1
|
MiR-127-3p targeting CISD1 regulates autophagy in hypoxic-ischemic cortex. Cell Death Dis 2021; 12:279. [PMID: 33723216 PMCID: PMC7961148 DOI: 10.1038/s41419-021-03541-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 01/05/2021] [Accepted: 01/19/2021] [Indexed: 02/05/2023]
Abstract
Neonatal hypoxic-ischemic (HI) injury derived from asphyxia during perinatal period, is a serious complication of neonatal asphyxia and the main cause of neonatal acute death and chronic neurological injury. Aberrant autophagy occurs in many nervous system diseases, but its role and underlying mechanism in HI injury is largely unknown. Here, we successfully constructed a newborn rat model of HI brain injury, and the knockout-miR-127-3p (KO-miR-127-3p) rats were structured by using CRISPR/Cas9. Subsequently, the in vitro functional experiments, in vivo zea-longa scores, as well as bioinformatics analyses and biological experiments were applied. The expression of autophagy-related proteins, including ATG12, P62, Beclin-1, LC3II in HI cortex with miR-127-3p knockout was significantly decreased, and autophagic vacuoles were disappeared. Moreover, miR-127-3p has a specific regulatory effect on CISD1 expression, another crucial molecule in autophagy process. Accordingly, the overexpression of CISD1 effectively inhibited the autophagic cell death and physiological dysfunction in the brain of HI injury, whereas si-CISD1 reversed the neuroprotective effects of KO-miR-127-3p. Our findings explained the underlying mechanism for HI injury, and miR-127-3p targeting CISD1 signal could be supposed as a new treatment strategy to prevent and treat HI injury.
Collapse
|
2
|
Gurd JW, Bissoon N, Beesley PW, Nakazawa T, Yamamoto T, Vannucci SJ. Differential effects of hypoxia-ischemia on subunit expression and tyrosine phosphorylation of the NMDA receptor in 7- and 21-day-old rats. J Neurochem 2002; 82:848-56. [PMID: 12358790 DOI: 10.1046/j.1471-4159.2002.01026.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effect of cerebral hypoxia-ischemia (HI) on levels and tyrosine phosphorylation of the NMDA receptor was examined in 7- (P7) and 21 (P21)-day-old rats. Unilateral HI was administered by ligation of the right common carotid artery and exposure to an atmosphere of 8% O2/92% N2 for 2 (P7) or 1.5 (P21) h. This duration of HI produces significant infarction in nearly all of the survivors with damage being largely restricted to the cortex, striatum, and hippocampus of the hemisphere ipsilateral to the carotid artery ligation. NR2A levels in the right hemisphere of P7 pups were markedly reduced after 24 h of recovery, while NR1 and NR2B remained unchanged. In contrast, NR2B, but not NR2A, was reduced after HI at P21. At both ages, HI resulted in a transient increase in tyrosine phosphorylation of a number of forebrain proteins that peaked between 1 and 6 h of recovery. At both P7 and P21, tyrosine phosphorylation of NR2B was enhanced 1 h after HI and had returned to basal levels by 24 h. HI induced an increase in tyrosine phosphorylation of NR2A in 21 day, but not in 7-day-old animals. The differential effects of HI on the NMDA receptor at different post-natal ages may contribute to changing sensitivity to hypoxia-ischemia.
Collapse
Affiliation(s)
- James W Gurd
- Center for the Neurobiology of Stress, Division of Life Sciences, University of Toronto at Scarborough, Toronto, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
3
|
Hardy PA, Chen W, Wilce PA. Chronic ethanol exposure and withdrawal influence NMDA receptor subunit and splice variant mRNA expression in the rat cerebral cortex. Brain Res 1999; 819:33-9. [PMID: 10082858 DOI: 10.1016/s0006-8993(98)01340-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Chronic ethanol exposure and subsequent withdrawal are known to change NMDA receptor activity. This study examined the effects of chronic ethanol administration and withdrawal on the expression of several NMDA receptor subunit and splice variant mRNAs in the rat cerebral cortex. Ethanol dependence was induced by ethanol vapour exposure. To delineate between seizure-induced changes in expression during withdrawal and those due to withdrawal per se, another group of naive rats was treated with pentylenetetrazol (PTZ) injection (30 mg/kg, i.p.). RNA samples from the cortices of chronically treated and withdrawing animals were compared to those from pair-fed controls. Changes in NMDA receptor mRNA expression were determined using ribonuclease protection assays targetting the NR2A, -2B, -2C and NR1-pan subunits as well as the three alternatively spliced NR1 inserts (NR1-pan describes all the known NR1 splice variants generated from the 5' insert and the two 3' inserts). The ratio of NR1 mRNA incorporating the 5' insert vs. that lacking it was decreased during ethanol exposure and up to 48 h after withdrawal. NR2B mRNA expression was elevated during exposure, but returned to control levels 18 h after withdrawal. Levels of NR2A, NR2C, NR1-pan and both 3' NR1 insert mRNAs from the ethanol-treated groups did not alter compared with the pair-fed control group. No changes in the level of any NMDA receptor subunit mRNA was detected in the PTZ-treated animals. These data support the hypothesis that changes in NMDA receptor subunit composition may underlie a neuronal adaptation to the chronic ethanol-inhibition and may therefore be important in the precipitation of withdrawal hyperactivity.
