang HF, Liu XG, Li R. Predictive and prognostic values of serum C1q/tumor necrosis factor-related protein 9 for first-ever ischemic stroke. Front Neurol 2025; 16:1526853. [PMID: 40125398 PMCID: PMC11925783 DOI: 10.3389/fneur.2025.1526853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/25/2025] [Indexed: 03/25/2025] Open
Abstract
Background The C1q/Tumor Necrosis Factor-related Protein 9 (CTRP9) is a relatively novel adipokine having showed protection on cerebrovascular system. However, its clinical values have not been well established. This work is to evaluate CTRP9 as predictors of onset risk and outcome of ischemic stroke. Methods One thousand one hundred and twenty-three patients undergoing first-ever ischemic stroke and 835 controls were enrolled. Serum CTRP9 was determined within 24 h after the onset. One thousand and twenty-six patients were successfully followed up for all-cause and cardiovascular deaths. Stepwise regression was conducted to screen the independent factors of stroke onset in the whole sample and mortality in the patient subgroup. Survival curves were plotted to evaluate the effect of baseline serum CTRP9 on 3-year all-cause and cardiovascular mortalities of stroke patients. Results At baseline, prevalence of first-ever onset of ischemic stroke in high CTRP9 group was significantly lower than that in low CTRP9 group (p < 0.05) in non-hyperlipidemic subjects. Accumulative all-cause and cardiovascular mortality of patients with high baseline CTRP9 was significantly lower for the first year post stroke onset (p < 0.05). Baseline low CTRP9 was one of the independent risk factors of 3-year all-cause mortality (p < 0.05) of ischemic stroke patients. Conclusion High serum CTRP9 exerted protection against first-ever onset of ischemic stroke in non-hyperlipidemic subjects, and also protected general stroke patients against all-cause and cardiovascular mortality at least 1 year post stroke onset. Our findings in this study may pinpoint both the predictive and prognostic values of CTRP9 as a promising biomarker.
Collapse
Affiliation(s)
- Yan-Qing Zhang
- Department of Anesthesiology, University Town Hospital of Chongqing Medical University, Chongqing, China
- Department of Anesthesiology, The First Hospital, Shanxi Medical University, Taiyuan, China
| | - Hai-Feng Zhang
- Department of Teaching and Experiment Center, Air Force Military Medical University, Xi’an, China
| | - Xiao-Gang Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education of China, School of Life Science and Technology, Xi’an Jiaotong University, Xi'an, China
| | - Rong Li
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
3
|
Zhang YQ, Zhang YW, Dai JL, Li C, Wang WQ, Zhang HF, Lau WB, Wang XM, Liu XG, Li R. Serum CTRP9 and high-molecular weight adiponectin are associated with ischemic stroke. BMC Neurol 2022; 22:429. [PMCID: PMC9664773 DOI: 10.1186/s12883-022-02967-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 11/05/2022] [Indexed: 11/16/2022] Open
Abstract
Abstract
Background
C1q/TNF-related protein 9 (CTRP9) and adiponectin (APN) have beneficial metabolic regulatory and vasoprotective effects. This study explored alteration of CTRP9 and APN multimers during onset of ischemic stroke and development, to provide novel clinical and experimental basis for recognition and prevention of ischemic stroke.
Methods
There were 269 patients with ischemic stroke and 182 control subjects included in this study. Serum levels of CTRP9 and APN multimers in different disease stages were measured.
Results
Serum CTRP9, total APN (tAPN), and high-molecular weight (HMW) APN decreased gradually in stage I (acute stage, within 72 h of onset) of ischemic stroke and increased during stage III (11th day to one month) and stage IV (1 month after), compared to control. In the non-hyperlipidemia group, serum CTRP9, tAPN, and HMW were decreased in ischemic stroke patients compared to control (P < 0.05). Serum CTRP9 is closely related to serum tAPN and HMW (r = 0.992, 0.991). Serum CTRP9 are protective against ischemic stroke (OR = 0.400, 95% CI 0.197–0.810, P < 0.05).
Conclusions
Lower serum CTRP9, tAPN, LMW, and HMW are significantly associated with increased ischemic stroke risk in non-hyperlipidemia subjects. CTRP9, tAPN, and HMW isoforms may be valuable clinical indicators for patients with ischemic stroke.
