1
|
Hunziker EB, Nishii N, Shintani N, Lippuner K, Keel MJB, Voegelin E. The chondrogenic potential of the bovine tendon sheath-a novel source of stem cells for cartilage repair. Stem Cells 2025; 43:sxae071. [PMID: 39656905 DOI: 10.1093/stmcls/sxae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/17/2024] [Indexed: 12/17/2024]
Abstract
The human hand is traumatized more frequently than any other bodily part. Trauma and pathological processes (eg, rheumatoid arthritis, osteoarthritis) commonly implicate the finger joints and specifically damage also the layer of articular cartilage. Endeavors are now being made to surgically repair such cartilage lesions biologically using tissue-engineering approaches that draw on donor cells and/or donor tissues. The tendon sheaths, particularly their inner layers, that is, the peritendineum, surround the numerous tendons in the hand. The peritendineum is composed of mesenchymal tissue. We hypothesize that this tissue harbors pluripotent mesenchymal stem cells and thus could be used for cartilage repair, irrespective of the donor's age. Using a bovine model (young calves vs adult cows), the pluripotentiality of the peritendineal stem cells, namely, their osteogenicity, chondrogenicity, and adipogenicity, was investigated by implementing conventional techniques. Subsequently, the chondrogenic potential of the peritendineal tissue itself was analyzed. Its differentiation into cartilage was induced by the application of specific growth factors (members of the TGF-β-superfamily). The characteristics of the tissue formed were evaluated structurally (immuno) histochemically, histomorphometrically, and biochemically (gene expression and protein level). Our data confirm that the bovine peritendineum contains stem cells whose pluripotentiality is independent of donor age. This tissue could also be induced to differentiate into cartilage, likewise, irrespective of the donor's age. Preliminary investigations with adult human peritendineal biopsy material derived from the hand's peritendineal flexor tendon sheaths revealed that this tissue can also be induced to differentiate into cartilage.
Collapse
Affiliation(s)
- Ernst B Hunziker
- Department of Osteoporosis, Inselspital Bern University Hospital, 3010 Bern, Switzerland
- Department of Orthopedic Surgery, Inselspital Bern University Hospital, 3010 Bern, Switzerland
| | - Naomi Nishii
- Department of Osteoporosis, Inselspital Bern University Hospital, 3010 Bern, Switzerland
- Department of Orthopedic Surgery, Inselspital Bern University Hospital, 3010 Bern, Switzerland
| | - Nahoko Shintani
- Department of Osteoporosis, Inselspital Bern University Hospital, 3010 Bern, Switzerland
- Department of Orthopedic Surgery, Inselspital Bern University Hospital, 3010 Bern, Switzerland
| | - Kurt Lippuner
- Department of Osteoporosis, Inselspital Bern University Hospital, 3010 Bern, Switzerland
| | - Marius J B Keel
- Trauma Center Hirslanden, Clinic Hirslanden, Zurich, Medical School, University of Zurich, 8006 Zurich, Switzerland
| | - Esther Voegelin
- Department of Plastic and Hand Surgery, Inselspital Bern University Hospital, 3010 Bern, Switzerland
| |
Collapse
|
2
|
Jeyaraman M, Muthu S, Jeyaraman N, Ranjan R, Jha SK, Mishra P. Synovium Derived Mesenchymal Stromal Cells (Sy-MSCs): A Promising Therapeutic Paradigm in the Management of Knee Osteoarthritis. Indian J Orthop 2022; 56:1-15. [PMID: 35070137 PMCID: PMC8748553 DOI: 10.1007/s43465-021-00439-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 06/03/2021] [Indexed: 02/05/2023]
Abstract
Synovium-derived mesenchymal stromal cell (Sy-MSC) is a newer member of the mesenchymal stromal cell families. The first successful demonstration of the mesenchymal stromal cell from the human synovial membrane was done in 2001 and since then its potential role for musculoskeletal regeneration has been keenly documented. The regenerative effects of Sy-MSCs are through paracrine signaling, direct cell-cell interactions, and extracellular vehicles. Sy-MSCs possess superior chondrogenicity than other sources of mesenchymal stromal cells. This article aims to outline the advancement of synovium-derived mesenchymal stromal cells along with a specific insight into the application for managing osteoarthritis knee.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Department of Orthopaedics, School of Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh India