Collapse
Affiliation(s)
- P A Hardy
- Alcohol Research Unit, Department of Biochemistry, The University of Queensland, St. Lucia, Australia
| | | | | |
Collapse
|
4
|
Abstract
The phosphorylation of proteins on tyrosine residues, initially believed to be primarily involved in cell growth and differentiation, is now recognized as having a critical role in regulating the function of mature cells. The brain exhibits one of the highest levels of tyrosine kinase activity in the adult animal and the synaptic region is particularly rich in tyrosine kinases and tyrosine phosphorylated proteins. Recent studies have described the effects of tyrosine phosphorylation on the activities of a number of proteins which are potentially involved in the regulation of synaptic function. Furthermore, it is becoming apparent that tyrosine phosphorylation is involved in the modification of synaptic activity, such as occurs during depolarization, the induction of long-term potentiation or long-term depression, and ischemia. Changes in the activities of tyrosine kinases and/or protein tyrosine phosphatases which are associated with synaptic structures may result in altered tyrosine phosphorylation of proteins located at the synapse leading to both short-term and long-lasting changes in synaptic and neuronal function.
Collapse
Affiliation(s)
- J W Gurd
- Division of Life Sciences, University of Toronto at Scarborough, Ontario, Canada.
| |
Collapse
|
5
|
Rostas JA, Brent VA, Voss K, Errington ML, Bliss TV, Gurd JW. Enhanced tyrosine phosphorylation of the 2B subunit of the N-methyl-D-aspartate receptor in long-term potentiation. Proc Natl Acad Sci U S A 1996; 93:10452-6. [PMID: 8816821 PMCID: PMC38405 DOI: 10.1073/pnas.93.19.10452] [Citation(s) in RCA: 197] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Both serine/threonine and tyrosine phosphorylation of receptor proteins have been implicated in the process of long-term potentiation (LTP), but there has been no direct demonstration of a change in receptor phosphorylation after LTP induction. We show that, after induction of LTP in the dentate gyrus of anesthetized adult rats, there is an increase in the tyrosine phosphorylation of the 2B subunit of the N-methyl-D-aspartate (NMDA) receptor (NR2B), as well as several other unidentified proteins. Tyrosine phosphorylation of NR2B was measured in two ways: binding of antiphosphotyrosine antibodies (PY20) to glycoprotein(s) of 180 kDa (GP180) purified on Con A-Sepharose and binding of anti-NR2B antibodies to tyrosine-phosphorylated proteins purified on PY20-agarose. Three hours after LTP induction, anti-NR2B binding to tyrosine phosphorylated proteins, expressed as a ratio of tetanized to control dentate (Tet/Con), was 2.21 +/- 0.50 and PY20 binding to GP180 was 1.68 +/- 0.16. This increase in the number of tyrosine phosphorylated NR2B subunits occurred without a change in the total number of NR2B subunits. When the induction of LTP was blocked by pretreatment of the animal with the NMDA receptor antagonist MK801, the increase in PY20 binding to GP180 was also blocked (Tet/Con = 1.09 +/- 0.26). The increased PY20 binding to GP180 was also apparent 15 min after LTP induction (Tet/Con = 1.41 +/- 0.16) but not detectable 5 min after LTP induction (Tet/Con = 1.01 +/- 0.19). These results suggest that tyrosine phosphorylation of the NMDA receptor contributes to the maintenance of LTP.
