1
|
Mathis H, Naquin D, Margeot A, Bidard F. Enhanced heterologous gene expression in Trichoderma reesei by promoting multicopy integration. Appl Microbiol Biotechnol 2024; 108:470. [PMID: 39311996 PMCID: PMC11420251 DOI: 10.1007/s00253-024-13308-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
Trichoderma reesei displays a high capability to produce extracellular proteins and therefore is used as a platform for the expression of heterologous genes. In a previous study, an expression cassette with the constitutive tef1 promoter and the cbh1 terminator compatible with flow cytometry analysis was developed. Independent transformants obtained by a random integration into the genome of a circular plasmid containing the expression cassette showed a wide range of fluorescence levels. Whole genome sequencing was conducted on eight of the transformed strains using two next-generation sequencing (NGS) platforms: Illumina paired-end sequencing and Oxford Nanopore. In all strains, the expression plasmid was inserted at the same position in the genome, i.e., upstream of the tef1 gene, indicating an integration by homologous recombination. The different levels of fluorescence observed correspond to different copy numbers of the plasmid. Overall, the integration of a circular plasmid with the green fluorescence protein (egfp) transgene under the control of tef1 promoter favors multicopy integration and allows over-production of this heterologous protein on glucose. In conclusion, an expression system based on using the tef1 promotor could be one of the building blocks for improving high-value heterologous protein production by increasing the copy number of the encoding genes into the genome of the platform strain. KEY POINTS: • Varied eGFP levels from tef1 promoter and cbh1 terminator expression. • Whole genome sequencing on short and long reads platforms reveals various plasmid copy numbers in strains. • Plasmids integrate at the same genomic site by homologous recombination in all strains.
Collapse
Affiliation(s)
- Hugues Mathis
- IFP Energies Nouvelles, 1 et 4 Avenue de Bois-Préau, 92852, Rueil-Malmaison, France.
| | - Delphine Naquin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Antoine Margeot
- IFP Energies Nouvelles, 1 et 4 Avenue de Bois-Préau, 92852, Rueil-Malmaison, France
| | - Frederique Bidard
- IFP Energies Nouvelles, 1 et 4 Avenue de Bois-Préau, 92852, Rueil-Malmaison, France
| |
Collapse
|
2
|
Bi B, Fu X, Jian X, Zhang Y, Jiang Y, Zhou W, Zhao H. Assessment of the potential risks in SD rats gavaged with genetically modified yeast containing the cp4-epsps gene. Front Vet Sci 2024; 11:1411520. [PMID: 39170628 PMCID: PMC11335726 DOI: 10.3389/fvets.2024.1411520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/21/2024] [Indexed: 08/23/2024] Open
Abstract
Introduction Despite the absence of definitive evidence indicating that the cp4-epsps gene and its resultant recombinant proteins have significant harmful effects on either human or animal health, the safety assessment of genetically modified (GM) crops expressing the CP4-EPSPS proteins has been controversial. This study endeavor was aimed at evaluating the potential risks posed by the CP4-EPSPS protein in transgenic crops, thereby contributing to the advancement of risk assessment methodologies in the context of genetically engineered crops. Methods To ascertain the appropriate daily dosages for oral gavage administration, the expression levels of the CP4-EPSPS protein in a recombinant yeast were quantified. Subsequently, physiological and biochemical analysis, metabolomics, and metagenomic analysis were conducted based on a 90-day Sprague-Dawley (SD) rats feeding experiment, respectively, thereby enhancing the depth and precision of our risk assessment framework. Results The results from the physiological and biochemical analysis, organ pathological, blood metabolism, gut microbiota, and correlation analysis of metabolites and gut microbiota revealed several biomarkers for further risk assessment. These biomarkers include clinical biochemical indexes such as total bilirubin (TBIL), direct bilirubin (DBIL), creatine kinase (CK), and lactate dehydrogenase (LDH); metabolites like Methionine, 2-Oxovaleric acid, and LysoPC (16:0); and gut microbiota including Blautia wexlerae, Holdemanella biformis, Dorea sp. CAG 317, Coriobacteriaceae and Erysipelotrichaceae. Conclusion In conclusion, the risk can be significantly reduced by directly consuming inactivated recombinant CP4-EPSPS. Therefore, in everyday life, the risk associated with consuming GM foods containing recombinant CP4-EPSPS is substantially reduced after heat treatment.