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh India
- International Association of Stemcell and Regenerative Medicine (IASRM), New Delhi, India
| | - Sathish Muthu
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh India
- International Association of Stemcell and Regenerative Medicine (IASRM), New Delhi, India
- Department of Orthopaedics, Government Medical College & Hospital, Dindigul, Tamil Nadu India
| | - Naveen Jeyaraman
- International Association of Stemcell and Regenerative Medicine (IASRM), New Delhi, India
- Department of Orthopaedics, Kasturba Medical College, MAHE University, Manipal, Karnataka India
| | - Rajni Ranjan
- Department of Orthopaedics, School of Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh India
- International Association of Stemcell and Regenerative Medicine (IASRM), New Delhi, India
| | - Prabhu Mishra
- International Association of Stemcell and Regenerative Medicine (IASRM), New Delhi, India
| |
Collapse
|
3
|
Hunziker EB, Shintani N, Haspl M, Lippuner K, Voegelin E, Keel MJ. The synovium of human osteoarthritic joints retains its chondrogenic potential irrespective of age. Tissue Eng Part A 2021; 28:283-295. [PMID: 34693739 DOI: 10.1089/ten.tea.2021.0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The autologous synovium is a potential tissue source for local induction of chondrogenesis by tissue engineering approaches to repair articular cartilage defects such as they occur in osteoarthritis. It was the aim of the present study to ascertain whether the aging of human osteoarthritic patients compromises the chondrogenic potential of their knee-joint synovium and the structural and metabolic stability of the transformed tissue. The patients were allocated to one of the following two age categories: 54 - 65 years and 66 - 86 years (n = 7-11 donors per time point and experimental group; total number of donors: 64). Synovial biopsies were induced in vitro to undergo chondrogenesis by exposure to either bone morphogenetic protein-2 (BMP-2) alone, transforming growth factor-ß1 (TGF-ß1) alone, or a combination of the two growth factors, for up to 6 weeks. The differentiated explants were evaluated morphologically and morphometrically for the volume fraction of metachromasia (sulfated proteoglycans), immunohistochemically for type-II collagen, and for the gene-expression levels of anabolic chondrogenic markers as well as catabolic factors by a real-time polymerase-chain-reaction (RT-PCR) analysis. Quantitative metachromasia revealed that chondrogenic differentiation of human synovial explants was induced to the greatest degree by either BMP-2 alone or the BMP-2/TGF-1 combination, i.e. to a comparable level with each of the two stimulation protocols and within both age categories. The BMP-2/TGF-1combination protocol resulted in chondrocytes of a physiological size for normal human articular cartilage, unlike the BMP-2 alone stimulation that resulted in cell sizes of terminal hypertrophy. The stable gene-expression levels of the anabolic chondrogenic markers confirmed the superiority of these two stimulation protocols and demonstrated the hyaline-like qualities of the generated cartilage matrix. The gene-expression levels of the catabolic markers remained extremely low. The data also confirmed the usefulness of experimental in vitro studies with bovine synovial tissue as a paradigm for human synovial investigations. Our data reveal the chondrogenic potential of the human knee-joint synovium of osteoarthritic patients to be uncompromised by ageing and catabolic processes. The potential of synovium-based clinical engineering (repair) of cartilage tissue using autologous synovium may thus not be reduced by the age of the human patient.