Collapse
Affiliation(s)
- J A Rostas
- Faculty of Medicine and Health Sciences, University of Newcastle, New South Wales Australia.
| | | | | | | | | | | |
Collapse
|
6
|
Wu K, Xu JL, Suen PC, Huang YY, Mount HT. Nitric oxide increases calcium/calmodulin-dependent phosphorylation of proteins in the postsynaptic density of adult rat cerebral cortex. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1996; 40:22-6. [PMID: 8840009 DOI: 10.1016/0169-328x(96)00028-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Nitric oxide (NO) plays important roles in diverse processes, including neurotransmission in the peripheral and central nervous systems. Nitric oxide synthase (NOS), the enzyme that catalyzes formation of NO from L-arginine, is an intrinsic component of the postsynaptic density (PSD), a specialization of the postsynaptic membrane. This raises the possibility that NO may play a role in postsynaptic function. To begin defining postsynaptic actions of NO, we examined effects of NO on Ca2+/calmodulin-dependent phosphorylation (C/C-DP) of proteins in the cortical PSD of adult rat brain. Treatment of the PSD with sodium nitroprusside, a NO donor, caused a 4-fold increase in C/C-DP of the major PSD protein (mPSDp), relative to C/C treatment alone. Another NO donor, S,S'-dinitrosodithiol, elicited a 2-fold increase in C/C-DP of the mPSDp. Treatment of PSD fractions with L-arginine, a substrate for endogenous NOS, caused a 3-fold increase in C/C-DP activity. The competitive NOS inhibitor, N-L-arginine-methyl ester, decreased basal C/C-DP of cortical mPSDp by 50% and blocked the increase elicited by L-arginine. The inhibitor had no effect on cAMP-dependent phosphorylation, suggesting specificity of NO action on C/C-DP. Our observations indicate that NO enhances C/C-DP of PSD proteins. As C/C-DP inactivates NOS, our findings raise the possibility that NO effects on C/C-DP constitute a feedback mechanism for regulation of NOS activity.
Collapse
Affiliation(s)
- K Wu
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, UMDNJ, Piscataway 08854, USA
| | | | | | | | | |
Collapse
|
7
|
Miranda-Contreras L, Palacios-Prü EL. Existence of a putative specific postsynaptic density protein produced during Purkinje cell spine maturation. Int J Dev Neurosci 1995; 13:403-16. [PMID: 7484211 DOI: 10.1016/0736-5748(95)00027-e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
This study identified a 140 kDa polypeptide as a putative specific component of Purkinje cell spines' postsynaptic densities and which began to appear during the critical period of cerebellar cortex synaptogenesis. Mouse cerebellar cortices at postnatal days 5, 7, 9, 11, 15 and young adult, between days 30 and 40, were used to purify subcellular fractions of synaptosomes, synaptic membranes and postsynaptic densities. The purity of the subcellular fractions was assessed by electron microscopy and the protein composition of the different fractions was characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Polypeptides of apparent molecular weights of 25, 26, 27, 30, 33, 37, 43, 45, 52, 64, 74, 85, 94, 110, 125, 130, 165 and 174 kDa were found in the synaptosomal fractions of all the ages studied, even before the critical period of synaptogenesis, at postnatal day 7, when the postsynaptic densities were still nonexistent, indicating that the polypeptides are nonspecific constituents of these structures. On the other hand, a 140 kDa polypeptide was detected in the postsynaptic density fractions at postnatal day 11, immediately after postsynaptic structures began to appear, suggesting the possibility that this protein is a specific component of the cerebellar cortex postsynaptic densities. The 140 kDa polypeptide was electroeluted from the gel and analysed for its amino acid composition by reverse-phase high-pressure liquid chromatography. The analysis showed that this protein has a high content of nonpolar amino acid residues, such as leucine, isoleucine, glycine, phenylalanine and valine. A hypothetical model relative to the participation of the 140 kDa protein in the molecular organization of the postsynaptic density is suggested which may contribute to the understanding of the role played by this structure in synaptic function.