Collapse
|
4
|
Shahbaz K, Chang D, Zhou X, Low M, Seto SW, Li CG. Crocins for Ischemic Stroke: A Review of Current Evidence. Front Pharmacol 2022; 13:825842. [PMID: 35991882 PMCID: PMC9388830 DOI: 10.3389/fphar.2022.825842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Crocins (CRs) and the related active constituents derived from Crocus sativus L. (Saffron) have demonstrated protective effects against cerebral ischemia and ischemic stroke, with various bioactivities including neuroprotection, anti-neuroinflammation, antioxidant, and cardiovascular protection. Among CRs, crocin (CR) has been shown to act on multiple mechanisms and signaling pathways involved in ischemic stroke, including mitochondrial apoptosis, nuclear factor kappa light chain enhancer of B cells pathway, S100 calcium-binding protein B, interleukin-6 and vascular endothelial growth factor-A. CR is generally safe and well-tolerated. Pharmacokinetic studies indicate that CR has poor bioavailability and needs to convert to crocetin (CC) in order to cross the blood-brain barrier. Clinical studies have shown the efficacy of saffron and CR in treating various conditions, including metabolic syndrome, depression, Alzheimer’s disease, and coronary artery disease. There is evidence supporting CR as a treatment for ischemic stroke, although further studies are needed to confirm their efficacy and safety in clinical settings.
Collapse
Affiliation(s)
- Kiran Shahbaz
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
- *Correspondence: Kiran Shahbaz, ; Chung Guang Li,
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Mitchell Low
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Sai Wang Seto
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
- Reserach Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Chung Guang Li
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
- *Correspondence: Kiran Shahbaz, ; Chung Guang Li,
| |
Collapse
|
5
|
Maciejczyk M, Nesterowicz M, Zalewska A, Biedrzycki G, Gerreth P, Hojan K, Gerreth K. Salivary Xanthine Oxidase as a Potential Biomarker in Stroke Diagnostics. Front Immunol 2022; 13:897413. [PMID: 35603179 PMCID: PMC9120610 DOI: 10.3389/fimmu.2022.897413] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/11/2022] [Indexed: 12/26/2022] Open
Abstract
Stroke is one of the most common cerebrovascular diseases. Despite significant progress in understanding stroke pathogenesis, cases are still increasing. Thus, laboratory biomarkers of stroke are sought to allow rapid and non-invasive diagnostics. Ischemia-reperfusion injury is an inflammatory process with characteristic cellular changes leading to microvascular disruption. Several studies have shown that hyperactivation of xanthine oxidase (XO) is a major pathogenic factor contributing to brain dysfunction. Given the critical role of XO in stroke complications, this study aimed to evaluate the activity of the enzyme and its metabolic products in the saliva of stroke subjects. Thirty patients in the subacute phase of stroke were included in the study: 15 with hemorrhagic stroke and 15 with ischemic stroke. The control group consisted of 30 healthy subjects similar to the cerebral stroke patients regarding age, gender, and status of the periodontium, dentition, and oral hygiene. The number of individuals was determined a priori based on our previous experiment (power of the test = 0.8; α = 0.05). The study material was mixed non-stimulated whole saliva (NWS) and stimulated saliva (SWS). We showed that activity, specific activity, and XO output were significantly higher in NWS of ischemic stroke patients than in hemorrhagic stroke and healthy controls. Hydrogen peroxide and uric acid levels were also considerably higher in NWS of ischemic stroke patients. Using receiver operating curve (ROC) analysis, we demonstrated that XO-specific activity in NWS distinguishes ischemic stroke from hemorrhagic stroke (AUC: 0.764) and controls (AUC: 0.973) with very high sensitivity and specificity. Saliva collection is stress-free, requires no specialized medical personnel, and allows continuous monitoring of the patient's condition through non-invasive sampling multiple times per day. Salivary XO also differentiates with high accuracy (100%) and specificity (93.75%) between stroke patients with mild to moderate cognitive decline (AUC = 0.988). Thus, salivary XO assessment may be a potential screening tool for a comprehensive neuropsychological evaluation. To summarize, our study demonstrates the potential utility of salivary XO in the differential diagnosis of stroke.
