1
|
Lin TY, Mishra VK, Dubey R, Chaturvedi TP, Narayan SA, Fang HW, Tsai LW, Dubey NK. Transcriptomic analysis reveals distinct molecular signatures and regulatory networks of osteoarthritic chondrocytes versus mesenchymal stem cells during chondrogenesis. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2025. [PMID: 40242907 DOI: 10.5507/bp.2025.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Recent regenerative studies imply conflicting results on knee osteoarthritic (OA) chondrocytes and mesenchymal stem cells (MSC)-mediated cartilage constructs in terms of compressive properties and tensile strength. This could be attributed to different gene expression patterns between MSC and OA chondrocytes during chondrogenic differentiation. Therefore, we analyzed differentially expressed genes (DEGs) between OA and MSC-derived chondrocytes using bioinformatics tools. METHODS We downloaded and analyzed the GSE19664 dataset from the Gene Expression Omnibus to identify DEGs. DAVID was used to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, while a protein-protein interaction network of DEGs was constructed through the Search Tool for the Retrieval of Interacting Genes (STRING) and identified hub genes by CytoHubba. RESULTS A total of 43 DEGs identified (15 downregulated and 28 upregulated) were found to be deregulated between OA and MSC-derived chondrocytes. KEGG analysis revealed the enrichment of complement and coagulation cascades and other pathways among the studied chondrocytes. The pathway enrichment identified top KEGG, gene ontology biological process, molecular function, and cellular component. The hub networks identified the top 5 hub genes involved in chondrogenesis, including CLU, PLAT, CP, TIMP3, and SERPINA1. CONCLUSIONS Our results identified significant genes involved in chondrogenesis. These findings provide new avenues for exploring the genetic mechanism underlying cartilage synthesis and novel targets for preclinical intervention and clinical treatment.
Collapse
Affiliation(s)
- Tsung-Yu Lin
- Department of Orthopedic Surgery, Mackay Memorial Hospital, Taipei City 104, Taiwan
- Mackay Junior College of Medicine, Nursing, and Management, New Taipei City 252, Taiwan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106344, Taiwan
| | | | - Rajni Dubey
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Thakur Prasad Chaturvedi
- Division of Orthodontics and Dentofacial Orthopaedics, Faculty of Dental Sciences, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Shankar A Narayan
- Center of Excellence, Akhand Jyoti Eye Hospital, Mastichak, Patna, Bihar 841219, India
| | - Hsu-Wei Fang
- Department of Medicine Research, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Lung-Wen Tsai
- Department of Medicine Research, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Department of Information Technology Office, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei 11031, Taiwan
| | - Navneet Kumar Dubey
- Victory Biotechnology Co., Ltd., Taipei 114757, Taiwan
- Executive Programme in Healthcare Management, Indian Institute of Management Lucknow 226013, India
| |
Collapse
|
2
|
Özlem Özden Akkaya, Nawaz S, Dikmen T, Erdoğan M. Determining the Notch1 Expression in Chondrogenically Differentiated Rat Amniotic Fluid Stem Cells in Alginate Beads Using Conditioned Media from Chondrocytes Culture. BIOL BULL+ 2022. [DOI: 10.1134/s106235902215002x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
3
|
Evenbratt H, Andreasson L, Bicknell V, Brittberg M, Mobini R, Simonsson S. Insights into the present and future of cartilage regeneration and joint repair. CELL REGENERATION (LONDON, ENGLAND) 2022; 11:3. [PMID: 35106664 PMCID: PMC8807792 DOI: 10.1186/s13619-021-00104-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 12/06/2021] [Indexed: 12/23/2022]
Abstract
Knee osteoarthritis is the most common joint disease. It causes pain and suffering for affected patients and is the source of major economic costs for healthcare systems. Despite ongoing research, there is a lack of knowledge regarding disease mechanisms, biomarkers, and possible cures. Current treatments do not fulfill patients' long-term needs, and it often requires invasive surgical procedures with subsequent long periods of rehabilitation. Researchers and companies worldwide are working to find a suitable cell source to engineer or regenerate a functional and healthy articular cartilage tissue to implant in the damaged area. Potential cell sources to accomplish this goal include embryonic stem cells, mesenchymal stem cells, or induced pluripotent stem cells. The differentiation of stem cells into different tissue types is complex, and a suitable concentration range of specific growth factors is vital. The cellular microenvironment during early embryonic development provides crucial information regarding concentrations of signaling molecules and morphogen gradients as these are essential inducers for tissue development. Thus, morphogen gradients implemented in developmental protocols aimed to engineer functional cartilage tissue can potentially generate cells comparable to those within native cartilage. In this review, we have summarized the problems with current treatments, potential cell sources for cell therapy, reviewed the progress of new treatments within the regenerative cartilage field, and highlighted the importance of cell quality, characterization assays, and chemically defined protocols.
Collapse
Affiliation(s)
| | - L. Andreasson
- Cline Scientific AB, SE-431 53 Mölndal, Sweden
- Institute of Biomedicine at Sahlgrenska Academy, Department of Clinical Chemistry and Transfusion Medicine, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - V. Bicknell
- Cline Scientific AB, SE-431 53 Mölndal, Sweden
| | - M. Brittberg
- Cartilage Research Unit, University of Gothenburg, Region Halland Orthopaedics, Kungsbacka Hospital, S-434 80 Kungsbacka, Sweden
| | - R. Mobini
- Cline Scientific AB, SE-431 53 Mölndal, Sweden
| | - S. Simonsson
- Institute of Biomedicine at Sahlgrenska Academy, Department of Clinical Chemistry and Transfusion Medicine, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| |
Collapse
|
4
|
Akaraphutiporn E, Bwalya EC, Kim S, Sunaga T, Echigo R, Okumura M. Effects of pentosan polysulfate on cell proliferation, cell cycle progression and cyclin-dependent kinases expression in canine articular chondrocytes. J Vet Med Sci 2020; 82:1209-1218. [PMID: 32641601 PMCID: PMC7468060 DOI: 10.1292/jvms.20-0091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Pentosan polysulfate (PPS) is a semi-synthetic sulfated polysaccharide compound which has
been shown the benefits on therapeutic treatment for osteoarthritis (OA) and has been
proposed as a disease modifying osteoarthritis drugs (DMOADs). This study investigated the
effects of PPS on cell proliferation, particularly in cell cycle modulation and phenotype
promotion of canine articular chondrocytes (AC). Canine AC were treated with PPS (0–80
µg/ml) for 24, 48 and 72 hr. The effect of PPS on cell
viability, cell proliferation and cell cycle distribution were analyzed by MTT assay, DNA
quantification and flow cytometry. Chondrocyte phenotype was analyzed by quantitative
real-time PCR (qPCR) and glycosaminoglycan (GAG) quantification. PPS significantly reduced
AC proliferation through cell cycle modulation particularly by maintaining a significantly
higher proportion of chondrocytes in the G1 phase and a significantly lower proportion in
the S phase of the cell cycle in a concentration- and time-dependent manner. While the
proportion of chondrocytes in G1 phase corresponded with the significant downregulation of
cyclin-dependent kinase (CDK) 1 and 4.
Furthermore, the study confirms that PPS promotes a chondrogenic phenotype of AC through
significant upregulation of collagen type II (Col2A1) mRNA and GAG
synthesis. The effect of PPS on the inhibition of chondrocyte proliferation while
promoting a chondrocyte phenotype could be beneficial in the early stages of OA treatment,
which transient increase in proliferative activity of chondrocytes with subsequent
phenotypic shift and less productive in an essential component of extracellular matrix
(ECM) is observed.
Collapse
Affiliation(s)
- Ekkapol Akaraphutiporn
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Eugene C Bwalya
- Department of Clinical Studies, Samora Machel School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia
| | - Sangho Kim
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Takafumi Sunaga
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Ryosuke Echigo
- Veterinary Medical Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Masahiro Okumura
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| |
Collapse
|
5
|
Degeneration of Lumbar Intervertebral Discs: Characterization of Anulus Fibrosus Tissue and Cells of Different Degeneration Grades. Int J Mol Sci 2020; 21:ijms21062165. [PMID: 32245213 PMCID: PMC7139657 DOI: 10.3390/ijms21062165] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 01/16/2023] Open
Abstract
Intervertebral disc (IVD) herniation and degeneration is a major source of back pain. In order to regenerate a herniated and degenerated disc, closure of the anulus fibrosus (AF) is of crucial importance. For molecular characterization of AF, genome-wide Affymetrix HG-U133plus2.0 microarrays of native AF and cultured cells were investigated. To evaluate if cells derived from degenerated AF are able to initiate gene expression of a regenerative pattern of extracellular matrix (ECM) molecules, cultivated cells were stimulated with bone morphogenetic protein 2 (BMP2), transforming growth factor β1 (TGFβ1) or tumor necrosis factor-α (TNFα) for 24 h. Comparative microarray analysis of native AF tissues showed 788 genes with a significantly different gene expression with 213 genes more highly expressed in mild and 575 genes in severe degenerated AF tissue. Mild degenerated native AF tissues showed a higher gene expression of common cartilage ECM genes, whereas severe degenerated AF tissues expressed genes known from degenerative processes, including matrix metalloproteinases (MMP) and bone associated genes. During monolayer cultivation, only 164 differentially expressed genes were found. The cells dedifferentiated and altered their gene expression profile. RTD-PCR analyses of BMP2- and TGFβ1-stimulated cells from mild and severe degenerated AF tissue after 24 h showed an increased expression of cartilage associated genes. TNFα stimulation increased MMP1, 3, and 13 expression. Cells derived from mild and severe degenerated tissues could be stimulated to a comparable extent. These results give hope that regeneration of mildly but also strongly degenerated disc tissue is possible.
Collapse
|
6
|
Calikoglu Koyuncu AC, Nayman AH, Telci D, Torun Kose G. Tissue transglutaminase_variant 2-transduced mesenchymal stem cells and their chondrogenic potential. Biotechnol Bioeng 2020; 117:1839-1852. [PMID: 32068240 DOI: 10.1002/bit.27311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/24/2019] [Accepted: 02/16/2020] [Indexed: 11/09/2022]
Abstract
As cartilage is incapable of self-healing upon severe degeneration because of the lack of blood vessels, cartilage tissue engineering is gaining importance in the treatment of cartilage defects. This study was designed to improve cartilage tissue regeneration by expressing tissue transglutaminase variant 2 (TGM2_v2) in mesenchymal stem cells (MSC) derived from bone marrow of rats. For this purpose, rat MSCs transduced with TGM2_v2 were grown and differentiated on three-dimensional polybutylene succinate (PBSu) and poly-l-lactide (PLLA) blend scaffolds. The transduced cells could not only successfully express the short form transglutaminase-2, but also deposited the protein onto the scaffolds. In addition, they could spontaneously produce cartilage-specific proteins without any chondrogenic induction, suggesting that TGM2_v2 expression provided the cells the ability of chondrogenic differentiation. PBSu:PLLA scaffolds loaded with TGM2_v2 expressing MSCs could be used in repair of articular cartilage defects.