Collapse
|
8
|
Rosenblum K, Schul R, Meiri N, Hadari YR, Zick Y, Dudai Y. Modulation of protein tyrosine phosphorylation in rat insular cortex after conditioned taste aversion training. Proc Natl Acad Sci U S A 1995; 92:1157-61. [PMID: 7862652 PMCID: PMC42657 DOI: 10.1073/pnas.92.4.1157] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Protein tyrosine phosphorylation is a major signal transduction pathway involved in cellular metabolism, growth, and differentiation. Recent data indicate that tyrosine phosphorylation also plays a role in neuronal plasticity. We are using conditioned taste aversion, a fast and robust associative learning paradigm subserved among other brain areas by the insular cortex, to investigate molecular correlates of learning and memory in the rat cortex. In conditioned taste aversion, rats learn to associate a novel taste (e.g., saccharin) with delayed poisoning (e.g., by LiCl injection). Here we report that after conditioned taste aversion training, there is a rapid and marked increase in tyrosine phosphorylation of a set of proteins in the insular cortex but not in other brain areas. A major protein so modulated, of 180 kDa, is abundant in a membrane fraction and remains modulated for more than an hour after training. Exposure of the rats to the novel taste alone results in only a small modulation of the aforementioned proteins whereas administration of the malaise-inducing agent per se has no effect. To the best of our knowledge, this is the first demonstration of modulation of protein tyrosine phosphorylation in the brain after a behavioral experience.
Collapse
Affiliation(s)
- K Rosenblum
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | |
Collapse
|
9
|
Suzuki T. Protein kinases involved in the expression of long-term potentiation. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1994; 26:735-44. [PMID: 8063002 DOI: 10.1016/0020-711x(94)90102-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This review describes the protein kinases that are involved in long-term potentiation (LTP). The following items are described. 1. Ca2+/calmodulin-dependent protein kinase II (CaMKII) and protein kinase C (PKC) may play pivotal roles in the different phases of the expression of LTP. This involvement has been indicated mainly by using specific inhibitor of these kinases. The involvement of the CaMKII alpha-subunit was confirmed in mutant mice which are deficient in the gene for the subunit. 2. Involvement of persistently active protein kinases in the maintenance of LTP has been proposed and, since then, several studies have focused upon the persistent kinase. Both PKC and CaMKII are possible sources of the persistent kinase activities. 3. Protein kinases other than CaMKII or PKC (ex. protein kinase A, tyrosine kinases, mitogen-activated kinase) also play roles in the expression of LTP. 4. Finally, the importance of postsynaptic density as a device where complex chemical reactions related to neuronal signal transduction occur is discussed.
Collapse
Affiliation(s)
- T Suzuki
- Department of Biochemistry, Nagoya City University Medical School, Japan
| |
Collapse
|
10
|
Soulliere J, Bissoon N, Khurgel M, Gurd JW. Tyrosine phosphorylation of glycoproteins in the adult and developing rat brain. J Neurosci Res 1994; 37:506-14. [PMID: 7517458 DOI: 10.1002/jnr.490370410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The tyrosine phosphorylation of glycoproteins in the adult and developing rat brain was investigated. Immunoblotting with anti-tyr(P) antibodies identified a glycoprotein with an apparent Mr of 180,000 (GP180) as the major tyrosine-phosphorylated protein in the concanavalin A (con A)-binding fraction prepared from forebrain homogenates. This glycoprotein had the same electrophoretic mobility as the postsynaptic density (PSD)-associated glycoprotein PSD-GP180. Tyrosine-phosphorylated GP180 was enriched 24-fold in isolated PSDs relative to homogenates. Digestion with endoglycosidase F/N-glycosidase F demonstrated that GP180 present in total homogenates and PSD-GP180 present in isolated PSDs contained similar amounts of N-linked oligosaccharide suggesting that they are the same glycoprotein. The tyrosine phosphorylation of GP180 in homogenates varied between brain regions with the highest levels occurring in cortical areas and the amygdala and low or undetectable amounts being present in hindbrain regions. Incubation of homogenates with adenosine triphosphate (ATP) resulted in the tyrosine phosphorylation of GP180 in all regions examined except the cerebellum and identified a second con A-binding glycoprotein, GP110, which was phosphorylated on tyrosine. GP180 was not phosphorylated on tyrosine following the incubation of cerebellar homogenate, synaptic membranes, or PSDs and ATP. Tyr(P)-GP180 was not detected prior to the onset of synaptogenesis, increased in parallel with the formation of synapses during the first 4 weeks of postnatal development of the frontal cortex and hippocampus, and then decreased 50-60% to adult levels. The results suggest that GP180 corresponds to the PSD glycoprotein PSD-GP180 and are consistent with a role for this glycoprotein in synaptic development and signal transduction at the synapse.