Collapse
Affiliation(s)
- Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Bialystok, Poland
| | - Miłosz Nesterowicz
- Students Scientific Club “Biochemistry of Civilization Diseases” at the Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Bialystok, Poland
| | - Anna Zalewska
- Experimental Dentistry Laboratory, Medical University of Bialystok, Bialystok, Poland
| | | | - Piotr Gerreth
- Private Dental Practice, Poznan, Poland
- Postgraduate Studies in Scientific Research Methodology, Poznan University of Medical Sciences, Poznan, Poland
| | - Katarzyna Hojan
- Department of Occupational Therapy, Poznan University of Medical Sciences, Poznan, Poland
- Department of Rehabilitation, Greater Poland Cancer Centre, Poznan, Poland
| | - Karolina Gerreth
- Department of Risk Group Dentistry, Chair of Pediatric Dentistry, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
6
|
Guan H, Wang Y, Li X, Xiang A, Guo F, Fan J, Yu Q. C1q/Tumor Necrosis Factor-Related Protein 9: Basics and Therapeutic Potentials. Front Physiol 2022; 13:816218. [PMID: 35370782 PMCID: PMC8971810 DOI: 10.3389/fphys.2022.816218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/23/2022] [Indexed: 01/19/2023] Open
Abstract
C1q/tumor necrosis factor-related protein 9 (CTRP9) is a newly discovered adipokine that is the closest paralog of adiponectin. Proteolytic cleavage of CTRP9 leads to the release of the globular domain (gCTRP9), which serves as the major circulating subtype. After binding with adiponectin receptor 1 (AdipoR1) and N-cadherin, CTRP9 activates various signaling pathways to regulate glucose and lipid metabolism, vasodilation and cell differentiation. Throughout human development and adult life, CTRP9 controls many biological phenomena. simultaneously, abnormal gene or protein expression of CTRP9 is accompanied by a wide range of human pathological phenomena. In this review, we briefly introduce CTRP9 and its associated signaling pathways and physiological functions, which may be helpful in the understanding of the occurrence of diseases. Moreover, we summarize the broader research prospects of CTRP9 and advances in therapeutic intervention. In recent years, CTRP9 has attracted extensive attention due to its role in the pathogenesis of various diseases, providing further avenues for its exploitation as a potential biomarker or therapeutic target.
Collapse
Affiliation(s)
- Hua Guan
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Yanli Wang
- Department of Pathology, Xi’an Medical University, Xi’an, China
| | - Xiangyu Li
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Aoqi Xiang
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Fengwei Guo
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jianglin Fan
- Department of Pathology, Xi’an Medical University, Xi’an, China
- Department of Molecular Pathology, Faculty of Medicine, Interdisciplinary Graduate School of Medical Sciences, University of Yamanashi, Chuo, Japan
- *Correspondence: Jianglin Fan,
| | - Qi Yu
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
- Qi Yu,
| |
Collapse
|
7
|
Association Between Serum C1q Tumor Necrosis Factor-Related Protein 9 and the Clinical Characteristics and Prognosis of Ischemic Stroke. Neurol Ther 2021; 11:87-101. [PMID: 34727346 PMCID: PMC8857345 DOI: 10.1007/s40120-021-00296-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/19/2021] [Indexed: 11/05/2022] Open
Abstract
Introduction C1q tumor necrosis factor (TNF)-related protein 9 (CTRP9) is a novel member of the C1q/TNF superfamily. According to our previous review, CTRP9 plays a vital role in the process of cardiovascular diseases, including regulating energy metabolism, modulating vasomotion, protecting endothelial cells, inhibiting platelet activation, inhibiting pathological vascular remodeling, stabilizing atherosclerotic plaques, and protecting the heart. We proposed that CTRP9 could play multiple positive and beneficial roles in vascular lesions in ischemic stroke (IS). Here, we aimed to study the relationship between serum CTRP9 and the etiology, severity, and prognosis of IS patients. Methods A total of 302 patients with IS and 173 non-stroke controls were selected from the same hospital, and all patients with IS were followed up 12 months after stroke onset. Stroke etiology was classified according to the Trial of ORG 10172 in Acute Stroke Treatment classification. Symptomatic severity was determined using the National Institutes of Health Stroke Scale score. The lesion volume of acute cerebral ischemia was measured using magnetic resonance imaging (MRI). The unfavorable functional outcome was a combination of death or major disability 12 months after stroke onset. Receiver operating characteristic (ROC) curves and integrated discrimination improvement (IDI) and net reclassification improvement (NRI) statistics were applied in the statistical analysis. Results We found that serum CTRP9 levels and the ratios of CTRP9/total cholesterol (TC), CTRP9/triglyceride (TG), CTRP9/low-density lipoprotein cholesterol (LDL-C), and CTRP9/high-density lipoprotein cholesterol (HDL-C) were associated with the presence of IS. Moreover, the serum CTRP9 concentration was positively associated with the severity of IS. Incorporation of CTRP9/LDL-C levels into a fully adjusted model for IS-cardioembolic (CE) improved discrimination and calibration, and significantly improved reclassification. In addition, CTRP9 was a predictor of unfavorable functional outcomes. Conclusions All the findings indicated that serum CTRP9 could be a promising blood-derived biomarker for the early evaluation and prognosis assessment of IS. Trial Registration Chinese Clinical Trial Registry, ChiCTR1800020330. Supplementary Information The online version contains supplementary material available at 10.1007/s40120-021-00296-7.