Collapse
Affiliation(s)
- Ernst B Hunziker
- Inselspital Universitatsspital Bern, 27252, Departments of Osteoporosis and Orthopaedic Surgery, Freiburgstrasse 10, Bern, Switzerland, 3010.,Switzerland;
| | - Nahoko Shintani
- Inselspital Universitatsspital Bern, 27252, Department of Osteoporosis, Bern, Switzerland;
| | - Miroslav Haspl
- University of Zagreb, 37631, of Orthopaedic Surgery, Zagreb, Zagreb, Croatia;
| | - Kurt Lippuner
- Inselspital University Hospital Bern, 27252, Department of Osteoporosis, Bern, BE, Switzerland;
| | - Esther Voegelin
- Inselspital Universitatsspital Bern, 27252, of Plastic and Hand Surgery, Bern, BE, Switzerland;
| | - Marius J Keel
- Inselspital Universitatsspital Bern, 27252, Orthopedic Department, Bern, BE, Switzerland;
| |
Collapse
|
4
|
Simvastatin promotes restoration of chondrocyte morphology and phenotype. Arch Biochem Biophys 2019; 665:1-11. [PMID: 30776329 DOI: 10.1016/j.abb.2019.01.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/14/2019] [Accepted: 01/31/2019] [Indexed: 02/08/2023]
Abstract
In this study we examined whether the action of simvastatin affects re-differentiation of passaged chondrocytes and if so, whether this was mediated via changes in cholesterol or cholesterol intermediates. Bovine articular chondrocytes, of varying passage number, human knee chondrocytes and rat chondrosarcoma chondrocytes were treated with simvastatin and examined for changes in mRNA and protein expression of markers of the chondrocyte phenotype as well as changes in cell shape, proliferation and proteoglycan production. In all three models, while still in monolayer culture, simvastatin treatment alone promoted changes in phenotype and morphology indicative of re-differentiation most prominent being an increase in SOX9 mRNA and protein expression. In passaged bovine chondrocytes, simvastatin stimulated the expression of SOX9, ACAN, BMP2 and inhibited the expression of COL1 and α-smooth muscle actin. Co-treatment of chondrocytes with simvastatin plus exogenous cholesterol-conditions that had previously reversed the inhibition on CD44 shedding, did not alter the effects of simvastatin on re-differentiation. However, the co-treatment of chondrocytes with simvastatin together with other pathway intermediates, mevalonate, geranylgeranylpyrophosphate and to a lesser extent, farnesylpyrophosphate, blocked the pro-differentiation effects of simvastatin. Treatment with simvastatin stimulated expression of SOX9 and COL2a and enhanced SOX9 protein in human OA chondrocytes. The co-treatment of OA chondrocytes with mevalonate or geranylgeranylpyrophosphate, but not cholesterol, blocked the simvastatin effects. These results lead us to conclude that the blocking of critical protein prenylation events is required for the positive effects of simvastatin on the re-differentiation of chondrocytes.
Collapse
|
5
|
Potier E, Ito K. Can notochordal cells promote bone marrow stromal cell potential for nucleus pulposus enrichment? A simplified in vitro system. Tissue Eng Part A 2015; 20:3241-51. [PMID: 24873993 DOI: 10.1089/ten.tea.2013.0703] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Bone marrow stromal cells (BMSCs) have shown promising potential to stop intervertebral disc degeneration in several animal models. In order to restore a healthy state, though, this potential should be further stimulated. Notochordal cells (NCs), influential in disc development, have been shown to stimulate BMSC differentiation, but it is unclear how this effect will translate in an environment where resident disc cells (nucleus pulposus cells [NPCs]) could also influence BMSCs. The goal of this study was, therefore, to evaluate the effects of NCs on BMSCs when cocultured with NPCs, in a simplified 3D in vitro system. Bovine BMSCs and NPCs were mixed (Mix) and seeded into alginate beads. Using culture inserts, the Mix was then cocultured with porcine NCs (alginate beads) and compared to coculture with empty beads or porcine skin fibroblasts (SFs, alginate beads). NPCs alone were also cocultured with NCs, and BMSCs alone cultured under chondrogenic conditions. The effects of coculture conditions on cell viability, matrix production (proteoglycan and collagen), and gene expression of disc markers (aggrecan, type II collagen, and SOX9) were assessed after 4 weeks of culture. The NC phenotype and gene expression profile were also analyzed. Coculture with NCs did not significantly influence cell viability, proteoglycan production, or disc marker gene expression of the Mix. When compared to NPCs, the Mix produced the same amount of proteoglycan and displayed a higher expression of disc marker, indicating a stimulation of the BMSCs (and/or NPCs) in the Mix. Additionally, during the 4 weeks of culture, the NC phenotype changed drastically (morphology, gene expression profile). These results show that NCs might not be as stimulatory for BMSCs in an NPC-rich environment, as believed from individual cultures. This absence of effects could be explained by a mild stimulation provided by (de)differentiating NCs and the costimulation of BMSCs and NPCs by each other.