Collapse
Affiliation(s)
- J Soulliere
- Division of Life Science, University of Toronto, West Hill, Ontario, Canada
| | | | | | | |
Collapse
|
11
|
Willmott T, Williamson TL, Mummery R, Hawkes RB, Can A, Gurd JW, Gordon-Weeks PR, Beesley PW. Expression of PAC 1, an epitope associated with two synapse-enriched glycoproteins and a neuronal cytoskeleton-associated polypeptide in developing forebrain neurons. Neuroscience 1994; 58:115-29. [PMID: 7512700 DOI: 10.1016/0306-4522(94)90159-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The monoclonal antibody PAC 1 (postsynaptic density and cytoskeleton enriched) recognizes an epitope present on two postsynaptic density-enriched glycoproteins of 130,000 (postsynaptic density-enriched glycoprotein 130) and 117,000 mol. wt (postsynaptic density-enriched glycoprotein 117), and a cytoskeleton-enriched polypeptide of 155,000 mol. wt (cp155). The PAC 1 antibody has been used to study the development of the PAC 1 antigens in the developing rat forebrain in vivo and in tissue culture. cp155 is detected by embryonic day 14 and its level continues to rise until the sixth postnatal week. Postsynaptic density-enriched glycoproteins 130 and 117 are also expressed in embryonic brain although the level of postsynaptic density-enriched glycoprotein 130 initially increases more rapidly than that of postsynaptic density-enriched glycoprotein 117. Peak values are observed at postnatal days 4 (postsynaptic density-enriched glycoprotein 117) and 9 (postsynaptic density-enriched glycoprotein 130). The level of post synaptic density-enriched glycoprotein 117 subsequently decreases to some 50% of the peak value by postnatal day 42. Immunocytochemical studies show that PAC 1 immunoreactivity in developing cerebral cortex, detectable by postnatal day 0, is primarily associated with the perikarya and dendrites of pyramidal cells. The immunoreactivity develops as patches of PAC 1-positive neurons, uniform staining of the cortex only being fully established after postnatal day 9. Double-immunofluorescence labelling studies of forebrain cultures prepared from embryonic day 18 animals shows that many, but not all, growth-associated protein 43-positive neurons exhibit PAC 1 immunoreactivity. Some non-neuronal cells also stain with the PAC 1 monoclonal antibody. The growth cones of cultured neurons exhibit PAC 1 immunoreactivity and the PAC 1 antigens are detected on immunodeveloped western blots of isolated growth cones. The PAC 1 epitope is intracellular, but immunoreactivity does not co-localize with F-actin as detected by rhod-amine-phalloidin or with tubulin immunoreactivity. Postsynaptic density-enriched glycoprotein 130 is readily detected on PAC 1 immunodeveloped western blots of forebrain cultures maintained for up to 14 days in vitro. Postsynaptic density-enriched glycoprotein 117 is only poorly expressed by these cultures. The PAC 1 glycoproteins are present in forebrain synaptic membranes and postsynaptic densities at an early stage of development. The synaptic membrane level of postsynaptic density-enriched glycoprotein 130 and postsynaptic density-enriched glycoprotein 117 increases markedly between postnatal days 3 and 8. The level of both glycoproteins detected in postsynaptic densities remain virtually constant from postnatal days 9-90. These results are consistent with functional roles for these molecules in neuronal and synapse development.