Collapse
|
8
|
Maciejczyk M, Mil KM, Gerreth P, Hojan K, Zalewska A, Gerreth K. Salivary cytokine profile in patients with ischemic stroke. Sci Rep 2021; 11:17185. [PMID: 34433866 PMCID: PMC8387378 DOI: 10.1038/s41598-021-96739-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/17/2021] [Indexed: 11/23/2022] Open
Abstract
Inflammation plays a crucial role in stroke pathogenesis. Thus, it is not surprising that cytokines, chemokines, and growth factors have been advocated in stroke diagnostics. Our study is the first to evaluate the salivary cytokine profile in patients with ischemic stroke. Twenty-five patients with subacute ischemic stroke and an age-, sex-, and oral hygiene status-matched control group were enrolled in the study. The number of patients was set a priori based on our previous experiment (α = 0.05, test power = 0.9). Salivary concentrations of tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), and interleukin 10 (IL-10) were assessed using an ELISA method. We showed that salivary TNF-α and IL-6 were significantly higher, whereas IL-10 content was statistically lower in both non-stimulated (NWS) and stimulated (SWS) whole saliva of ischemic stroke patients. However, evaluation of cytokines in NWS rather than in SWS may be of greater diagnostic value. Of particular note is salivary TNF-α, which may indicate cognitive/physical impairment in post-stroke individuals. This parameter distinguishes stroke patients from healthy controls and correlates with cognitive decline and severity of functional impairment. It also differentiates (with high sensitivity and specificity) stroke patients with normal cognition from mild to moderate cognitive impairment. Saliva may be an alternative to blood for assessing cytokines in stroke patients, although further studies on a larger patient population are needed.
Collapse
Affiliation(s)
- Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, 2C Adama Mickiewicza Street, 15-022, Bialystok, Poland.
| | - Kacper Maksymilian Mil
- Students Scientific Club "Biochemistry of Civilization Diseases" at the Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, 2c Mickiewicza Street, 15-233, Bialystok, Poland
| | - Piotr Gerreth
- Private Dental Practice, 57 Kasztelanska Street, 60-316, Poznan, Poland
- Postgraduate Studies in Scientific Research Methodology, Poznan University of Medical Sciences, 10 Fredry Street, 60-701, Poznan, Poland
| | - Katarzyna Hojan
- Department of Occupational Therapy, Poznan University of Medical Sciences, Swiecickiego Street 6, 60-781, Poznan, Poland
- Department of Rehabilitation, Greater Poland Cancer Centre, 15 Garbary Street, 61-866, Poznan, Poland
| | - Anna Zalewska
- Experimental Dentistry Laboratory, Medical University of Bialystok, 24A Marii Sklodowskiej-Curie Street, 15-276, Bialystok, Poland
| | - Karolina Gerreth
- Department of Risk Group Dentistry, Chair of Pediatric Dentistry, Poznan University of Medical Sciences, 70 Bukowska Street, 60-812, Poznan, Poland
| |
Collapse
|
9
|
Shanaki M, Shabani P, Goudarzi A, Omidifar A, Bashash D, Emamgholipour S. The C1q/TNF-related proteins (CTRPs) in pathogenesis of obesity-related metabolic disorders: Focus on type 2 diabetes and cardiovascular diseases. Life Sci 2020; 256:117913. [DOI: 10.1016/j.lfs.2020.117913] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023]
|
10
|
CTRP9: An emerging potential anti-aging molecule in brain. Cell Signal 2020; 73:109694. [PMID: 32540339 DOI: 10.1016/j.cellsig.2020.109694] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022]
Abstract
C1q/tumor necrosis factor (TNF)-related proteins (CTRPs) particularly CTRP9, have been established to be as adiponectin (APN) highly conserved paralogs which assemble several APN regulatory functions. Recently, growing body of evidences drawn significant attention to evaluate metabolic and cardiovascular effect of CTRP9. However, the potential role of CTRP9 in brain tissue has not yet fully illustrated. Here, we aimed to uncover latest advances regarding the CTRP9 related signaling pathways and during brain aging process.