Collapse
Affiliation(s)
- Esther Potier
- 1 Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology , Eindhoven, The Netherlands
| | | |
Collapse
|
6
|
Potier E, Rivron NC, Van Blitterswijk CA, Ito K. Micro-aggregates do not influence bone marrow stromal cell chondrogenesis. J Tissue Eng Regen Med 2014; 10:1021-1032. [PMID: 24700552 DOI: 10.1002/term.1887] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 11/04/2013] [Accepted: 02/24/2014] [Indexed: 12/31/2022]
Abstract
Although bone marrow stromal cells (BMSCs) appear promising for cartilage repair, current clinical results are suboptimal and the success of BMSC-based therapies relies on a number of methodological improvements, among which is better understanding and control of their differentiation pathways. We investigated here the role of the cellular environment (paracrine vs juxtacrine signalling) in the chondrogenic differentiation of BMSCs. Bovine BMSCs were encapsulated in alginate beads, as dispersed cells or as small micro-aggregates, to create different paracrine and juxtacrine signalling conditions. BMSCs were then cultured for 21 days with TGFβ3 added for 0, 7 or 21 days. Chondrogenic differentiation was assessed at the gene (type II and X collagens, aggrecan, TGFβ, sp7) and matrix (biochemical assays and histology) levels. The results showed that micro-aggregates had no beneficial effects over dispersed cells: matrix production was similar, whereas chondrogenic marker gene expression was lower for the micro-aggregates, under all TGFβ conditions tested. This weakened chondrogenic differentiation might be explained by a different cytoskeleton organization at day 0 in the micro-aggregates. Copyright © 2014 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- E Potier
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - N C Rivron
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - C A Van Blitterswijk
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - K Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
7
|
Microporous calcium phosphate ceramics as tissue engineering scaffolds for the repair of osteochondral defects: Histological results. Acta Biomater 2013; 9:7490-505. [PMID: 23528497 DOI: 10.1016/j.actbio.2013.03.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 03/05/2013] [Accepted: 03/12/2013] [Indexed: 02/04/2023]
Abstract
Treatment of defects in joint cartilage aims to re-establish normal joint function. In vitro experiments have shown that the application of synthetic scaffolds is a promising alternative to existing therapeutic options. A sheep study was conducted to test the suitability of microporous pure β-tricalcium phosphate (TCP) ceramics as tissue engineering scaffolds for the repair of osteochondral defects. Cylindrical plugs of microporous β-TCP (diameter: 7mm; length: 25mm; porosity: 43.5±2.4%; pore diameter: ~5μm) with interconnecting pores were used. Scaffolds were seeded with autologous chondrocytes in vitro and cultured for 4weeks. A drill hole (diameter 7mm) was placed in both medial femoral condyles of sheep. For the left knee the defect was filled with a TCP plug and for the right knee the defect was left empty. After 6, 12, 26 and 52weeks, seven animals from each group were killed and studied. The samples were examined employing histological, histomorphometric and immunohistological methods as well as various imaging techniques (X-ray, microcomputer tomography and scanning electron microscopy). After explantation the cartilage defects were first assessed macroscopically. There were no signs of infection or inflammation. Histological grading scales were used for assessment of bony integration and cartilage repair. An increasing degradation (81% after 52weeks) of the ceramic with concomitant bone formation was observed. The original structure of cancellous bone was almost completely restored. After 26 and 52weeks, collagen II-positive hyaline cartilage was detected in several samples. New subchondral bone had formed. The formation of cartilage began at the outer edge and proceeded to the middle. According to the O'Driscoll score, values corresponding to healthy cartilage were not reached after 1year. Integration of the newly formed cartilage tissue into the surrounding native cartilage was found. The formation of biomechanical stable cartilage began at the edge and progressed towards the centre of the defect. After 1year this process was still not completed. Microporous β-TCP scaffolds seeded with chondrocytes are suitable for the treatment of osteochondral defects.