Collapse
Affiliation(s)
- T Willmott
- Department of Biochemistry, Royal Holloway and Bedford New College, Egham, Surrey, U.K
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Gurd JW, Bissoon N, Soulliere J. Procedures for analyzing the tyrosine phosphorylation of synaptic glycoproteins. ACTA ACUST UNITED AC 1992. [DOI: 10.1016/1058-6741(92)90030-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Girault JA, Siciliano JC, Robel L, Hervé D. Stimulation of protein-tyrosine phosphorylation in rat striatum after lesion of dopamine neurons or chronic neuroleptic treatment. Proc Natl Acad Sci U S A 1992; 89:2769-73. [PMID: 1372991 PMCID: PMC48744 DOI: 10.1073/pnas.89.7.2769] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Even though the short-term actions of dopamine on postsynaptic receptors are well-characterized, the molecular bases for long-term trophic interactions between dopamine neurons and their targets remain unclear. Since protein-tyrosine phosphorylation plays a key role in the action of trophic factors, we have investigated its possible involvement in the interactions between dopamine neurons and their striatal targets. Lesioning rat nigrostriatal dopamine neurons by using 6-hydroxydopamine increased the phosphorylation on tyrosine of several proteins, including a major 180-kDa protein (pp180) in the ipsilateral striatum. Protein-tyrosine kinase activity was also increased in the striatum ipsilateral to the lesion, whereas no change in phosphotyrosine phosphatase activity was detected. The stimulation of pp180 phosphorylation was observed 1, 2, and 8 weeks after 6-hydroxydopamine lesion, was selective for the destruction of dopamine neurons, and was mimicked by chronic blockade of dopamine receptors with neuroleptics. Additional lesion experiments and subcellular fractionation showed that pp180 is located in neuronal postsynaptic densities, suggesting that pp180 is a postsynaptic component of corticostriatal synapses. Our results indicate that lesion of specific afferent fibers can activate tyrosine phosphorylation in central neurons and suggest that tyrosine phosphorylation is involved in the long-term consequences of dopamine deficiency and may play a role in synaptic plasticity.
Collapse
Affiliation(s)
- J A Girault
- Institut National de la Santé et de la Recherche Médicale U 114, Chaire de Neuropharmacologie, Collège de France, Paris
| | | | | | | |
Collapse
|
14
|
Cudmore SB, Gurd JW. Postnatal age and protein tyrosine phosphorylation at synapses in the developing rat brain. J Neurochem 1991; 57:1240-8. [PMID: 1895104 DOI: 10.1111/j.1471-4159.1991.tb08285.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The relationship between postnatal age and protein tyrosine kinase activity in synaptosomes prepared from the rat forebrain was studied. Synaptosomal particulate and soluble fractions, as well as total homogenates, the cell soluble fraction, and P3, were prepared from rats ranging in postnatal age from 5 to 60 days and analyzed for (a) tyrosine kinase activity using polyglutamyltyrosine (4:1) as the substrate, (b) the presence of endogenous substrates for tyrosine phosphorylation using polyclonal antibodies specific for phosphotyrosine, and (c) levels of pp60src. Enzyme activity, expressed per milligram of protein, in the total homogenate, P3, and both the cell and synaptosomal soluble fractions was highest in the brains of young animals (postnatal days 5-10) and decreased thereafter to adult levels. In contrast, tyrosine kinase activity in the synaptosomal particulate fraction exhibited a unique biphasic developmental profile, increasing to maxima at postnatal days 10 and 20 before decreasing to adult values. Endogenous substrates for tyrosine phosphorylation were identified by incubating subcellular fractions with 2 mM ATP in the presence of sodium orthovanadate and probing nitrocellulose blots of proteins separated by gel electrophoresis with antiphosphotyrosine antibodies. Several phosphotyrosine-containing proteins were detected in the synaptosomal particulate and P3 fractions, including proteins of Mr 180K, 145K, 120K, 100K, 77K, 68K, 62K, 54K, 52K, and 42K. In the cell soluble fraction a protein doublet of Mr 54/52K and a 120K protein were the major phosphotyrosine-containing proteins. The 54/52K doublet was the major protein tyrosine kinase substrate in the synaptosomal soluble fraction.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- S B Cudmore
- Department of Biochemistry, University of Toronto, Ontario, Canada
| | | |
Collapse
|
15
|
Tobet SA, Whorf RC, Schwarting GA, Fischer I, Fox TO. Differential hormonal modulation of brain antigens recognized by the AB-2 monoclonal antibody. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1991; 62:91-8. [PMID: 1760875 DOI: 10.1016/0165-3806(91)90193-m] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The expression of monoclonal antibody AB-2 immunoreactivity is age- and sex-dependent in radial glia of developing rat hypothalamus and is regulated by prenatal exposure to gonadal steroids. In the present study, several proteins were recognized by AB-2 and were distributed selectively in subcellular fractions from neonatal hypothalamus (HYP), remaining forebrain (FB), and brainstem regions. Immunoblots revealed polypeptide bands in 3 major molecular weight classes: one at approximately 195 kDa in the cytosolic compartment; and two doublets at 220 kDa and 340 kDa in both microsomal and crude mitochondrial membrane fractions. The 220 kDa and 340 kDa doublets were also Triton-insoluble, suggesting a cytoskeletal association. The 195 kDa-AB-2-immunoreactive band was present in both Triton-soluble and insoluble fractions. AB-2 also recognized several acidic glycolipids extracted from postnatal rat brain regions on immunoblots following high performance thin layer chromatography. One of the bands from postnatal rat brain extracts migrated similarly to purified bovine brain sulfatide, which was also immunoreactive with AB-2. AB-2 immunoreactivity with proteins, polar lipids, and sulfatide suggests that the epitope is a carbohydrate present in multiple cellular compartments. AB-2 recognized the same molecular bands in males and females. Testosterone treatment selectively decreased the level of the 195 kDa AB-2-immunoreactive polypeptide. The 195 kDa AB-2-immunoreactive polypeptide possibly acts in radial glia in the determination of sexually dimorphic neurons in the preoptic area/hypothalamus.