Collapse
Affiliation(s)
| | - Ayse Hande Nayman
- Department of Genetics and Bioengineering/Faculty of Engineering, Yeditepe University, İstanbul, Turkey
| | - Dilek Telci
- Department of Genetics and Bioengineering/Faculty of Engineering, Yeditepe University, İstanbul, Turkey
| | - Gamze Torun Kose
- Department of Genetics and Bioengineering/Faculty of Engineering, Yeditepe University, İstanbul, Turkey
| |
Collapse
|
7
|
Munir N, McDonald A, Callanan A. A combinatorial approach: Cryo-printing and electrospinning hybrid scaffolds for cartilage tissue engineering. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.bprint.2019.e00056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
8
|
Mantripragada VP, Bova WA, Piuzzi NS, Boehm C, Obuchowski NA, Midura RJ, Muschler GF. Native-Osteoarthritic Joint Resident Stem and Progenitor Cells for Cartilage Cell-Based Therapies: A Quantitative Comparison With Respect to Concentration and Biological Performance. Am J Sports Med 2019; 47:3521-3530. [PMID: 31671273 DOI: 10.1177/0363546519880905] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Cell-based therapy for cartilage repair is a promising approach and is becoming an established technique. Yet, there is no consensus on the optimal cell source. PURPOSE To provide a donor-matched quantitative comparison of the connective tissue progenitors (CTPs) derived from cartilage (Outerbridge grade 1-3 [G1-2-3]), bone marrow aspirate concentrate (BMC), infrapatellar fat pad (IPFP), synovium, and periosteum with respect to (1) cell concentration ([Cell], cells/mL), (2) CTP prevalence (PCTP, colonies per million cells), and (3) biological performance based on in vitro proliferation potential (cells per colony) colony density, and differentiation potential (expression of negatively charged extracellular matrix: glycosaminoglycan-rich extra cellular matrix [GAG-ECM]). STUDY DESIGN Descriptive laboratory study. METHODS Tissues were obtained from 10 patients undergoing total knee arthroplasty (mean age, 59 years; women, n = 6). Automated quantitative colony-forming unit analysis was used to compare [Cell], PCTP, and CTP biological performance across tissue sources. RESULTS [Cell] was highest in grade 3 cartilage (P = .002) and BMC (P = .001). Median PCTP was highest in IPFP (P = .001), synovium (P = .003), and G1-2 cartilage (P = .02). Proliferation was highest in synovium-derived CTPs (P < .001). Median colony density was highest in G1-2-3 (P < .001). Median GAG-ECM was highest in G1-2-3 (P < .001). Within each patient, CTPs derived from all tissues were highly heterogeneous in biological performance as determined by cells per colony, density, and GAG-ECM. CONCLUSION Tissue sources differ in [Cell], PCTP, and biological attributes. The data presented in this study suggest that cartilage (G1-2-3) is the preferred tissue source for cartilage repair based on PCTP and GAG-ECM, followed by synovium, IPFP, BMC, and periosteum. However, due to the heterogeneous mixture of CTPs within each tissue source, there exists a subset of CTPs with biological performance similar to G1-2-3 cartilage, particularly in synovium and IPFP. Performance-based clonal selection and expansion of preferred CTPs and their progeny will potentially lead to improved cell population with predictive future. CLINICAL RELEVANCE Optimal tissue regeneration strategies will require informed decisions regarding which of the available tissue sources to use. Optimizing cell sourcing in any tissue may require separation of CTPs with preferred attributes from those with less desirable attributes. The heterogeneity manifest in the early stage of colony formation represents an opportunity for performance-based clone selection for clinical cell processing and manufacturing.
Collapse
Affiliation(s)
- Venkata P Mantripragada
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Wes A Bova
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Nicolas S Piuzzi
- Department of Orthopedic Surgery, Cleveland Clinic, Cleveland, Ohio, USA
| | - Cynthia Boehm
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Nancy A Obuchowski
- Department of Quantitative Health Science, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ronald J Midura
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - George F Muschler
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Orthopedic Surgery, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
9
|
Rathan S, Dejob L, Schipani R, Haffner B, Möbius ME, Kelly DJ. Fiber Reinforced Cartilage ECM Functionalized Bioinks for Functional Cartilage Tissue Engineering. Adv Healthc Mater 2019; 8:e1801501. [PMID: 30624015 DOI: 10.1002/adhm.201801501] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Indexed: 01/17/2023]
Abstract
Focal articular cartilage (AC) defects, if left untreated, can lead to debilitating diseases such as osteoarthritis. While several tissue engineering strategies have been developed to promote cartilage regeneration, it is still challenging to generate functional AC capable of sustaining high load-bearing environments. Here, a new class of cartilage extracellular matrix (cECM)-functionalized alginate bioink is developed for the bioprinting of cartilaginous tissues. The bioinks are 3D-printable, support mesenchymal stem cell (MSC) viability postprinting and robust chondrogenesis in vitro, with the highest levels of COLLII and ACAN expression observed in bioinks containing the highest concentration of cECM. Enhanced chondrogenesis in cECM-functionalized bioinks is also associated with progression along an endochondral-like pathway, as evident by increases in RUNX2 expression and calcium deposition in vitro. The bioinks loaded with MSCs and TGF-β3 are also found capable of supporting robust chondrogenesis, opening the possibility of using such bioinks for direct "print-and-implant" cartilage repair strategies. Finally, it is demonstrated that networks of 3D-printed polycaprolactone fibers with compressive modulus comparable to native AC can be used to mechanically reinforce these bioinks, with no loss in cell viability. It is envisioned that combinations of such biomaterials can be used in multiple-tool biofabrication strategies for the bioprinting of biomimetic cartilaginous implants.
Collapse
Affiliation(s)
- Swetha Rathan
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Léa Dejob
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
- Ecole Nationale Supérieure de Chimie de Mulhouse, Université de Haute-Alsace, 68200, Mulhouse, France
| | - Rossana Schipani
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland
| | | | | | - Daniel J Kelly
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland
- Department of Anatomy, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| |
Collapse
|
10
|
Caballero Méndez L, Gaviria Arias D. Desarrollo y caracterización de películas de fibroina de seda para reparación condral. REVISTA COLOMBIANA DE BIOTECNOLOGÍA 2019. [DOI: 10.15446/rev.colomb.biote.v21n1.73137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
La fibroína de seda es una proteína que ha demostrado ser un biomaterial con gran potencial en medicina regenerativa, por suscaracterísticas de biocompatibilidad y su amplia posibilidad de modificación estructural permite ser usada como andamio favore-ciendo procesos de crecimiento, diferenciación celular y la regeneración del tejido afectado.En este estudio se utilizaron capullos de gusano de seda Bombyx moriL., para la fabricación de películas de fibroína, los capullos fueron desgomados utilizando Na2CO30,02M, la fibroína obtenida se disolvió con LiBr 9,3M, el cual fue eliminado mediante diáli-sis y finalmente la solución de fibroína fue concentrada mediante contradiálisis. La fibroína fue servida en cajas de poliestireno, se-cadas a 90°C/24 horas y esterilizadas con etanol al 70%. Células madre mesenquimales fueron sembradas sobre estas películas de fibroína e inducidas a diferenciación utilizando un medio condrogénico especifico. La diferenciación fue evaluada por triplicadoa los 14 y 21 días mediante extracción de ARN total, síntesis de ADN copia y amplificación por PCR de un grupo de genes específi-cos de cartílago empleando cebadores específicos.Se fabricaron películas de fibroína estables y resistentes que permitieron el crecimiento y la multiplicación celular, así como la dife-renciación condrogénica evidenciada por la expresión de genes condrogenicos, no se afectó la viabilidad ni el recuento celular, las células interactuaron con el andamio evidenciado por el área de tapizado formado sobre la superficie de la película de fibroína.Finalmente se concluye que la fibroína de seda es un biomaterial que puede servir de andamio potencial para la regeneración de lesiones articulares.
Collapse
|
11
|
Bwalya EC, Wijekoon HS, Fang J, Kim S, Hosoya K, Okumura M. Independent chondrogenic potential of canine bone marrow-derived mesenchymal stem cells in monolayer expansion cultures decreases in a passage-dependent pattern. J Vet Med Sci 2018; 80:1681-1687. [PMID: 30210068 PMCID: PMC6261819 DOI: 10.1292/jvms.18-0202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Although chondroinductive growth factors are considered necessary for chondrogenesis of bone marrow-derived mesenchymal stem cells (BMSC), independent and spontaneous chondrogenesis has
been previously demonstrated in adult horses, bovine calves and adult human BMSC. Surprisingly, adult canine BMSC under similar culture conditions previously failed to demonstrate
chondrogenesis. The present study evaluated independent chondrogenic potential of BMSC sourced from three young dogs in the absence of known chondroinductive factors. BMSC were culture
expanded in 10% DMEM up to third passage (P3). At each passage, the phenotype of BMSC was evaluated by RT-PCR gel electrophoresis and qPCR. BMSC exhibited a chondrogenic phenotype in the
absence of dexamethasone and TGF-β1 as verified by the expression of Sox-9, type II collagen and aggrecan. Sox-9 was
significantly downregulated (P<0.05) from P1−P3 compared to P0 while type II and X collagen, and aggrecan were
significantly downregulated at P3 compared to P0. There was a significant (P<0.01) negative correlation between passaging and Sox-9, type II
collagen and aggrecan gene expression. These results indicate that independent chondrogenic potential and phenotype retention of BMSC decreases in a
passage-dependent pattern. Therefore, caution should be exercised for future experiments evaluating the chondrogenic potential of BMSC after extensive expansion cultures in 10% DMEM.
Collapse
Affiliation(s)
- Eugene C Bwalya
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Hm Suranji Wijekoon
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Jing Fang
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Sangho Kim
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Kenji Hosoya
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Masahiro Okumura
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| |
Collapse
|
12
|
Pleumeekers MM, Nimeskern L, Koevoet JLM, Karperien M, Stok KS, van Osch GJVM. Trophic effects of adipose-tissue-derived and bone-marrow-derived mesenchymal stem cells enhance cartilage generation by chondrocytes in co-culture. PLoS One 2018; 13:e0190744. [PMID: 29489829 PMCID: PMC5830031 DOI: 10.1371/journal.pone.0190744] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 12/10/2017] [Indexed: 01/22/2023] Open
Abstract
AIMS Combining mesenchymal stem cells (MSCs) and chondrocytes has great potential for cell-based cartilage repair. However, there is much debate regarding the mechanisms behind this concept. We aimed to clarify the mechanisms that lead to chondrogenesis (chondrocyte driven MSC-differentiation versus MSC driven chondroinduction) and whether their effect was dependent on MSC-origin. Therefore, chondrogenesis of human adipose-tissue-derived MSCs (hAMSCs) and bone-marrow-derived MSCs (hBMSCs) combined with bovine articular chondrocytes (bACs) was compared. METHODS hAMSCs or hBMSCs were combined with bACs in alginate and cultured in vitro or implanted subcutaneously in mice. Cartilage formation was evaluated with biochemical, histological and biomechanical analyses. To further investigate the interactions between bACs and hMSCs, (1) co-culture, (2) pellet, (3) Transwell® and (4) conditioned media studies were conducted. RESULTS The presence of hMSCs-either hAMSCs or hBMSCs-increased chondrogenesis in culture; deposition of GAG was most evidently enhanced in hBMSC/bACs. This effect was similar when hMSCs and bAC were combined in pellet culture, in alginate culture or when conditioned media of hMSCs were used on bAC. Species-specific gene-expression analyses demonstrated that aggrecan was expressed by bACs only, indicating a predominantly trophic role for hMSCs. Collagen-10-gene expression of bACs was not affected by hBMSCs, but slightly enhanced by hAMSCs. After in-vivo implantation, hAMSC/bACs and hBMSC/bACs had similar cartilage matrix production, both appeared stable and did not calcify. CONCLUSIONS This study demonstrates that replacing 80% of bACs by either hAMSCs or hBMSCs does not influence cartilage matrix production or stability. The remaining chondrocytes produce more matrix due to trophic factors produced by hMSCs.