Collapse
|
8
|
Yodmuang S, Gadjanski I, Chao PHG, Vunjak-Novakovic G. Transient hypoxia improves matrix properties in tissue engineered cartilage. J Orthop Res 2013. [PMID: 23203946 PMCID: PMC4136653 DOI: 10.1002/jor.22275] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Adult articular cartilage is a hypoxic tissue, with oxygen tension ranging from <10% at the cartilage surface to <1% in the deepest layers. In addition to spatial gradients, cartilage development is also associated with temporal changes in oxygen tension. However, a vast majority of cartilage tissue engineering protocols involves cultivation of chondrocytes or their progenitors under ambient oxygen concentration (21% O(2)), that is, significantly above physiological levels in either developing or adult cartilage. Our study was designed to test the hypothesis that transient hypoxia followed by normoxic conditions results in improved quality of engineered cartilaginous ECM. To this end, we systematically compared the effects of normoxia (21% O(2) for 28 days), hypoxia (5% O(2) for 28 days) and transient hypoxia--reoxygenation (5% O(2) for 7 days and 21% O(2) for 21 days) on the matrix composition and expression of the chondrogenic genes in cartilage constructs engineered in vitro. We demonstrated that reoxygenation had the most effect on the expression of cartilaginous genes including COL2A1, ACAN, and SOX9 and increased tissue concentrations of amounts of glycosaminoglycans and type II collagen. The equilibrium Young's moduli of tissues grown under transient hypoxia (510.01 ± 28.15 kPa) and under normoxic conditions (417.60 ± 68.46 kPa) were significantly higher than those measured under hypoxic conditions (279.61 ± 20.52 kPa). These data suggest that the cultivation protocols utilizing transient hypoxia with reoxygenation have high potential for efficient cartilage tissue engineering, but need further optimization in order to achieve higher mechanical functionality of engineered constructs.
Collapse
Affiliation(s)
- Supansa Yodmuang
- Department of Biomedical Engineering, Columbia University, New York, New York
| | - Ivana Gadjanski
- Department of Biomedical Engineering, Columbia University, New York, New York
- R&D Center for Bioengineering, Metropolitan University Belgrade, Prvoslava Stojanovica 6, Kragujevac 34000, Serbia
| | - Pen-hsiu Grace Chao
- Institute of Biomedical Engineering, School of Engineering and School of Medicine, National Taiwan University, Taipei, Taiwan
| | | |
Collapse
|
9
|
The effect of methylprednisolone intravenous infusion on the expression of ciliary neurotrophic factor in a rat spinal cord injury model. Spine J 2013; 13:439-42. [PMID: 23267738 DOI: 10.1016/j.spinee.2012.11.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 06/11/2012] [Accepted: 11/16/2012] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Methylprednisolone (MP) infusion after acute spinal cord injury (SCI) remains controversial despite large randomized studies, including the National Acute Spinal Cord Injury Studies (NASCIS). PURPOSE To determine the effect of NASCIS protocol MP infusion on the expression of ciliary neurotrophic factor (CNTF), a neuroprotective cytokine, in a rat model after SCI. STUDY DESIGN Animal laboratory study. METHODS Thirty rats were randomized into an MP infusion group (intravenous [IV]-MP) versus normal saline (NS) control group (IV-NS) after a standardized SCI. Ciliary neurotrophic factor expression was measured by reverse transcription-polymerase chain reaction at 6, 12, 24, 48, and 72 hours post-SCI. RESULTS Mean CNTF expression was diminished in the MP group at 12 (p=.006) and 24 (p=.008) hours postinjury compared with the control group. Expression of CNTF was not significantly different between the groups at 6, 48, and 72 hours post-SCI. CONCLUSIONS Standardized MP infusion post-SCI reduces CNTF activation in a rat SCI model. Further study is needed to determine if this effect is seen in human SCIs.
Collapse
|
10
|
Shintani N, Siebenrock KA, Hunziker EB. TGF-ß1 enhances the BMP-2-induced chondrogenesis of bovine synovial explants and arrests downstream differentiation at an early stage of hypertrophy. PLoS One 2013; 8:e53086. [PMID: 23301025 PMCID: PMC3536810 DOI: 10.1371/journal.pone.0053086] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 11/23/2012] [Indexed: 01/13/2023] Open
Abstract
Background Synovial explants furnish an in-situ population of mesenchymal stem cells for the repair of articular cartilage. Although bone morphogenetic protein 2 (BMP-2) induces the chondrogenesis of bovine synovial explants, the cartilage formed is neither homogeneously distributed nor of an exclusively hyaline type. Furthermore, the downstream differentiation of chondrocytes proceeds to the stage of terminal hypertrophy, which is inextricably coupled with undesired matrix mineralization. With a view to optimizing BMP-2-induced chondrogenesis, the modulating influences of fibroblast growth factor 2 (FGF-2) and transforming growth factor beta 1 (TGF-ß1) were investigated. Methodology/Principal Findings Explants of bovine calf metacarpal synovium were exposed to BMP-2 (200 ng/ml) for 4 (or 6) weeks. FGF-2 (10 ng/ml) or TGF-ß1 (10 ng/ml) was introduced at the onset of incubation and was present either during the first week of culturing alone or throughout its entire course. FGF-2 enhanced the BMP-2-induced increase in metachromatic staining for glycosaminoglycans (GAGs) only when it was present during the first week of culturing alone. TGF-ß1 enhanced not only the BMP-2-induced increase in metachromasia (to a greater degree than FGF-2), but also the biochemically-assayed accumulation of GAGs, when it was present throughout the entire culturing period; in addition, it arrested the downstream differentiation of cells at an early stage of hypertrophy. These findings were corroborated by an analysis of the gene- and protein-expression levels of key cartilaginous markers and by an estimation of individual cell volume. Conclusions/Significance TGF-ß1 enhances the BMP-2-induced chondrogenesis of bovine synovial explants, improves the hyaline-like properties of the neocartilage, and arrests the downstream differentiation of cells at an early stage of hypertrophy. With the prospect of engineering a mature, truly articular type of cartilage in the context of clinical repair, our findings will be of importance in fine-tuning the stimulation protocol for the optimal chondrogenic differentiation of synovial explants.