Collapse
Affiliation(s)
- S A Tobet
- Department of Biochemistry, EK Shriver Center, Waltham, MA 02254
| | | | | | | | | |
Collapse
|
16
|
Hayes NV, Rayner DA, Baines AJ. Purification and properties of p103, a novel 103-kDa component of postsynaptic densities. J Neurochem 1991; 57:397-405. [PMID: 2072092 DOI: 10.1111/j.1471-4159.1991.tb03766.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A 103-kDa protein present in membrane cytoskeletal preparations from bovine brain has been identified. We have purified this protein to greater than 95% homogeneity using gel filtration and ion-exchange chromatography. This protein, p103, is an asymmetric dimer in dilute solution and has two major variants that can be distinguished by isoelectric focussing, pI 5.60 and 5.75. Using subcellular fractionation, it is most enriched in postsynaptic densities. Immunolocalization with anti-p103-specific antibodies reveals that it is confined to the dendrites and perikarya; it is apparently absent from spinal cord axons. It coextracts from brain membrane-skeletal preparations with brain spectrin and actin, but in vitro, it does not interact with them.
Collapse
Affiliation(s)
- N V Hayes
- Biological Laboratory, University of Kent, Canterbury, England
| | | | | |
Collapse
|
17
|
Kelly PT. Calmodulin-dependent protein kinase II. Multifunctional roles in neuronal differentiation and synaptic plasticity. Mol Neurobiol 1991; 5:153-77. [PMID: 1668384 DOI: 10.1007/bf02935544] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
One of the most important mechanisms for regulating neuronal functions is through second messenger cascades that control protein kinases and the subsequent phosphorylation of substrate proteins. Ca2+/calmodulin-dependent protein kinase II (CaM-kinase II) is the most abundant protein kinase in mammalian brain tissues, and the alpha-subunit of this kinase is the major protein and enzymatic molecule of synaptic junctions in many brain regions. CaM-kinase II regulates itself through a complex autophosphorylation mechanism whereby it becomes calcium-independent following its initial activation. This property has implicated CaM-kinase II as a potential molecular switch at central nervous system (CNS) synapses. Recent studies have suggested that CaM-kinase II is involved in many diverse phenomena such as epilepsy, sensory deprivation, ischemia, synapse formation, synaptic transmission, long-term potentiation, learning, and memory. During brain development, the expression of CaM-kinase II at both protein and mRNA levels coincides with the active periods of synapse formation and, therefore, factors regulating the genes encoding kinase subunits may play a role in the cell-to-cell recognition events that underlie neuronal differentiation and the establishment of mature synaptic functions. Recent findings have demonstrated that the mRNA encoding the alpha-subunit of CaM-kinase II is localized in neuronal dendrites. Current speculation suggests that the localized translation of dendritic mRNAs encoding specific synaptic proteins may be responsible for producing synapse-specific changes associated with the processing, storage, and retrieval of information in neural networks.
Collapse
Affiliation(s)
- P T Kelly
- Department of Neurobiology and Anatomy, University of Texas Medical School, Houston
| |
Collapse
|
18
|
Abstract
Evidence in the past year has provided support for a prominent role of tyrosine phosphorylation in the regulation of neuronal function. The discovery that many novel forms of protein tyrosine kinases and phosphatases are expressed in the brain has revealed that the regulation of tyrosine phosphorylation is highly complex. The recent identification of substrate proteins in the brain for the protein tyrosine kinases and phosphatases has begun to clarify the functional role of tyrosine phosphorylation in the development and modulation of the nervous system.
Collapse
Affiliation(s)
- K R Wagner
- Howard Hughes Medical Institute, Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | | | |
Collapse
|