Collapse
Affiliation(s)
- M. M. Pleumeekers
- Department of Otorhinolaryngology, Head and Neck surgery, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - L. Nimeskern
- Institute for Biomechanics, ETH, Zürich, Switzerland
| | - J. L. M. Koevoet
- Department of Otorhinolaryngology, Head and Neck surgery, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- Department of Orthopaedics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - M. Karperien
- Department of Tissue Regeneration, MIRA-institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, the Netherlands
| | - K. S. Stok
- Institute for Biomechanics, ETH, Zürich, Switzerland
| | - G. J. V. M. van Osch
- Department of Otorhinolaryngology, Head and Neck surgery, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- Department of Orthopaedics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- * E-mail:
| |
Collapse
|
13
|
Anderson BA, McAlinden A. miR-483 targets SMAD4 to suppress chondrogenic differentiation of human mesenchymal stem cells. J Orthop Res 2017; 35:2369-2377. [PMID: 28244607 PMCID: PMC5573664 DOI: 10.1002/jor.23552] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/18/2017] [Indexed: 02/04/2023]
Abstract
MicroRNAs (miRNAs) can regulate cellular differentiation processes by modulating multiple pathways simultaneously. Previous studies to analyze in vivo miRNA expression patterns in developing human limb cartilage tissue identified significant downregulation of miR-483 in hypertrophic chondrocytes relative to proliferating and differentiated chondrocytes. To test the function of miR-483 during chondrogenesis, lentiviral strategies were used to overexpress miR-483 during in vitro chondrogenesis of human bone marrow-derived mesenchymal stem cells (hBM-MSCs). While the in vivo expression patterns led us to hypothesize that miR-483 may enhance chondrogenesis or suppress hypertrophic marker expression, surprisingly, miR-483 overexpression reduced chondrocyte gene expression and cartilage matrix production. In addition, cell death was induced at later stages of the chondrogenesis assay. Mechanistic studies revealed that miR-483 overexpression resulted in downregulation of the TGF-β pathway member SMAD4, a known direct target of miR-483-3p. From these studies, we conclude that constitutive overexpression of miR-483 in hBM-MSCs inhibits chondrogenesis of these cells and does not represent an effective strategy to attempt to enhance chondrocyte differentiation and anabolism in this system in vitro. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2369-2377, 2017.
Collapse
Affiliation(s)
- Britta A. Anderson
- Department of Orthopaedic Surgery, Washington University School of Medicine, 600 S. Euclid Ave., St. Louis, MO 63110
| | - Audrey McAlinden
- Department of Orthopaedic Surgery, Washington University School of Medicine, 600 S. Euclid Ave., St. Louis, MO 63110,Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO,Corresponding author:: , Phone: (314) 454-8860
| |
Collapse
|
14
|
Gelatin Scaffolds Containing Partially Sulfated Cellulose Promote Mesenchymal Stem Cell Chondrogenesis. Tissue Eng Part A 2017; 23:1011-1021. [DOI: 10.1089/ten.tea.2016.0461] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
15
|
Improving cartilage phenotype from differentiated pericytes in tunable peptide hydrogels. Sci Rep 2017; 7:6895. [PMID: 28761049 PMCID: PMC5537289 DOI: 10.1038/s41598-017-07255-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/26/2017] [Indexed: 01/03/2023] Open
Abstract
Differentiation of stem cells to chondrocytes in vitro usually results in a heterogeneous phenotype. This is evident in the often detected over expression of type X collagen which, in hyaline cartilage structure is not characteristic of the mid-zone but of the deep-zone ossifying tissue. Methods to better match cartilage developed in vitro to characteristic in vivo features are therefore highly desirable in regenerative medicine. This study compares phenotype characteristics between pericytes, obtained from human adipose tissue, differentiated using diphenylalanine/serine (F2/S) peptide hydrogels with the more widely used chemical induced method for chondrogenesis. Significantly higher levels of type II collagen were noted when pericytes undergo chondrogenesis in the hydrogel in the absence of induction media. There is also a balanced expression of collagen relative to aggrecan production, a feature which was biased toward collagen production when cells were cultured with induction media. Lastly, metabolic profiles of each system show considerable overlap between both differentiation methods but subtle differences which potentially give rise to their resultant phenotype can be ascertained. The study highlights how material and chemical alterations in the cellular microenvironment have wide ranging effects on resultant tissue type.
Collapse
|
16
|
Combined effects of oscillating hydrostatic pressure, perfusion and encapsulation in a novel bioreactor for enhancing extracellular matrix synthesis by bovine chondrocytes. Cell Tissue Res 2017; 370:179-193. [PMID: 28687928 DOI: 10.1007/s00441-017-2651-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 05/16/2017] [Indexed: 01/10/2023]
Abstract
The influence of combined shear stress and oscillating hydrostatic pressure (OHP), two forms of physical forces experienced by articular cartilage (AC) in vivo, on chondrogenesis, is investigated in a unique bioreactor system. Our system introduces a single reaction chamber design that does not require transfer of constructs after seeding to a second chamber for applying the mechanical forces, and, as such, biochemical and mechanical stimuli can be applied in combination. The biochemical and mechanical properties of bovine articular chondrocytes encapsulated in agarose scaffolds cultured in our bioreactors for 21 days are compared to cells statically cultured in agarose scaffolds in addition to static micromass and pellet cultures. Our findings indicate that glycosaminoglycan and collagen secretions were enhanced by at least 1.6-fold with scaffold encapsulation, 5.9-fold when adding 0.02 Pa of shear stress and 7.6-fold with simultaneous addition of 4 MPa of OHP when compared to micromass samples. Furthermore, shear stress and OHP have chondroprotective effects as evidenced by lower mRNA expression of β1 integrin and collagen X to non-detectable levels and an absence of collagen I upregulation as observed in micromass controls. These collective results are further supported by better mechanical properties as indicated by 1.6-19.8-fold increases in elastic moduli measured by atomic force microscopy.
Collapse
|
17
|
Abstract
Background and purpose - Cartilage damage can develop due to trauma, resulting in focal chondral or osteochondral defects, or as more diffuse loss of cartilage in a generalized organ disease such as osteoarthritis. A loss of cartilage function and quality is also seen with increasing age. There is a spectrum of diseases ranging from focal cartilage defects with healthy surrounding cartilage to focal lesions in degenerative cartilage, to multiple and diffuse lesions in osteoarthritic cartilage. At the recent Aarhus Regenerative Orthopaedics Symposium (AROS) 2015, regenerative challenges in an ageing population were discussed by clinicians and basic scientists. A group of clinicians was given the task of discussing the role of tissue engineering in the treatment of degenerative cartilage lesions in ageing patients. We present the outcomes of our discussions on current treatment options for such lesions, with particular emphasis on different biological repair techniques and their supporting level of evidence. Results and interpretation - Based on the studies on treatment of degenerative lesions and early OA, there is low-level evidence to suggest that cartilage repair is a possible treatment for such lesions, but there are conflicting results regarding the effect of advanced age on the outcome. We concluded that further improvements are needed for direct repair of focal, purely traumatic defects before we can routinely use such repair techniques for the more challenging degenerative lesions. Furthermore, we need to identify trigger mechanisms that start generalized loss of cartilage matrix, and induce subchondral bone changes and concomitant synovial pathology, to maximize our treatment methods for biological repair in degenerative ageing joints.
Collapse
Affiliation(s)
- Mats Brittberg
- Cartilage Research Unit, University of Gothenburg, Region Halland Orthopaedics, Kungsbacka Hospital, Kungsbacka, Sweden,Correspondence:
| | - Andreas H Gomoll
- Harvard Medical School, Cartilage Repair Center, Brigham and Women’s Hospital, Boston, MA
| | - José A Canseco
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA
| | - Jack Far
- Indiana University School of Medicine, OrthoIndy Cartilage Restoration Center, Indianapolis, IN, USA
| | - Martin Lind
- Division of Sports Traumatology, Department of Orthopedics, Aarhus University Hospital, Århus, Denmark
| | - James Hui
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University Singapore, Singapore
| |
Collapse
|
18
|
Chondrogenic Potency Analyses of Donor-Matched Chondrocytes and Mesenchymal Stem Cells Derived from Bone Marrow, Infrapatellar Fat Pad, and Subcutaneous Fat. Stem Cells Int 2016; 2016:6969726. [PMID: 27781068 PMCID: PMC5066011 DOI: 10.1155/2016/6969726] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/04/2016] [Indexed: 12/25/2022] Open
Abstract
Autologous chondrocyte implantation (ACI) is a cell-based therapy that has been used clinically for over 20 years to treat cartilage injuries more efficiently in order to negate or delay the need for joint replacement surgery. In this time, very little has changed in the ACI procedure, but now many centres are considering or using alternative cell sources for cartilage repair, in particular mesenchymal stem cells (MSCs). In this study, we have tested the chondrogenic potential of donor-matched MSCs derived from bone marrow (BM), infrapatellar fat pad (FP), and subcutaneous fat (SCF), compared to chondrocytes. We have confirmed that there is a chondrogenic potency hierarchy ranging across these cell types, with the most potent being chondrocytes, followed by FP-MSCs, BM-MSCs, and lastly SCF-MSCs. We have also examined gene expression and surface marker profiles in a predictive model to identify cells with enhanced chondrogenic potential. In doing so, we have shown that Sox-9, Alk-1, and Coll X expressions, as well as immunopositivity for CD49c and CD39, have predictive value for all of the cell types tested in indicating chondrogenic potency. The findings from this study have significant clinical implications for the refinement and development of novel cell-based cartilage repair strategies.
Collapse
|
19
|
Mesenchymal Stem Cells Subpopulations: Application for Orthopedic Regenerative Medicine. Stem Cells Int 2016; 2016:3187491. [PMID: 27725838 PMCID: PMC5048051 DOI: 10.1155/2016/3187491] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/10/2016] [Accepted: 08/07/2016] [Indexed: 12/21/2022] Open
Abstract
Research on mesenchymal stem cells (MSCs) continues to progress rapidly. Nevertheless, the field faces several challenges, such as inherent cell heterogeneity and the absence of unique MSCs markers. Due to MSCs' ability to differentiate into multiple tissues, these cells represent a promising tool for new cell-based therapies. However, for tissue engineering applications, it is critical to start with a well-defined cell population. Additionally, evidence that MSCs subpopulations may also feature distinct characteristics and regeneration potential has arisen. In this report, we present an overview of the identification of MSCs based on the expression of several surface markers and their current tissue sources. We review the use of MSCs subpopulations in recent years and the main methodologies that have addressed their isolation, and we emphasize the most-used surface markers for selection, isolation, and characterization. Next, we discuss the osteogenic and chondrogenic differentiation from MSCs subpopulations. We conclude that MSCs subpopulation selection is not a minor concern because each subpopulation has particular potential for promoting the differentiation into osteoblasts and chondrocytes. The accurate selection of the subpopulation advances possibilities suitable for preclinical and clinical studies and determines the safest and most efficacious regeneration process.
Collapse
|
20
|
Locatelli F, Algeri M, Trevisan V, Bertaina A. Remestemcel-L for the treatment of graft versus host disease. Expert Rev Clin Immunol 2016; 13:43-56. [PMID: 27399600 DOI: 10.1080/1744666x.2016.1208086] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Remestemcel-L, a third-party, off-the-shelf preparation of bone-marrow derived mesenchymal stromal cells (MSCs), has been developed for experimental use in acute graft-versus-host disease (aGvHD) and other immune-mediated conditions. Several preclinical and clinical studies have indeed suggested the potential of human mesenchymal stromal cells (MSCs) as an effective treatment for steroid-refractory aGvHD. However, an unambiguous demonstration of efficacy is still lacking. Areas covered: This review critically examines the biologic rationale supporting MSCs use in aGvHD and analyzes the results of published clinical trials in this setting, with a particular focus on the potential benefits and drawbacks of Remestemcel-L. For this purpose, a systematic literature search was performed in PubMed using the following keywords: 'mesenchymal stromal cells', 'mesenchymal progenitor cells', 'multipotent stromal cells', 'mesenchymal cells', 'MSC', 'Remestemcel-L', 'Prochymal', and 'graft-versus-host disease' or 'GvHD'. Expert commentary: Remestemcel-L represents a promising alternative to second-line immunosuppressive agents for the treatment of steroid-refractory aGvHD. Despite the safety and the favorable risk/benefit profile of this cell product, which has been demonstrated in several phase I-II studies, large and prospective randomized trials are required to confirm its efficacy in aGvHD and to define the optimal schedule of administration in terms of infusion timing, cell dose and pharmacological synergism.