Collapse
Affiliation(s)
- Bo Bi
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, Research Center of Biomass 3D Printing Materials, College of Materials and Energy, South China Agricultural University, Guangzhou, China
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xuewei Fu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, Research Center of Biomass 3D Printing Materials, College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Xuewen Jian
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, Research Center of Biomass 3D Printing Materials, College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Yu Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, Research Center of Biomass 3D Printing Materials, College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Yizhi Jiang
- Guangzhou Zhixin High School, Guangzhou, China
| | - Wuyi Zhou
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, Research Center of Biomass 3D Printing Materials, College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Hui Zhao
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, Research Center of Biomass 3D Printing Materials, College of Materials and Energy, South China Agricultural University, Guangzhou, China
| |
Collapse
|
3
|
Wang J, Bao C, Cao H, Huang F, Liu Y, Cao Y. Multi-copy expression of a protease-resistant xylanase with high xylan degradation ability and its application in broilers fed wheat-based diets. Int J Biol Macromol 2024; 257:128633. [PMID: 38070812 DOI: 10.1016/j.ijbiomac.2023.128633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/27/2023] [Accepted: 12/03/2023] [Indexed: 01/26/2024]
Abstract
The acidic thermostable xylanase (AT-xynA) has great potential in the feed industry, but its low activity is not conductive to large-scale production, and its application in poultry diets still needs to be further evaluated. In Experiment1, AT-xynA activity increased 3.10 times by constructing multi-copy strains, and the highest activity reached 10,018.29 ± 91.18 U/mL. AT-xynA showed protease resistance, high specificity for xylan substrates, xylobiose and xylotriose were the main hydrolysates. In Experiment2, 192 broilers were assigned into 3 treatments including a wheat-based diet, and the diets supplemented with AT-xynA during the entire period (XY-42) or exclusively during the early stage (XY-21). AT-xynA improved growth performance, while the performance of XY-21 and XY-42 was identical. To further clarify the mechanism underlying the particular effectiveness of AT-xynA during the early stage, 128 broilers were allotted into 2 treatments including a wheat-based diet and the diet supplemented with AT-xynA for 42 d in Experiment3. AT-xynA improved intestinal digestive function and microbiota composition, the benefits were stronger in younger broilers than older ones. Overall, the activity of AT-xynA exhibiting protease resistance and high xylan degradation ability increased by constructing multi-copy strains, and AT-xynA was particularly effective in improving broiler performance during the early stage.
Collapse
Affiliation(s)
- Jian Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China; Department of Nutrition and Health, China Agricultural University, Beijing 100091, People's Republic of China
| | - Chengling Bao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Heng Cao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Fei Huang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yajing Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yunhe Cao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China.
| |
Collapse
|
4
|
Xiang ZX, Gong JS, Shi JH, Liu CF, Li H, Su C, Jiang M, Xu ZH, Shi JS. High-efficiency secretory expression and characterization of the recombinant type III human-like collagen in Pichia pastoris. BIORESOUR BIOPROCESS 2022; 9:117. [PMID: 38647563 PMCID: PMC10992891 DOI: 10.1186/s40643-022-00605-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Collagen, the highest content protein in the body, has irreplaceable biological functions, and it is widespread concerned in food, beauty, and medicine with great market demand. The gene encoding the recombinant type III human-like collagen α1 chain fragment was integrated into P. pastoris genome after partial amino acids were substituted. Combined with promoter engineering and high-density fermentation technology, soluble secretory expression with the highest yield of 1.05 g L-1 was achieved using two-stage feeding method, and the purity could reach 96% after affinity purification. The determination of N/C-terminal protein sequence were consistent with the theoretical expectation and showed the characteristics of Gly-X-Y repeated short peptide sequence. In amino acid analysis, glycine shared 27.02% and proline 23.92%, which were in accordance with the characteristics of collagen. Ultraviolet spectrum combined with Fourier transform infrared spectroscopy as well as mass spectrometry demonstrated that the target product conformed to the characteristics of collagen spectrums and existed as homologous dimer and trimer in the broth. This work provided a sustainable and economically viable source of the recombinant type III human-like collagen.