Collapse
|
11
|
C1q/TNF-related protein-9 alleviates airway inflammation in asthma. Int Immunopharmacol 2020; 81:106238. [PMID: 32050155 DOI: 10.1016/j.intimp.2020.106238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 01/16/2020] [Accepted: 01/19/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUNDS Asthma is characterized as inflammatory disorder in the respiratory system with increasing tendency. Most of the asthma patients suffered from the disease since childhood. Thus, developing novel therapeutic targets of childhood asthma is necessary. Here, we conducted the present study to investigate the effects of CTRP9 (C1q tumor necrosis factor-related protein 9), a newly identified anti-inflammatory factor, on asthma. METHODS Sixty asthmatic children (30 moderate and 30 mild) were recruited. The mRNA level of CTRP9 in peripheral blood mononuclear cells (PBMCs) and protein level of CTRP9 in serum and induced sputum (IS) samples from asthma patients and healthy controls (HCs) were measured by qPCR and ELISA, respectively. The anti-inflammatory effects of CTRP9 was determined in vitro and potential therapeutic effect on asthma was evaluated in mouse model. RESULTS The mRNA and protein levels of CTRP9 was significantly down-regulated in asthmatics than HCs. Furthermore, the expression level of CTRP9 was negatively correlated with the expression of TNF-α, IL-1β, and IL-6 in PBMCs. The CTRP9 significantly suppressed the expression of pro-inflammatory factors in PBMCs and sputum cells from asthma patients in vitro. And delivering CTRP9 into mouse model of asthma showed disease alleviation. CONCLUSION Our data here indicated that CTRP9 may alleviate airway inflammation and remodeling in asthma.
Collapse
|
12
|
Li HK, Zhang WD, Gu Y, Wu GS. Strategy of systems biology for visualizing the “Black box” of traditional Chinese medicine. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2020. [DOI: 10.4103/wjtcm.wjtcm_31_20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
13
|
Zhang H, Gong X, Ni S, Wang Y, Zhu L, Ji N. C1q/TNF-related protein-9 attenuates atherosclerosis through AMPK-NLRP3 inflammasome singling pathway. Int Immunopharmacol 2019; 77:105934. [PMID: 31727560 DOI: 10.1016/j.intimp.2019.105934] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/23/2019] [Accepted: 09/23/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUNDS C1q tumor necrosis factor-related protein 9 (CTRP9) has been suggested to exert an atheroprotective effect by modulating the inflammation, foam cell formation, endothelia and smooth muscle cell function via Adenosine Monophosphate Activated Protein Kinase (AMPK) pathway. On the other hand, the NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasome plays an critical role in the atherosclerosis development, which is regulated by the AMPK. However, whether the CTRP9 affects the activity of NLRP3 inflammasome during the atherosclerosis development remains unclear, which would be elucidated in the current study. METHODS The macrophage cells were stimulated with the oxidized low-density lipoprotein (ox-LDL) and also treated with the recombinant CTRP9 in the meantime. The activation of NLRP3 inflammasome was determined by measuring the releasing of IL-1β and caspase-1 p10 via ELISA and western blot, respectively. Then the AMPK was inhibited in macrophages by Dorsomorphin. Finally, the CTRP9-AMPK-NLRP3 inflammasome pathway was validated in the mouse model of atherosclerosis. RESULTS The CTRP9 could down-regulate the expression of NLRP3 protein and also the activity of NLRP3 inflammasome in the ox-LDL activated macrophages. Inhibiting the AMPK significantly restored the activities of NLRP3 inflammasome. In the apolipoprotein E-deficient mice, lentiviral expression of CTRP9 could suppress the atherosclerosis development, which could be abolished by AMPK inhibition. CONCLUSION Our data here indicated that the CTRP9 showed atheroprotective function via CTRP9-AMPK- NLRP3 inflammasome pathway.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Cardiology, Yiwu Central Hospital, No. 699 Jiangdong Road, Yiwu 322000, PR China
| | - Xinyang Gong
- Department of Cardiology, Yiwu Central Hospital, No. 699 Jiangdong Road, Yiwu 322000, PR China
| | - Shimao Ni
- Department of Cardiology, Yiwu Central Hospital, No. 699 Jiangdong Road, Yiwu 322000, PR China
| | - Yu Wang
- Department of Cardiology, Yiwu Central Hospital, No. 699 Jiangdong Road, Yiwu 322000, PR China
| | - Lingbo Zhu
- Department of Cardiology, Yiwu Central Hospital, No. 699 Jiangdong Road, Yiwu 322000, PR China
| | - Ningning Ji
- Department of Cardiology, Yiwu Central Hospital, No. 699 Jiangdong Road, Yiwu 322000, PR China.
| |
Collapse
|