Collapse
Affiliation(s)
- F Locatelli
- a Department of Pediatric Hematology-Oncology , IRCCS, Bambino Gesù Children's Hospital , Rome , Italy.,b Department of Pediatrics , University of Pavia , Pavia , Italy
| | - M Algeri
- a Department of Pediatric Hematology-Oncology , IRCCS, Bambino Gesù Children's Hospital , Rome , Italy
| | - V Trevisan
- a Department of Pediatric Hematology-Oncology , IRCCS, Bambino Gesù Children's Hospital , Rome , Italy
| | - A Bertaina
- a Department of Pediatric Hematology-Oncology , IRCCS, Bambino Gesù Children's Hospital , Rome , Italy
| |
Collapse
|
21
|
Lindahl A. From gristle to chondrocyte transplantation: treatment of cartilage injuries. Philos Trans R Soc Lond B Biol Sci 2016; 370:20140369. [PMID: 26416680 DOI: 10.1098/rstb.2014.0369] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
This review addresses the progress in cartilage repair technology over the decades with an emphasis on cartilage regeneration with cell therapy. The most abundant cartilage is the hyaline cartilage that covers the surface of our joints and, due to avascularity, this tissue is unable to repair itself. The cartilage degeneration seen in osteoarthritis causes patient suffering and is a huge burden to society. The surgical approach to cartilage repair was non-existing until the 1950s when new surgical techniques emerged. The use of cultured cells for cell therapy started as experimental studies in the 1970s that developed over the years to a clinical application in 1994 with the introduction of the autologous chondrocyte transplantation technique (ACT). The technology is now spread worldwide and has been further refined by combining arthroscopic techniques with cells cultured on matrix (MACI technology). The non-regenerating hypothesis of cartilage has been revisited and we are now able to demonstrate cell divisions and presence of stem-cell niches in the joint. Furthermore, cartilage derived from human embryonic stem cells and induced pluripotent stem cells could be the base for new broader cell treatments for cartilage injuries and the future technology base for prevention and cure of osteoarthritis.
Collapse
Affiliation(s)
- Anders Lindahl
- Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, and Institute of Biomedicine, Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska University Hospital, SE413 45 Gothenburg, Sweden
| |
Collapse
|
22
|
Liu S, Tay LM, Anggara R, Chuah YJ, Kang Y. Long-Term Tracking Mesenchymal Stem Cell Differentiation with Photostable Fluorescent Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2016; 8:11925-33. [PMID: 27124820 DOI: 10.1021/acsami.5b12371] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Mesenchymal stem cells (MSCs) have proved to be a promising and abundant cell source for tissue and organ repair in regenerative medicine. However, the cell fate, distribution and migration of these transplanted cells are still unclear due to the limited tracking methods. It is desirable to develop a biocompatible and photostable probe to label the MSCs for long-term tracking without affecting the cell proliferation and potency. Herein we apply a recently developed nanoprobe system, in which di(thiophene-2-yl)-diketopyrrolopyrrole (DPP) is covalently linked in the middle of polycaprolactone (PCL) forming the PCL-DPP-PCL polymer complex. Although the PCL-DPP-PCL nanoparticles uptaken by the MSCs did not affect the cell viability, it was interesting that they exhibited different effects on the multilineage potency of the MSCs in the subsequent differentiation in vitro. Specifically, we found that the PCL-DPP-PCL labeling was unfavorable to the MSC osteogenic differentiation, whereas the labeled MSCs exhibited the same adipogenic and chondrogenic differentiations compared to the unlabeled controls as verified by gene expressions and histological staining. Furthermore, the PCL-DPP-PCL nanoparticles remained strong fluorescence intensity even after 4 weeks of differentiation. This study indicated that PCL-DPP-PCL nanoparticles could be used for long-term cell tracing in MSC differentiation into adipogenic and chondrogenic lineages.
Collapse
Affiliation(s)
- Shiying Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 62 Nanyang Drive, Singapore 637459, Singapore
| | - Li Min Tay
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 62 Nanyang Drive, Singapore 637459, Singapore
- Nanyang Institute of Technology in Health & Medicine, Interdisciplinary Graduate School, Nanyang Technological University , Singapore
| | - Raditya Anggara
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 62 Nanyang Drive, Singapore 637459, Singapore
| | - Yon Jin Chuah
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 62 Nanyang Drive, Singapore 637459, Singapore
| | - Yuejun Kang
- Faculty of Materials and Energy, Institute for Clean Energy and Advanced Materials, Southwest University , 2 Tiansheng Road, Beibei, Chongqing 400715, China
| |
Collapse
|
23
|
Cartilage Regeneration in the Head and Neck Area: Combination of Ear or Nasal Chondrocytes and Mesenchymal Stem Cells Improves Cartilage Production. Plast Reconstr Surg 2016; 136:762e-774e. [PMID: 26267395 DOI: 10.1097/prs.0000000000001812] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Cartilage tissue engineering can offer promising solutions for restoring cartilage defects in the head and neck area and has the potential to overcome limitations of current treatments. However, to generate a construct of reasonable size, large numbers of chondrocytes are required, which limits its current applicability. Therefore, the authors evaluate the suitability of a combination of cells for cartilage regeneration: bone marrow-derived mesenchymal stem cells and ear or nasal chondrocytes. METHODS Human bone marrow-derived mesenchymal stem cells were encapsulated in alginate hydrogel as single-cell-type populations or in combination with bovine ear chondrocytes or nasal chondrocytes at an 80:20 ratio. Constructs were either cultured in vitro or implanted directly subcutaneously into mice. Cartilage formation was evaluated with biochemical and biomechanical analyses. The use of a xenogeneic coculture system enabled the analyses of the contribution of the individual cell types using species-specific gene-expression analyses. RESULTS In vivo, human bone marrow-derived mesenchymal stem cells/bovine ear chondrocytes or human bone marrow-derived mesenchymal stem cells/bovine nasal chondrocytes contained amounts of cartilage components similar to those of constructs containing chondrocytes only (i.e., bovine ear and nasal chondrocytes). In vitro, species-specific gene-expression analyses demonstrated that aggrecan was expressed by the chondrocytes only, which suggests a more trophic role for human bone marrow-derived mesenchymal stem cells. Furthermore, the additional effect of human bone marrow-derived mesenchymal stem cells was more pronounced in combination with bovine nasal chondrocytes. CONCLUSIONS By supplementing low numbers of bovine ear or nasal chondrocytes with human bone marrow-derived mesenchymal stem cells, the authors were able to engineer cartilage constructs with properties similar to those of constructs containing chondrocytes only. This makes the procedure more feasible for future applicability in the reconstruction of cartilage defects in the head and neck area because fewer chondrocytes are required.
Collapse
|
24
|
Papadimitriou N, Li S, Barreto Henriksson H. Iron Sucrose-Labeled Human Mesenchymal Stem Cells: In Vitro Multilineage Capability and In Vivo Traceability in a Lapine Xenotransplantation Model. Stem Cells Dev 2015; 24:2403-12. [DOI: 10.1089/scd.2015.0140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Nikolaos Papadimitriou
- Department of Orthopedics, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
- Department of Orthopedics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Susann Li
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, Gothenburg University, Gothenburg, Sweden
| | - Helena Barreto Henriksson
- Department of Orthopedics, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
- Department of Orthopedics, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
25
|
de Windt TS, Saris DBF, Slaper-Cortenbach ICM, van Rijen MHP, Gawlitta D, Creemers LB, de Weger RA, Dhert WJA, Vonk LA. Direct Cell-Cell Contact with Chondrocytes Is a Key Mechanism in Multipotent Mesenchymal Stromal Cell-Mediated Chondrogenesis. Tissue Eng Part A 2015; 21:2536-47. [PMID: 26166387 DOI: 10.1089/ten.tea.2014.0673] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Using a combination of articular chondrocytes (ACs) and mesenchymal stromal cells (MSCs) has shown to be a viable option for a single-stage cell-based treatment of focal cartilage defects. However, there is still considerable debate whether MSCs differentiate or have a chondroinductive role through trophic factors. In addition, it remains unclear whether direct cell-cell contact is necessary for chondrogenesis. Therefore, the aim of this study was to investigate whether direct or indirect cell-cell contact between ACs and MSCs is essential for increased cartilage production in different cellular environments and elucidate the mechanisms behind these cellular interactions. Human ACs and MSCs were cultured in a 10:90 ratio in alginate beads, fibrin scaffolds, and pellets. Cells were mixed in direct cocultures, separated by a Transwell filter (indirect cocultures), or cultured with conditioned medium. Short tandem repeat analysis revealed that the percentages of ACs increased during culture, while those of MSCs decreased, with the biggest change in fibrin glue scaffolds. For alginate, where the lack of cell-cell contact could be confirmed by histological analysis, no difference was found in matrix production between direct and indirect cocultures. For fibrin scaffolds and pellet cultures, an increased glycosaminoglycan production and type II collagen deposition were found in direct cocultures compared with indirect cocultures and conditioned medium. Positive connexin 43 staining and transfer of cytosolic calcein indicated communication through gap junctions in direct cocultures. Taken together, these results suggest that MSCs stimulate cartilage formation when placed in close proximity to chondrocytes and that direct cell-cell contact and communication through gap junctions are essential in this chondroinductive interplay.
Collapse
Affiliation(s)
- Tommy S de Windt
- 1 Department of Orthopaedics, University Medical Center Utrecht , Utrecht, The Netherlands
| | - Daniel B F Saris
- 1 Department of Orthopaedics, University Medical Center Utrecht , Utrecht, The Netherlands .,2 MIRA Institute for Biotechnology and Technical Medicine, University Twente , Enschede, The Netherlands
| | - Ineke C M Slaper-Cortenbach
- 3 Cell Therapy Facility, Department of Clinical Pharmacy, University Medical Center Utrecht , Utrecht, The Netherlands
| | - Mattie H P van Rijen
- 1 Department of Orthopaedics, University Medical Center Utrecht , Utrecht, The Netherlands
| | - Debby Gawlitta
- 1 Department of Orthopaedics, University Medical Center Utrecht , Utrecht, The Netherlands
| | - Laura B Creemers
- 1 Department of Orthopaedics, University Medical Center Utrecht , Utrecht, The Netherlands
| | - Roel A de Weger
- 4 Department of Pathology, University Medical Center Utrecht , Utrecht, The Netherlands
| | - Wouter J A Dhert
- 5 Faculty of Veterinary Medicine, University of Utrecht , Utrecht, The Netherlands
| | - Lucienne A Vonk
- 1 Department of Orthopaedics, University Medical Center Utrecht , Utrecht, The Netherlands
| |
Collapse
|
26
|
Gaut C, Sugaya K. Critical review on the physical and mechanical factors involved in tissue engineering of cartilage. Regen Med 2015; 10:665-79. [DOI: 10.2217/rme.15.31] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Articular cartilage defects often progress to osteoarthritis, which negatively impacts quality of life for millions of people worldwide and leads to high healthcare expenditures. Tissue engineering approaches to osteoarthritis have concentrated on proliferation and differentiation of stem cells by activation and suppression of signaling pathways, and by using a variety of scaffolding techniques. Recent studies indicate a key role of environmental factors in the differentiation of mesenchymal stem cells to mature cartilage-producing chondrocytes. Therapeutic approaches that consider environmental regulation could optimize chondrogenesis protocols for regeneration of articular cartilage. This review focuses on the effect of scaffold structure and composition, mechanical stress and hypoxia in modulating mesenchymal stem cell fate and the current use of these environmental factors in tissue engineering research.
Collapse
Affiliation(s)
- Carrie Gaut
- INDICASAT-AIP, Ciudad de Saber, Clayton, Apartado 0843-01103, Panama, Rep. de Panama
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, Andhra Pradesh 522510, India
| | - Kiminobu Sugaya
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL 32827, USA
| |
Collapse
|
27
|
Abstract
There are several choices of cells to use for cartilage repair. Cells are used as internal or external sources and sometimes in combination. In this article, an analysis of the different cell choices and their use and potential is provided. Embryonic cartilage formation is of importance when finding more about how to be able to perfect cartilage repair. Some suggestions for near future research based on up-to-date knowledge on chondrogenic cells are given to hopefully stimulate more studies on the final goal of cartilage regeneration.