Collapse
Affiliation(s)
- Zhi-Xiang Xiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Lihu Avenue No. 1800, Wuxi, 214122, People's Republic of China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Lihu Avenue No. 1800, Wuxi, 214122, People's Republic of China.
| | - Jin-Hao Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Lihu Avenue No. 1800, Wuxi, 214122, People's Republic of China
| | - Chun-Fang Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Lihu Avenue No. 1800, Wuxi, 214122, People's Republic of China
| | - Heng Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Lihu Avenue No. 1800, Wuxi, 214122, People's Republic of China
| | - Chang Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Lihu Avenue No. 1800, Wuxi, 214122, People's Republic of China
| | - Min Jiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Lihu Avenue No. 1800, Wuxi, 214122, People's Republic of China
| | - Zheng-Hong Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Lihu Avenue No. 1800, Wuxi, 214122, People's Republic of China
| |
Collapse
|
5
|
Xiang ZX, Gong JS, Li H, Shi WT, Jiang M, Xu ZH, Shi JS. Heterologous expression, fermentation strategies and molecular modification of collagen for versatile applications. Crit Rev Food Sci Nutr 2021:1-22. [PMID: 34907819 DOI: 10.1080/10408398.2021.2016599] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Collagen is a kind of high macromolecular protein with unique tissue distribution and distinctive functions in the body. At present, most collagen products are extracted from the tissues and organs of mammals or marine fish. However, this method exhibits several disadvantages, including low efficiency and serious waste generation, which makes it difficult to meet the current market demand. With the rapid development of synthetic biology and the deepening of high-density fermentation technology, the collagen preparation by biosynthesis strategy emerges as the times require. Co-expression with the proline hydroxylase gene can solve the problem of non-hydroxylated collagen, but the yield may be affected. Therefore, improving the expression through molecular modification and dynamic regulation of synthesis is an entry point for future research. Due to the defects in certain properties of the natural collagen, modification of properties would be benefit for meeting the requirements of practical application. In this paper, in-depth investigations on recombinant expression, fermentation, and modification studies of collagen are conducted. Also, it summarizes the research progress of collagen in food, medicine, and beauty industry in recent years. Furthermore, the future development trend and application prospect of collagen are discussed, which would provide guidance for its preparation and application.
Collapse
Affiliation(s)
- Zhi-Xiang Xiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, PR China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, PR China
| | - Heng Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, PR China
| | - Wei-Ting Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, PR China
| | - Min Jiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, PR China
| | - Zheng-Hong Xu
- National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi, PR China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, PR China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, PR China
| |
Collapse
|
6
|
Modified chemical method for efficient transformation and diagnosis in Pichia pastoris. Protein Expr Purif 2020; 174:105685. [DOI: 10.1016/j.pep.2020.105685] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/01/2020] [Accepted: 05/30/2020] [Indexed: 02/04/2023]
|
7
|
Diaz Arias CA, Molino JVD, de Araújo Viana Marques D, Queiroz Maranhão A, Abdalla Saes Parra D, Pessoa Junior A, Converti A. Influence of carbon source on cell size and production of anti LDL (-) single-chain variable fragment by a recombinant Pichia pastoris strain. Mol Biol Rep 2019; 46:3257-3264. [PMID: 31073913 DOI: 10.1007/s11033-019-04785-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/22/2019] [Indexed: 10/26/2022]
Abstract
The aim of this work was to study the effect of the carbon source (glycerol, sucrose, glucose or a sucrose/glucose mixture) on the production of the anti LDL (-) single-chain variable fragment (scFv) by the recombinant Pichia pastoris SMD 1168 strain as well as on the cell size. The use of glucose as a carbon source in the growth phase led to a remarkable increase in cell size compared with glycerol, while the smallest cells were obtained with sucrose likely due to the occurrence of an energetic stress. The scFv concentration seemed to be related to cell number rather than to cell concentration, which in its turn showed no significant dependence on the carbon source. Yeast cells grown on sucrose had a mean diameter (0.736 ± 0.097 μm) about 35% shorter than those grown on glucose and allowed for the highest final concentration of the scFv antibody fragment (93.7 ± 0.2 mg/L). These results demonstrate that sucrose is the best carbon source for the expression of such an antibody fragment by the recombinant P. pastoris strain, which may be very useful for the diagnostic analysis of the so-called "bad cholesterol".