Collapse
Affiliation(s)
- Mats Brittberg
- Cartilage Research Unit, University of Gothenburg, Gothenburg, Sweden,Region Halland Orthopaedics, Kungsbacka Hospital, Kungsbacka, Sweden
| |
Collapse
|
28
|
Handorf AM, Chamberlain CS, Li WJ. Endogenously produced Indian Hedgehog regulates TGFβ-driven chondrogenesis of human bone marrow stromal/stem cells. Stem Cells Dev 2015; 24:995-1007. [PMID: 25519748 DOI: 10.1089/scd.2014.0266] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human bone marrow stromal/stem cells (hBMSCs) have an inherent tendency to undergo hypertrophy when induced into the chondrogenic lineage using transforming growth factor-beta 1 (TGFβ) in vitro, reminiscent of what occurs during endochondral ossification. Surprisingly, Indian Hedgehog (IHH) has received little attention for its role during hBMSC chondrogenesis despite being considered a master regulator of endochondral ossification. In this study, we investigated the role that endogenously produced IHH plays during hBMSC chondrogenesis. We began by analyzing the expression of IHH throughout differentiation using quantitative polymerase chain reaction and found that IHH expression was upregulated dramatically upon chondrogenic induction and peaked from days 9 to 12 of differentiation, which coincided with a concomitant increase in the expression of chondrogenesis- and hypertrophy-related markers, suggesting a potential role for endogenously produced IHH in driving hBMSC chondrogenesis. More importantly, pharmacological inhibition of Hedgehog signaling with cyclopamine or knockdown of IHH almost completely blocked TGFβ1-induced chondrogenesis in hBMSCs, demonstrating that endogenously produced IHH is necessary for hBMSC chondrogenesis. Furthermore, overexpression of IHH was sufficient to drive chondrogenic differentiation, even when TGFβ signaling was inhibited. Finally, stimulation with TGFβ1 induced a significant and sustained upregulation of IHH expression within 3 h that preceded an upregulation in all cartilage-related genes analyzed, and knockdown of IHH blocked the effects of TGFβ1 entirely, suggesting that the effects of TGFβ1 are being mediated through endogenously produced IHH. Together, our findings demonstrate that endogenously produced IHH is playing a critical role in regulating hBMSC chondrogenesis.
Collapse
Affiliation(s)
- Andrew M Handorf
- Departments of Orthopedics and Rehabilitation & Biomedical Engineering, University of Wisconsin-Madison , Madison, Wisconsin
| | | | | |
Collapse
|
29
|
He W, Kienzle A, Liu X, Müller WEG, Feng Q. In vitro 30 nm silver nanoparticles promote chondrogenesis of human mesenchymal stem cells. RSC Adv 2015. [DOI: 10.1039/c5ra06386h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Silver nanoparticles positively influence chondrogenesis of human mesenchymal stem cells through promoting expression of chondrogenic markers while reducing hypertrophy.
Collapse
Affiliation(s)
- Wei He
- State Key Laboratory of New Ceramics and Fine Processing
- School of Materials Science and Engineering
- Tsinghua University
- Beijing 100084
- China
| | - Arne Kienzle
- Institute for Physiological Chemistry
- Medical Center of the Johannes Gutenberg-University Mainz
- D-55128 Mainz
- Germany
| | - Xujie Liu
- State Key Laboratory of New Ceramics and Fine Processing
- School of Materials Science and Engineering
- Tsinghua University
- Beijing 100084
- China
| | - Werner E. G. Müller
- Institute for Physiological Chemistry
- Medical Center of the Johannes Gutenberg-University Mainz
- D-55128 Mainz
- Germany
| | - Qingling Feng
- State Key Laboratory of New Ceramics and Fine Processing
- School of Materials Science and Engineering
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|
30
|
Papadimitriou N, Thorfve A, Brantsing C, Junevik K, Baranto A, Barreto Henriksson H. Cell Viability and Chondrogenic Differentiation Capability of Human Mesenchymal Stem Cells After Iron Labeling with Iron Sucrose. Stem Cells Dev 2014; 23:2568-80. [DOI: 10.1089/scd.2014.0153] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Nikolaos Papadimitriou
- Department of Orthopaedics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Orthopaedics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anna Thorfve
- Department for Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg University of Gothenburg, Gothenburg, Sweden
| | - Camilla Brantsing
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Katarina Junevik
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Adad Baranto
- Department of Orthopaedics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Orthopaedics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Helena Barreto Henriksson
- Department of Orthopaedics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Orthopaedics, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
31
|
de Windt TS, Hendriks JAA, Zhao X, Vonk LA, Creemers LB, Dhert WJA, Randolph MA, Saris DBF. Concise review: unraveling stem cell cocultures in regenerative medicine: which cell interactions steer cartilage regeneration and how? Stem Cells Transl Med 2014. [PMID: 24763684 DOI: 10.5966/sctm.2013-020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cartilage damage and osteoarthritis (OA) impose an important burden on society, leaving both young, active patients and older patients disabled and affecting quality of life. In particular, cartilage injury not only imparts acute loss of function but also predisposes to OA. The increase in knowledge of the consequences of these diseases and the exponential growth in research of regenerative medicine have given rise to different treatment types. Of these, cell-based treatments are increasingly applied because they have the potential to regenerate cartilage, treat symptoms, and ultimately prevent or delay OA. Although these approaches give promising results, they require a costly in vitro cell culture procedure. The answer may lie in single-stage procedures that, by using cell combinations, render in vitro expansion redundant. In the last two decades, cocultures of cartilage cells and a variety of (mesenchymal) stem cells have shown promising results as different studies report cartilage regeneration in vitro and in vivo. However, there is considerable debate regarding the mechanisms and cellular interactions that lead to chondrogenesis in these models. This review, which included 52 papers, provides a systematic overview of the data presented in the literature and tries to elucidate the mechanisms that lead to chondrogenesis in stem cell cocultures with cartilage cells. It could serve as a basis for research groups and clinicians aiming at designing and implementing combined cellular technologies for single-stage cartilage repair and treatment or prevention of OA.
Collapse
Affiliation(s)
- Tommy S de Windt
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands; CellCoTec, Bilthoven, The Netherlands; Laboratory of Musculoskeletal Tissue Engineering, Department of Orthopaedic Surgery, and Division of Plastic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Faculty of Veterinary Medicine, University of Utrecht, Utrecht, The Netherlands; MIRA Institute for Biotechnology and Technical Medicine, University Twente, Enschede, The Netherlands
| | - Jeanine A A Hendriks
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands; CellCoTec, Bilthoven, The Netherlands; Laboratory of Musculoskeletal Tissue Engineering, Department of Orthopaedic Surgery, and Division of Plastic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Faculty of Veterinary Medicine, University of Utrecht, Utrecht, The Netherlands; MIRA Institute for Biotechnology and Technical Medicine, University Twente, Enschede, The Netherlands
| | - Xing Zhao
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands; CellCoTec, Bilthoven, The Netherlands; Laboratory of Musculoskeletal Tissue Engineering, Department of Orthopaedic Surgery, and Division of Plastic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Faculty of Veterinary Medicine, University of Utrecht, Utrecht, The Netherlands; MIRA Institute for Biotechnology and Technical Medicine, University Twente, Enschede, The Netherlands
| | - Lucienne A Vonk
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands; CellCoTec, Bilthoven, The Netherlands; Laboratory of Musculoskeletal Tissue Engineering, Department of Orthopaedic Surgery, and Division of Plastic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Faculty of Veterinary Medicine, University of Utrecht, Utrecht, The Netherlands; MIRA Institute for Biotechnology and Technical Medicine, University Twente, Enschede, The Netherlands
| | - Laura B Creemers
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands; CellCoTec, Bilthoven, The Netherlands; Laboratory of Musculoskeletal Tissue Engineering, Department of Orthopaedic Surgery, and Division of Plastic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Faculty of Veterinary Medicine, University of Utrecht, Utrecht, The Netherlands; MIRA Institute for Biotechnology and Technical Medicine, University Twente, Enschede, The Netherlands
| | - Wouter J A Dhert
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands; CellCoTec, Bilthoven, The Netherlands; Laboratory of Musculoskeletal Tissue Engineering, Department of Orthopaedic Surgery, and Division of Plastic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Faculty of Veterinary Medicine, University of Utrecht, Utrecht, The Netherlands; MIRA Institute for Biotechnology and Technical Medicine, University Twente, Enschede, The Netherlands
| | - Mark A Randolph
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands; CellCoTec, Bilthoven, The Netherlands; Laboratory of Musculoskeletal Tissue Engineering, Department of Orthopaedic Surgery, and Division of Plastic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Faculty of Veterinary Medicine, University of Utrecht, Utrecht, The Netherlands; MIRA Institute for Biotechnology and Technical Medicine, University Twente, Enschede, The Netherlands
| | - Daniel B F Saris
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands; CellCoTec, Bilthoven, The Netherlands; Laboratory of Musculoskeletal Tissue Engineering, Department of Orthopaedic Surgery, and Division of Plastic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Faculty of Veterinary Medicine, University of Utrecht, Utrecht, The Netherlands; MIRA Institute for Biotechnology and Technical Medicine, University Twente, Enschede, The Netherlands
| |
Collapse
|
32
|
de Windt TS, Hendriks JAA, Zhao X, Vonk LA, Creemers LB, Dhert WJA, Randolph MA, Saris DBF. Concise review: unraveling stem cell cocultures in regenerative medicine: which cell interactions steer cartilage regeneration and how? Stem Cells Transl Med 2014; 3:723-33. [PMID: 24763684 DOI: 10.5966/sctm.2013-0207] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cartilage damage and osteoarthritis (OA) impose an important burden on society, leaving both young, active patients and older patients disabled and affecting quality of life. In particular, cartilage injury not only imparts acute loss of function but also predisposes to OA. The increase in knowledge of the consequences of these diseases and the exponential growth in research of regenerative medicine have given rise to different treatment types. Of these, cell-based treatments are increasingly applied because they have the potential to regenerate cartilage, treat symptoms, and ultimately prevent or delay OA. Although these approaches give promising results, they require a costly in vitro cell culture procedure. The answer may lie in single-stage procedures that, by using cell combinations, render in vitro expansion redundant. In the last two decades, cocultures of cartilage cells and a variety of (mesenchymal) stem cells have shown promising results as different studies report cartilage regeneration in vitro and in vivo. However, there is considerable debate regarding the mechanisms and cellular interactions that lead to chondrogenesis in these models. This review, which included 52 papers, provides a systematic overview of the data presented in the literature and tries to elucidate the mechanisms that lead to chondrogenesis in stem cell cocultures with cartilage cells. It could serve as a basis for research groups and clinicians aiming at designing and implementing combined cellular technologies for single-stage cartilage repair and treatment or prevention of OA.
Collapse
Affiliation(s)
- Tommy S de Windt
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands; CellCoTec, Bilthoven, The Netherlands; Laboratory of Musculoskeletal Tissue Engineering, Department of Orthopaedic Surgery, and Division of Plastic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Faculty of Veterinary Medicine, University of Utrecht, Utrecht, The Netherlands; MIRA Institute for Biotechnology and Technical Medicine, University Twente, Enschede, The Netherlands
| | - Jeanine A A Hendriks
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands; CellCoTec, Bilthoven, The Netherlands; Laboratory of Musculoskeletal Tissue Engineering, Department of Orthopaedic Surgery, and Division of Plastic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Faculty of Veterinary Medicine, University of Utrecht, Utrecht, The Netherlands; MIRA Institute for Biotechnology and Technical Medicine, University Twente, Enschede, The Netherlands
| | - Xing Zhao
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands; CellCoTec, Bilthoven, The Netherlands; Laboratory of Musculoskeletal Tissue Engineering, Department of Orthopaedic Surgery, and Division of Plastic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Faculty of Veterinary Medicine, University of Utrecht, Utrecht, The Netherlands; MIRA Institute for Biotechnology and Technical Medicine, University Twente, Enschede, The Netherlands
| | - Lucienne A Vonk
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands; CellCoTec, Bilthoven, The Netherlands; Laboratory of Musculoskeletal Tissue Engineering, Department of Orthopaedic Surgery, and Division of Plastic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Faculty of Veterinary Medicine, University of Utrecht, Utrecht, The Netherlands; MIRA Institute for Biotechnology and Technical Medicine, University Twente, Enschede, The Netherlands
| | - Laura B Creemers
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands; CellCoTec, Bilthoven, The Netherlands; Laboratory of Musculoskeletal Tissue Engineering, Department of Orthopaedic Surgery, and Division of Plastic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Faculty of Veterinary Medicine, University of Utrecht, Utrecht, The Netherlands; MIRA Institute for Biotechnology and Technical Medicine, University Twente, Enschede, The Netherlands
| | - Wouter J A Dhert
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands; CellCoTec, Bilthoven, The Netherlands; Laboratory of Musculoskeletal Tissue Engineering, Department of Orthopaedic Surgery, and Division of Plastic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Faculty of Veterinary Medicine, University of Utrecht, Utrecht, The Netherlands; MIRA Institute for Biotechnology and Technical Medicine, University Twente, Enschede, The Netherlands
| | - Mark A Randolph
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands; CellCoTec, Bilthoven, The Netherlands; Laboratory of Musculoskeletal Tissue Engineering, Department of Orthopaedic Surgery, and Division of Plastic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Faculty of Veterinary Medicine, University of Utrecht, Utrecht, The Netherlands; MIRA Institute for Biotechnology and Technical Medicine, University Twente, Enschede, The Netherlands
| | - Daniel B F Saris
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands; CellCoTec, Bilthoven, The Netherlands; Laboratory of Musculoskeletal Tissue Engineering, Department of Orthopaedic Surgery, and Division of Plastic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Faculty of Veterinary Medicine, University of Utrecht, Utrecht, The Netherlands; MIRA Institute for Biotechnology and Technical Medicine, University Twente, Enschede, The Netherlands
| |
Collapse
|
33
|
Human umbilical cord blood-derived mesenchymal stem cells in the cultured rabbit intervertebral disc: a novel cell source for disc repair. Am J Phys Med Rehabil 2013; 92:420-9. [PMID: 23598901 DOI: 10.1097/phm.0b013e31825f148a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Back pain associated with symptomatic disc degeneration is a common clinical condition. Intervertebral disc (IVD) cell apoptosis and senescence increase with aging and degeneration. Repopulating the IVD with cells that could produce and maintain extracellular matrix would be an alternative therapy to surgery. The objective of this study was to determine the potential of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) as a novel cell source for disc repair. In this study, we intended to confirm the potential for hUCB-MSCs to differentiate and display a chondrocyte-like phenotype after culturing in micromass and after injection into the rabbit IVD explant culture. We also wanted to confirm hUCB-MSC survival after transplantation into the IVD explant culture. DESIGN This study consisted of micromass cultures and in vitro rabbit IVD explant cultures to assess hUCB-MSC survival and differentiation to display chondrocyte-like phenotype. First, hUCB-MSCs were cultured in micromass and stained with Alcian blue dye. Second, to confirm cell survival, hUCB-MSCs were labeled with an infrared dye and a fluorescent dye before injection into whole rabbit IVD explants (host). IVD explants were then cultured for 4 wks. Cell survival was confirmed by two independent techniques: an imaging system detecting the infrared dye at the organ level and fluorescence microscopy detecting fluorescent dye at the cellular level. Cell viability was assessed by staining the explant with CellTracker green, a membrane-permeant tracer specific for live cells. Human type II collagen gene expression (from the graft) was assessed by polymerase chain reaction. RESULTS We have shown that hUCB-MSCs cultured in micromass are stained blue with Alcian blue dye, which suggests that proteoglycan-rich extracellular matrix is produced. In the cultured rabbit IVD explants, hUCB-MSCs survived for at least 4 wks and expressed the human type II collagen gene, suggesting that the injected hUCB-MSCs are differentiating into a chondrocyte-like lineage. CONCLUSIONS This study demonstrates the abiity of hUBC-MSCs to survive and assume a chondrocyte-like phenotype when injected into the rabbit IVD. These data support the potential for hUBC-MSCs as a cell source for disc repair. Further measures of the host response to the injection and studies in animal models are needed before trials in humans.
Collapse
|
34
|
Giuliani N, Lisignoli G, Magnani M, Racano C, Bolzoni M, Dalla Palma B, Spolzino A, Manferdini C, Abati C, Toscani D, Facchini A, Aversa F. New insights into osteogenic and chondrogenic differentiation of human bone marrow mesenchymal stem cells and their potential clinical applications for bone regeneration in pediatric orthopaedics. Stem Cells Int 2013; 2013:312501. [PMID: 23766767 PMCID: PMC3676919 DOI: 10.1155/2013/312501] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 05/08/2013] [Indexed: 02/06/2023] Open
Abstract
Human mesenchymal stem cells (hMSCs) are pluripotent adult stem cells capable of being differentiated into osteoblasts, adipocytes, and chondrocytes. The osteogenic differentiation of hMSCs is regulated either by systemic hormones or by local growth factors able to induce specific intracellular signal pathways that modify the expression and activity of several transcription factors. Runt-related transcription factor 2 (Runx2) and Wnt signaling-related molecules are the major factors critically involved in the osteogenic differentiation process by hMSCs, and SRY-related high-mobility-group (HMG) box transcription factor 9 (SOX9) is involved in the chondrogenic one. hMSCs have generated a great interest in the field of regenerative medicine, particularly in bone regeneration. In this paper, we focused our attention on the molecular mechanisms involved in osteogenic and chondrogenic differentiation of hMSC, and the potential clinical use of hMSCs in osteoarticular pediatric disease characterized by fracture nonunion and pseudarthrosis.
Collapse
Affiliation(s)
- Nicola Giuliani
- Hematology, Department of Clinical and Experimental Medicine, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Gina Lisignoli
- SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale e Laboratorio RAMSES, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Marina Magnani
- Paediatric Orthopaedics and Traumatology, Rizzoli Orthopaedic Institute, Via GC Pupilli 1, 40136 Bologna, Italy
| | - Costantina Racano
- Paediatric Orthopaedics and Traumatology, Rizzoli Orthopaedic Institute, Via GC Pupilli 1, 40136 Bologna, Italy
| | - Marina Bolzoni
- Hematology, Department of Clinical and Experimental Medicine, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Benedetta Dalla Palma
- Hematology, Department of Clinical and Experimental Medicine, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Angelica Spolzino
- Hematology, Department of Clinical and Experimental Medicine, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Cristina Manferdini
- SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale e Laboratorio RAMSES, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Caterina Abati
- Paediatric Orthopaedics and Traumatology, Rizzoli Orthopaedic Institute, Via GC Pupilli 1, 40136 Bologna, Italy
| | - Denise Toscani
- Hematology, Department of Clinical and Experimental Medicine, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Andrea Facchini
- SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale e Laboratorio RAMSES, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Franco Aversa
- Hematology, Department of Clinical and Experimental Medicine, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| |
Collapse
|
35
|
Fernandes AM, Herlofsen SR, Karlsen TA, Küchler AM, Fløisand Y, Brinchmann JE. Similar properties of chondrocytes from osteoarthritis joints and mesenchymal stem cells from healthy donors for tissue engineering of articular cartilage. PLoS One 2013; 8:e62994. [PMID: 23671648 PMCID: PMC3650033 DOI: 10.1371/journal.pone.0062994] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 03/30/2013] [Indexed: 12/16/2022] Open
Abstract
Lesions of hyaline cartilage do not heal spontaneously, and represent a therapeutic challenge. In vitro engineering of articular cartilage using cells and biomaterials may prove to be the best solution. Patients with osteoarthritis (OA) may require tissue engineered cartilage therapy. Chondrocytes obtained from OA joints are thought to be involved in the disease process, and thus to be of insufficient quality to be used for repair strategies. Bone marrow (BM) derived mesenchymal stem cells (MSCs) from healthy donors may represent an alternative cell source. We have isolated chondrocytes from OA joints, performed cell culture expansion and tissue engineering of cartilage using a disc-shaped alginate scaffold and chondrogenic differentiation medium. We performed real-time reverse transcriptase quantitative PCR and fluorescence immunohistochemistry to evaluate mRNA and protein expression for a range of molecules involved in chondrogenesis and OA pathogenesis. Results were compared with those obtained by using BM-MSCs in an identical tissue engineering strategy. Finally the two populations were compared using genome-wide mRNA arrays. At three weeks of chondrogenic differentiation we found high and similar levels of hyaline cartilage-specific type II collagen and fibrocartilage-specific type I collagen mRNA and protein in discs containing OA and BM-MSC derived chondrocytes. Aggrecan, the dominant proteoglycan in hyaline cartilage, was more abundantly distributed in the OA chondrocyte extracellular matrix. OA chondrocytes expressed higher mRNA levels also of other hyaline extracellular matrix components. Surprisingly BM-MSC derived chondrocytes expressed higher mRNA levels of OA markers such as COL10A1, SSP1 (osteopontin), ALPL, BMP2, VEGFA, PTGES, IHH, and WNT genes, but lower levels of MMP3 and S100A4. Based on the results presented here, OA chondrocytes may be suitable for tissue engineering of articular cartilage.
Collapse
Affiliation(s)
- Amilton M. Fernandes
- The Norwegian Center for Stem Cell Research, University of Oslo, Oslo, Norway
- Institute of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Sarah R. Herlofsen
- The Norwegian Center for Stem Cell Research, University of Oslo, Oslo, Norway
- Institute of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Tommy A. Karlsen
- The Norwegian Center for Stem Cell Research, University of Oslo, Oslo, Norway
- Institute of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Axel M. Küchler
- The Norwegian Center for Stem Cell Research, University of Oslo, Oslo, Norway
- Institute of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Yngvar Fløisand
- Department of Hematology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Jan E. Brinchmann
- The Norwegian Center for Stem Cell Research, University of Oslo, Oslo, Norway
- Institute of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| |
Collapse
|
36
|
Chen K, Shi P, Teh TKH, Toh SL, Goh JC. In vitro generation of a multilayered osteochondral construct with an osteochondral interface using rabbit bone marrow stromal cells and a silk peptide-based scaffold. J Tissue Eng Regen Med 2013; 10:284-93. [PMID: 23413023 DOI: 10.1002/term.1708] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Revised: 11/27/2012] [Accepted: 12/20/2012] [Indexed: 01/25/2023]
Abstract
Tissue engineering of a biological osteochondral multilayered construct with a cartilage-interface subchondral bone layer is a key challenge. This study presented a rabbit bone marrow stromal cell (BMSC)/silk fibroin scaffold-based co-culture approach to generate tissue-engineered osteochondral grafts with an interface. BMSC-seeded scaffolds were first cultured separately in osteogenic and chondrogenic stimulation media. The two differentiated pieces were then combined using an RADA self-assembling peptide and subsequently co-cultured. Gene expression, histological and biochemical analyses were used to evaluate the multilayered structure of the osteochondral graft. A complete osteochondral construct with a cartilage-subchondral bone interface was regenerated and BMSCs were used as the only cell source for the osteochondral construct and interface regeneration. Furthermore, in the intermediate region of co-cultured samples, hypertrophic chondrogenic gene markers type X collagen and MMP-13 were found on both chondrogenic and osteogenic section edges after co-culture. However, significant differences gene expression profile were found in distinct zones of the construct during co-culture and the section in the intermediate region had significantly higher hypertrophic chondrocyte gene expression. Biochemical analyses and histology results further supported this observation. This study showed that specific stimulation from osteogenic and chondrogenic BMSCs affected each other in this co-culture system and induced the formation of an osteochondral interface. Moreover, this system provided a possible approach for generating multilayered osteochondral constructs.