Collapse
Affiliation(s)
- Cesar Andres Diaz Arias
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, Prof. Lineu Prestes 580, Bloco 16, São Paulo, SP, 05508-000, Brazil
| | - João Vitor Dutra Molino
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, Prof. Lineu Prestes 580, Bloco 16, São Paulo, SP, 05508-000, Brazil
| | | | - Andrea Queiroz Maranhão
- Department of Cell Biology, Brasilia University, Campus Universitario Darcy RibeiroBloco K, 2 pavimento, Asa Norte, Brasília, DF, 70910-900, Brazil
| | - Dulcineia Abdalla Saes Parra
- Department of Clinical and Toxicological Analyses, University of São Paulo, Prof. Lineu Prestes, 580, Bloco 18, São Paulo, SP, 05508-000, Brazil
| | - Adalberto Pessoa Junior
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, Prof. Lineu Prestes 580, Bloco 16, São Paulo, SP, 05508-000, Brazil
| | - Attilio Converti
- Department of Civil, Chemical and Environmental Engineering, Pole of Chemical Engineering, University of Genoa, Via Opera Pia 15, 16145, Genoa, Italy.
| |
Collapse
|
8
|
Li L, Huang C, Zhao F, Deng T, Lin Y, Zheng S, Liang S, Han S. Improved production and characterization of Volvariella volvacea Endoglucanase 1 expressed in Pichia pastoris. Protein Expr Purif 2018; 152:107-113. [PMID: 29551715 DOI: 10.1016/j.pep.2018.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/11/2018] [Accepted: 03/11/2018] [Indexed: 01/17/2023]
Abstract
Endoglucanase 1 (EG1) isolated from the straw mushroom has great potential in the textile and paper industries. Improving EG1 expression level will add to its value for industrial applications. In this study, we employed two combined strategies to enhance the expression quantity of EG1, which are increase the copy number of EG1 and enhance the folding and secretion efficiency of EG1 in the endoplasmic reticulum by overexpress HAC1. Multiple plasmids, which contains four copies of EG1, were constructed by isocaudamers, resulted a recombinant strain with EG1 activity up to 39.6 U/mL, 262% higher than that measured in the strain containing only a single copy. A significant increase in activity (151%) was found when eight copies of EG1 was introduced into a different host, compared with a host harboring four copies. Further overexpression of the HAC1 transcription factor in the host harboring eight EG1 copies led to activity of 91.9 U/mL, which is 619% higher than that measured in the original strain. Finally, EG1 activity of 650.1 U/mL was achieved in a 3-L scaled-up fed-batch fermenter and the protein yield was 4.05 g/L. The characteristics of recombinant EG1 were also investigated, the optimal values for enzyme activity were 60 °C and pH 5.0, which yielded a catalytic efficiency of 312.9 mL mg-1min-1 using carboxymethyl cellulose(CMC) as the substrate.