Collapse
Affiliation(s)
- Kelei Chen
- National University of Singapore, Department of Bioengineering, Singapore, Singapore
| | - Pujiang Shi
- National University of Singapore, Department of Orthopaedic Surgery, Singapore, Singapore
| | - Thomas Kok Hiong Teh
- National University of Singapore, Department of Bioengineering, Singapore, Singapore
| | - Siew Lok Toh
- National University of Singapore, Department of Bioengineering, Singapore, Singapore.,National University of Singapore, Department of Mechanical Engineering, Singapore, Singapore
| | - James Ch Goh
- National University of Singapore, Department of Bioengineering, Singapore, Singapore.,National University of Singapore, Department of Orthopaedic Surgery, Singapore, Singapore
| |
Collapse
|
37
|
Beane OS, Darling EM. Isolation, characterization, and differentiation of stem cells for cartilage regeneration. Ann Biomed Eng 2012; 40:2079-97. [PMID: 22907257 DOI: 10.1007/s10439-012-0639-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 08/08/2012] [Indexed: 12/27/2022]
Abstract
The goal of tissue engineering is to create a functional replacement for tissues damaged by injury or disease. In many cases, impaired tissues cannot provide viable cells, leading to the investigation of stem cells as a possible alternative. Cartilage, in particular, may benefit from the use of stem cells since the tissue has low cellularity and cannot effectively repair itself. To address this need, researchers are investigating the chondrogenic capabilities of several multipotent stem cell sources, including adult and extra-embryonic mesenchymal stem cells (MSCs), embryonic stem cells (ESCs), and induced pluripotent stem cells (iPSCs). Comparative studies indicate that each cell type has advantages and disadvantages, and while direct comparisons are difficult to make, published data suggest some sources may be more promising for cartilage regeneration than others. In this review, we identify current approaches for isolating and chondrogenically differentiating MSCs from bone marrow, fat, synovium, muscle, and peripheral blood, as well as cells from extra-embryonic tissues, ESCs, and iPSCs. Additionally, we assess chondrogenic induction with growth factors, identifying standard cocktails used for each stem cell type. Cell-only (pellet) and scaffold-based studies are also included, as is a discussion of in vivo results.
Collapse
Affiliation(s)
- Olivia S Beane
- Center for Biomedical Engineering, Brown University, Providence, RI, USA
| | | |
Collapse
|
38
|
Macsai CE, Georgiou KR, Foster BK, Zannettino ACW, Xian CJ. Microarray expression analysis of genes and pathways involved in growth plate cartilage injury responses and bony repair. Bone 2012; 50:1081-91. [PMID: 22387305 DOI: 10.1016/j.bone.2012.02.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 02/10/2012] [Accepted: 02/11/2012] [Indexed: 12/27/2022]
Abstract
The injured growth plate cartilage is often repaired by a bone bridge which causes bone growth deformities. Whilst previous studies have identified sequential inflammatory, fibrogenic, osteogenic and bone remodelling responses involved in the repair process, the molecular pathways which regulated these cellular events remain unknown. In a rat growth plate injury model, tissue from the injury site was collected across the time-course of bone bridge formation using laser capture microdissection and was subjected to Affymetrix microarray gene expression analysis. Real Time PCR and immunohistochemical analyses were used to confirm changes in levels of expression of some genes identified in microarray. Four major functional groupings of differentially expressed genes with known roles in skeletal development were identified across the time-course of bone bridge formation, including Wnt signalling (SFRP1, SFRP4, β-catenin, Csnk2a1, Tcf7, Lef1, Fzd1, Fzd2, Wisp1 and Cpz), BMP signalling (BMP-2, BMP-6, BMP-7, Chrd, Chrdl2 and Id1), osteoblast differentiation (BMP-2, BMP-6, Chrd, Hgn, Spp1, Axin2, β-catenin, Bglap2) and skeletal development (Chrd, Mmp9, BMP-1, BMP-6, Spp1, Fgfr1 and Traf6). These studies provide insight into the molecular pathways which act cooperatively to regulate bone formation following growth plate cartilage injury and highlight potential therapeutic targets to limit bone bridge formation.
Collapse
Affiliation(s)
- Carmen E Macsai
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | | | | | | | | |
Collapse
|
39
|
Vinardell T, Sheehy EJ, Buckley CT, Kelly DJ. A comparison of the functionality and in vivo phenotypic stability of cartilaginous tissues engineered from different stem cell sources. Tissue Eng Part A 2012; 18:1161-70. [PMID: 22429262 DOI: 10.1089/ten.tea.2011.0544] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Joint-derived stem cells are a promising alternative cell source for cartilage repair therapies that may overcome many of the problems associated with the use of primary chondrocytes (CCs). The objective of this study was to compare the in vitro functionality and in vivo phenotypic stability of cartilaginous tissues engineered using bone marrow-derived stem cells (BMSCs) and joint tissue-derived stem cells following encapsulation in agarose hydrogels. Culture-expanded BMSCs, fat pad-derived stem cells (FPSCs), and synovial membrane-derived stem cells (SDSCs) were encapsulated in agarose and maintained in a chondrogenic medium supplemented with transforming growth factor-β3. After 21 days of culture, constructs were either implanted subcutaneously into the back of nude mice for an additional 28 days or maintained for a similar period in vitro in either chondrogenic or hypertrophic media formulations. After 49 days of in vitro culture in chondrogenic media, SDSC constructs accumulated the highest levels of sulfated glycosaminoglycan (sGAG) (∼2.8% w/w) and collagen (∼1.8% w/w) and were mechanically stiffer than constructs engineered using other cell types. After subcutaneous implantation in nude mice, sGAG content significantly decreased for all stem cell-seeded constructs, while no significant change was observed in the control constructs engineered using primary CCs, indicating that the in vitro chondrocyte-like phenotype generated in all stem cell-seeded agarose constructs was transient. FPSCs and SDSCs appeared to undergo fibrous dedifferentiation or resorption, as evident from increased collagen type I staining and a dramatic loss in sGAG content. BMSCs followed a more endochondral pathway with increased type X collagen expression and mineralization of the engineered tissue. In conclusion, while joint tissue-derived stem cells possess a strong intrinsic chondrogenic capacity, further studies are needed to identify the factors that will lead to the generation of a more stable chondrogenic phenotype.
Collapse
Affiliation(s)
- Tatiana Vinardell
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Dublin 2, Ireland
| | | | | | | |
Collapse
|
40
|
Mesenchymal stem cells: characteristics, sources, and mechanisms of action. Vet Clin North Am Equine Pract 2012; 27:243-61. [PMID: 21872757 DOI: 10.1016/j.cveq.2011.06.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
This article provides an overview of mesenchymal stem cell (MSC) biology. In the first section, the characteristics that are routinely used to define MSCs-adherence, proliferation, multi-lineage potential, and "cluster of differentiation" marker profiles-are discussed. In the second section, the major tissues and body fluids that are used as sources for equine MSCs are presented, along with the comparative biologic activities of MSCs from specific locations. Finally, the current understanding of the mechanisms by which MSCs influence repair and regeneration are discussed, with an emphasis on the clinical importance of MSC trophic activities.
Collapse
|
41
|
Freyria AM, Mallein-Gerin F. Chondrocytes or adult stem cells for cartilage repair: the indisputable role of growth factors. Injury 2012; 43:259-65. [PMID: 21696723 DOI: 10.1016/j.injury.2011.05.035] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 05/25/2011] [Indexed: 02/02/2023]
Abstract
Articular cartilage is easily injured but difficult to repair and cell therapies are proposed as tools to regenerate the defects in the tissue. Both differentiated chondrocytes and adult mesenchymal stem cells (MSCs) are regarded as cells potentially able to restore a functional cartilage. However, it is a complex process from the cell level to the tissue end product, during which growth factors play important roles from cell proliferation, extracellular matrix synthesis, maintenance of the phenotype to induction of MSCs towards chondrogenesis. Members of the TGF-β superfamily, are especially important in fulfilling these roles. Depending on the cell type chosen to restore cartilage, the effect of growth factors will vary. In this review, the roles of these factors in the maintenance of the chondrocyte phenotype are discussed and compared with those of factors involved in the repair of cartilage defects, using chondrocytes or adult mesenchymal stem cells.
Collapse
Affiliation(s)
- Anne-Marie Freyria
- Cartilage Biology and Engineering Group, IBCP, Université Lyon 1, Univ Lyon, CNRS FRE 3310, IFR128, France.
| | | |
Collapse
|
42
|
|
43
|
Analysis of collagen expression during chondrogenic induction of human bone marrow mesenchymal stem cells. Biotechnol Lett 2011; 33:2091-101. [DOI: 10.1007/s10529-011-0653-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Accepted: 05/23/2011] [Indexed: 12/22/2022]
|
44
|
Ulasov IV, Nandi S, Dey M, Sonabend AM, Lesniak MS. Inhibition of Sonic hedgehog and Notch pathways enhances sensitivity of CD133(+) glioma stem cells to temozolomide therapy. Mol Med 2011; 17:103-12. [PMID: 20957337 PMCID: PMC3022974 DOI: 10.2119/molmed.2010.00062] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 10/14/2010] [Indexed: 12/21/2022] Open
Abstract
Malignant gliomas are currently treated with temozolomide (TMZ), but often exhibit resistance to this agent. CD133(+) cancer stem cells, a population believed to contribute to the tumor's chemoresistance, bear the activation of Notch and Sonic hedgehog (SHH) pathways. In this study, we examined whether inhibition of both pathways enhances the efficacy of TMZ monotherapy in the context of glioma stem cells. Transcriptional analysis of Notch and SHH pathways in CD133(+)-enriched glioma cell populations showed the activity of these pathways. CD133(+) cells were less susceptible to TMZ treatment than the unsorted glioma counterparts. Interestingly, Notch and SHH pathway transcriptional activity in CD133(+) glioma cells was further enhanced by TMZ exposure, which led to NOTCH 1, NCOR2, and GLI1 upregulation (6.64-, 3.73-, and 2.79-fold, respectively) and CFLAR downregulation (4.22-fold). The therapeutic effect of TMZ was enhanced by Notch and SHH pathway pharmacological antagonism with GSI-1 and cyclopamine. More importantly, simultaneous treatment involving TMZ with both of these compounds led to a significant increase in CD133(+) glioma cytotoxicity than treatment with any of these agents alone (P < 0.05). In conclusion, CD133(+) glioma cells overexpress genes involved in Notch and SHH pathways. These pathways contribute to the chemoresistant phenotype of CD133(+) glioma cells, as their antagonism leads to an additive effect when used in combination with TMZ.
Collapse
MESH Headings
- AC133 Antigen
- Antigens, CD
- Antigens, Surface
- Antineoplastic Agents, Alkylating/pharmacology
- Brain Neoplasms/drug therapy
- Brain Neoplasms/genetics
- Cell Line, Tumor
- Dacarbazine/analogs & derivatives
- Dacarbazine/pharmacology
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Glioma/drug therapy
- Glioma/genetics
- Glycoproteins
- Hedgehog Proteins/antagonists & inhibitors
- Hedgehog Proteins/metabolism
- Humans
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Peptides
- Receptors, Notch/antagonists & inhibitors
- Receptors, Notch/metabolism
- Signal Transduction
- Temozolomide
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Ilya V Ulasov
- The Brain Tumor Cancer Center, The University of Chicago, Chicago, Illinois, United States of America
| | - Suvobroto Nandi
- The Brain Tumor Cancer Center, The University of Chicago, Chicago, Illinois, United States of America
| | - Mahua Dey
- The Brain Tumor Cancer Center, The University of Chicago, Chicago, Illinois, United States of America
| | - Adam M Sonabend
- The Brain Tumor Cancer Center, The University of Chicago, Chicago, Illinois, United States of America
| | - Maciej S Lesniak
- The Brain Tumor Cancer Center, The University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
45
|
Shanmugasundaram S, Chaudhry H, Arinzeh TL. Microscale versus nanoscale scaffold architecture for mesenchymal stem cell chondrogenesis. Tissue Eng Part A 2010; 17:831-40. [PMID: 20973751 DOI: 10.1089/ten.tea.2010.0409] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Nanofiber scaffolds, produced by the electrospinning technique, have gained widespread attention in tissue engineering due to their morphological similarities to the native extracellular matrix. For cartilage repair, studies have examined their feasibility; however these studies have been limited, excluding the influence of other scaffold design features. This study evaluated the effect of scaffold design, specifically examining a range of nano to micron-sized fibers and resulting pore size and mechanical properties, on human mesenchymal stem cells (MSCs) derived from the adult bone marrow during chondrogenesis. MSC differentiation was examined on these scaffolds with an emphasis on temporal gene expression of chondrogenic markers and the pluripotent gene, Sox2, which has yet to be explored for MSCs during chondrogenesis and in combination with tissue engineering scaffolds. Chondrogenic markers of aggrecan, chondroadherin, sox9, and collagen type II were highest for cells on micron-sized fibers (5 and 9 μm) with pore sizes of 27 and 29 μm, respectively, in comparison to cells on nano-sized fibers (300 nm and 600 to 1400 nm) having pore sizes of 2 and 3 μm, respectively. Undifferentiated MSCs expressed high levels of the Sox2 gene but displayed negligible levels on all scaffolds with or without the presence of inductive factors, suggesting that the physical features of the scaffold play an important role in differentiation. Micron-sized fibers with large pore structures and mechanical properties comparable to the cartilage ECM enhanced chondrogenesis, demonstrating architectural features as well as mechanical properties of electrospun fibrous scaffolds enhance differentiation.
Collapse
|
46
|
Bernstein P, Sticht C, Jacobi A, Liebers C, Manthey S, Stiehler M. Expression pattern differences between osteoarthritic chondrocytes and mesenchymal stem cells during chondrogenic differentiation. Osteoarthritis Cartilage 2010; 18:1596-607. [PMID: 20883804 DOI: 10.1016/j.joca.2010.09.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 09/16/2010] [Accepted: 09/17/2010] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The use of mesenchymal stem cells (MSCs) for cartilage regeneration is hampered by lack of knowledge about the underlying molecular differences between chondrogenically stimulated chondrocytes and MSCs. The aim of this study was to evaluate differences in phenotype and gene expression between primary human chondrocytes and MSCs during chondrogenic differentiation in three-dimensional (3D) pellet culture (PC). MATERIALS AND METHODS Chondrocytes isolated from cartilage samples obtained during total knee alloarthroplastic procedure (N=8) and MSCs, purified from bone marrow aspirates of healthy donors (N=8), were cultivated in PC under chondrogenic conditions. Immunohistology and quantitative reverse transcribing PCR (RT-PCR) were performed for chondrogenic-specific markers (i.e., Sox9, Collagen II). Global gene expression of the so-cultivated chondrocytes and MSCs was assessed by a novel approach of microarray-based pathway analysis. Refinement of data was done by hypothesis-driven gene expression omnibus (GEO) dataset comparison. Validation was performed with separate samples in transforming growth factor (TGF)β+ or TGFβ- conditions by use of quantitative real-time RT-PCR. RESULTS/CONCLUSIONS Chondrogenic commitment of both cell types was observed. Interestingly, chondrocytes demonstrated an upregulated fatty acid/cholesterol metabolism which may give hints for future optimization of culture conditions. The novel microarray-based pathway analysis applied in this study seems suitable for the evaluation of whole-genome based array datasets in case when hypotheses can be backed with already existing GEO datasets. Future experiments should further explore the different metabolic behaviour of chondrocytes and MSC.
Collapse
Affiliation(s)
- P Bernstein
- Department of Orthopaedics, University Hospital Carl Gustav Carus, Fetscherstr. 74, 01307 Dresden, Germany.
| | | | | | | | | | | |
Collapse
|
47
|
de Peppo GM, Svensson S, Lennerås M, Synnergren J, Stenberg J, Strehl R, Hyllner J, Thomsen P, Karlsson C. Human embryonic mesodermal progenitors highly resemble human mesenchymal stem cells and display high potential for tissue engineering applications. Tissue Eng Part A 2010; 16:2161-82. [PMID: 20136402 DOI: 10.1089/ten.tea.2009.0629] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Adult stem cells, such as human mesenchymal stem cells (hMSCs), show limited proliferative capacity and, after long-term culture, lose their differentiation capacity and are therefore not an optimal cell source for tissue engineering. Human embryonic stem cells (hESCs) constitute an important new resource in this field, but one major drawback is the risk of tumor formation in the recipients. One alternative is to use progenitor cells derived from hESCs that are more lineage restricted but do not form teratomas. We have recently derived a cell line from hESCs denoted hESC-derived mesodermal progenitors (hES-MPs), and here, using genome-wide microarray analysis, we report that the process of hES-MPs derivation results in a significantly altered expression of hESC characteristic genes to an expression level highly similar to that of hMSCs. However, hES-MPs displayed a significantly higher proliferative capacity and longer telomeres. The hES-MPs also displayed lower expression of HLA class II proteins before and after interferon-gamma treatment, indicating that these cells may somewhat be immunoprivileged and potentially used for HLA-incompatible transplantation. The hES-MPs are thus an appealing alternative to hMSCs in tissue engineering applications and stem-cell-based therapies for mesodermal tissues.
Collapse
Affiliation(s)
- Giuseppe Maria de Peppo
- Department of Biomaterials, Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Zhou J, Yu G, Cao C, Pang J, Chen X. Bone morphogenetic protein-7 promotes chondrogenesis in human amniotic epithelial cells. INTERNATIONAL ORTHOPAEDICS 2010; 35:941-8. [PMID: 20803292 DOI: 10.1007/s00264-010-1116-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 08/03/2010] [Accepted: 08/10/2010] [Indexed: 12/16/2022]
Abstract
Bone morphogenetic proteins (BMPs) play important roles at multiple stages of chondrogenesis. This study was undertaken to investigate the potential role of bone morphogenetic protein-7 (BMP-7) in the differentiation of chondrocytes using tissue engineering techniques. The impact of BMP-7 on human amniotic epithelial cells (hAECs) was tested. The hAECs were treated either with recombinant human BMP-7 cDNA or with transforming growth factor beta 1 (TGF-β1) as a positive control for three weeks in vitro. Cartilaginous differentiation and proliferation were assayed by quantitative RT-PCR, histology, and in situ hybridization. Our results were such that hAECs treated with either BMP-7 or TGF-β1 expressed cartilage markers (aggrecan, Sox9, CEP-68, and type II and X collagens) within three weeks. Compared with a control vector, BMP-7 induced a decrease in type I collagen expression, while the transcription of the cartilage-specific type II collagen remained stable. In induction experiments, BMP-7 transgenic hAECs exhibited the largest amount of matrix synthesis. In conclusion, these data indicate that BMP-7 plays an important role in inducing the production of cartilage by hAECs in vitro. Cartilage differentiation and matrix maturation can be promoted by BMPs in a cartilage engineering paradigm. These properties make BMPs promising tools in the engineering of cartilaginous joint bio-prostheses and as candidate biological agents or genes for cartilage stabilisation.
Collapse
Affiliation(s)
- Junjie Zhou
- Department of Orthopaedic Surgery, Tongji Hospital of Tongji University, Shanghai 200065, China
| | | | | | | | | |
Collapse
|
49
|
Quintin A, Schizas C, Scaletta C, Jaccoud S, Applegate LA, Pioletti DP. Plasticity of fetal cartilaginous cells. Cell Transplant 2010; 19:1349-57. [PMID: 20447338 DOI: 10.3727/096368910x506854] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Tissue-specific stem cells found in adult tissues can participate in the repair process following injury. However, adult tissues, such as articular cartilage and intervertebral disc, have low regeneration capacity, whereas fetal tissues, such as articular cartilage, show high regeneration ability. The presence of fetal stem cells in fetal cartilaginous tissues and their involvement in the regeneration of fetal cartilage is unknown. The aim of the study was to assess the chondrogenic differentiation and the plasticity of fetal cartilaginous cells. We compared the TGF-β3-induced chondrogenic differentiation of human fetal cells isolated from spine and cartilage tissues to that of human bone marrow stromal cells (BMSC). Stem cell surface markers and adipogenic and osteogenic plasticity of the two fetal cell types were also assessed. TGF-β3 stimulation of fetal cells cultured in high cell density led to the production of aggrecan, type I and II collagens, and variable levels of type X collagen. Although fetal cells showed the same pattern of surface stem cell markers as BMSCs, both type of fetal cells had lower adipogenic and osteogenic differentiation capacity than BMSCs. Fetal cells from femoral head showed higher adipogenic differentiation than fetal cells from spine. These results show that fetal cells are already differentiated cells and may be a good compromise between stem cells and adult tissue cells for a cell-based therapy.
Collapse
Affiliation(s)
- Aurelie Quintin
- Cellular Therapy Unit, Department of Musculoskeletal Medicine, University Hospital Center and University of Lausanne, CHUV-UNIL, Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
50
|
Ghosh P, Wu J, Shimmon S, Zannettino AC, Gronthos S, Itescu S. Pentosan polysulfate promotes proliferation and chondrogenic differentiation of adult human bone marrow-derived mesenchymal precursor cells. Arthritis Res Ther 2010; 12:R28. [PMID: 20167057 PMCID: PMC2875662 DOI: 10.1186/ar2935] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2009] [Revised: 12/11/2009] [Accepted: 02/18/2010] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION This study was undertaken to determine whether the anti-osteoarthritis drug pentosan polysulfate (PPS) influenced mesenchymal precursor cell (MPC) proliferation and differentiation. METHODS Human MPCs were maintained in monolayer, pellet or micromass cultures (MMC) for up to 10 days with PPS at concentrations of 0 to 20 microg/ml. MPC viability and proliferation was assessed using the WST-1 assay and 3H-thymidine incorporation into DNA, while apoptosis was monitored by flow cytometry. Proteoglycan (PG) biosynthesis was determined by 35SO42- incorporation and staining with Alcian blue. Proteoglycan and collagen type I and collagen type II deposition in pellet cultures was also examined by Toluidine blue and immunohistochemical staining, respectively. The production of hyaluronan (HA) by MPCs in MMC was assessed by ELISA. The relative outcome of PPS, HA, heparin or dextran sulfate (DS) on PG synthesis was compared in 5-day MMC. Gene expression of MPCs in 7-day and 10-day MMC was examined using real-time PCR. MPC differentiation was investigated by co-culturing with PPS in osteogenic or adipogenic inductive culture media for 28 days. RESULTS Significant MPC proliferation was evident by day 3 at PPS concentrations of 1 to 5 microg/ml (P < 0.01). In the presence of 1 to 10 microg/ml PPS, a 38% reduction in IL-4/IFNgamma-induced MPC apoptosis was observed. In 5-day MMC, 130% stimulation of PG synthesis occurred at 2.5 microg/ml PPS (P < 0.0001), while 5.0 microg/ml PPS achieved maximal stimulation in the 7-day and 10-day cultures (P < 0.05). HA and DS at > or = 5 microg/ml inhibited PG synthesis (P < 0.05) in 5-day MMC. Collagen type II deposition by MMC was significant at > or = 0.5 microg/ml PPS (P < 0.001 to 0.05). In MPC-PPS pellet cultures, more PG, collagen type II but less collagen type I was deposited than in controls. Real-time PCR results were consistent with the protein data. At 5 and 10 microg/ml PPS, MPC osteogenic differentiation was suppressed (P < 0.01). CONCLUSIONS This is the first study to demonstrate that PPS promotes MPC proliferation and chondrogenesis, offering new strategies for cartilage regeneration and repair in osteoarthritic joints.
Collapse
Affiliation(s)
- Peter Ghosh
- Proteobioactives Pty Ltd, 27/9 Powells Road, Brookvale, New South Wales 2100, Australia.
| | | | | | | | | | | |
Collapse
|