Collapse
Affiliation(s)
- Ling Li
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Cong Huang
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Fengguang Zhao
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Tao Deng
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Ying Lin
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Suiping Zheng
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Shuli Liang
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Shuangyan Han
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
9
|
Dagar VK, Khasa YP. Combined effect of gene dosage and process optimization strategies on high-level production of recombinant human interleukin-3 (hIL-3) in Pichia pastoris fed-batch culture. Int J Biol Macromol 2018; 108:999-1009. [DOI: 10.1016/j.ijbiomac.2017.11.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/30/2017] [Accepted: 11/02/2017] [Indexed: 02/01/2023]
|
10
|
Wang Y, Shu T, Fan P, Zhang H, Turunen O, Xiong H, Yu L. Characterization of a recombinant alkaline thermostable β-mannanase and its application in eco-friendly ramie degumming. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.06.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Ladevèze S, Laville E, Despres J, Mosoni P, Potocki-Véronèse G. Mannoside recognition and degradation by bacteria. Biol Rev Camb Philos Soc 2016; 92:1969-1990. [PMID: 27995767 DOI: 10.1111/brv.12316] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 11/01/2016] [Accepted: 11/11/2016] [Indexed: 11/29/2022]
Abstract
Mannosides constitute a vast group of glycans widely distributed in nature. Produced by almost all organisms, these carbohydrates are involved in numerous cellular processes, such as cell structuration, protein maturation and signalling, mediation of protein-protein interactions and cell recognition. The ubiquitous presence of mannosides in the environment means they are a reliable source of carbon and energy for bacteria, which have developed complex strategies to harvest them. This review focuses on the various mannosides that can be found in nature and details their structure. It underlines their involvement in cellular interactions and finally describes the latest discoveries regarding the catalytic machinery and metabolic pathways that bacteria have developed to metabolize them.
Collapse
Affiliation(s)
- Simon Ladevèze
- LISBP, Université de Toulouse, CNRS, INRA, INSA, 31077, Toulouse, France
| | - Elisabeth Laville
- LISBP, Université de Toulouse, CNRS, INRA, INSA, 31077, Toulouse, France
| | - Jordane Despres
- INRA, UR454 Microbiologie, F-63122, Saint-Genès Champanelle, France
| | - Pascale Mosoni
- INRA, UR454 Microbiologie, F-63122, Saint-Genès Champanelle, France
| | | |
Collapse
|
12
|
Zhang M, Jiang ST, Zheng Z, Li XJ, Luo SZ, Wu XF. Cloning, expression, and characterization of a novel xylose reductase fromRhizopus oryzae. J Basic Microbiol 2015; 55:907-21. [DOI: 10.1002/jobm.201400786] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 01/22/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Min Zhang
- Key Laboratory for Agricultural Products Processing of Anhui Province; School of Biotechnology and Food Engineering; Hefei University of Technology; Hefei Anhui Province P.R. China
| | - Shao-tong Jiang
- Key Laboratory for Agricultural Products Processing of Anhui Province; School of Biotechnology and Food Engineering; Hefei University of Technology; Hefei Anhui Province P.R. China
| | - Zhi Zheng
- Key Laboratory for Agricultural Products Processing of Anhui Province; School of Biotechnology and Food Engineering; Hefei University of Technology; Hefei Anhui Province P.R. China
| | - Xing-jiang Li
- Key Laboratory for Agricultural Products Processing of Anhui Province; School of Biotechnology and Food Engineering; Hefei University of Technology; Hefei Anhui Province P.R. China
| | - Shui-zhong Luo
- Key Laboratory for Agricultural Products Processing of Anhui Province; School of Biotechnology and Food Engineering; Hefei University of Technology; Hefei Anhui Province P.R. China
| | - Xue-feng Wu
- Key Laboratory for Agricultural Products Processing of Anhui Province; School of Biotechnology and Food Engineering; Hefei University of Technology; Hefei Anhui Province P.R. China
| |
Collapse
|