Collapse
Affiliation(s)
- Nahoko Shintani
- Departments of Orthopaedic Surgery and Clinical Research, Center of Regenerative Medicine for Skeletal Tissues, University of Bern, Bern, Switzerland
| | - Klaus A. Siebenrock
- Departments of Orthopaedic Surgery and Clinical Research, Center of Regenerative Medicine for Skeletal Tissues, University of Bern, Bern, Switzerland
| | - Ernst B. Hunziker
- Departments of Orthopaedic Surgery and Clinical Research, Center of Regenerative Medicine for Skeletal Tissues, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
11
|
Mayr H, Klehm J, Schwan S, Hube R, Südkamp N, Niemeyer P, Salzmann G, von Eisenhardt-Rothe R, Heilmann A, Bohner M, Bernstein A. Microporous calcium phosphate ceramics as tissue engineering scaffolds for the repair of osteochondral defects: biomechanical results. Acta Biomater 2013; 9:4845-55. [PMID: 22885682 DOI: 10.1016/j.actbio.2012.07.040] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 07/23/2012] [Accepted: 07/26/2012] [Indexed: 10/28/2022]
Abstract
This work investigated the suitability of microporous β-tricalcium phosphate (TCP) scaffolds pre-seeded with autologous chondrocytes for treatment of osteochondral defects in a large animal model. Microporous β-TCP cylinders (Ø 7 mm; length 25 mm) were seeded with autologous chondrocytes and cultured for 4 weeks in vitro. Only the upper end of the cylinder was seeded with chondrocytes. Chondrocytes formed a multilayer on the top. The implants were then implanted in defects (diameter 7 mm) created in the left medial femoral condyle of ovine knees. The implants were covered with synovial membrane from the superior recess of the same joint. For the right knees, an empty defect with the same dimensions served as control. Twenty-eight sheep were split into 6-, 12-, 26- and 52 week groups of seven animals. Indentation tests with a spherical (Ø 3mm) indenter were used to determine the biomechanical properties of regenerated tissue. A software-based limit switch was implemented to ensure a maximal penetration depth of 200 μm and maximal load of 1.5 N. The achieved load, the absorbed energy and the contact stiffness were measured. Newly formed cartilage was assessed with the International Cartilage Repair Society Visual Assessment Scale (ICRS score) and histomorphometric analysis. Results were analysed statistically using the t-test, Mann-Whitney U-test and Wilcoxon test. Statistical significance was set at p<0.05. After 6 weeks of implantation, the transplanted area tolerated an indentation load of 0.05±0.20 N. This value increased to 0.10±0.06 N after 12 weeks, to 0.27±0.18 N after 26 weeks, and 0.27±0.11 N after 52 weeks. The increase in the tolerated load was highly significant (p<0.0001), but the final value was not significantly different from that of intact cartilage (0.30±0.12 N). Similarly, the increase in contact stiffness from 0.87±0.29 N mm-(1) after 6 weeks to 3.14±0.86 N mm(-1) after 52 weeks was highly significant (p<0.0001). The absorbed energy increased significantly (p=0.02) from 0.74×10(-6)±0.38×10(-6) Nm after 6 weeks to 2.83×10(-6)±1.35×10(-6) Nm after 52 weeks. At 52 weeks, the International Cartilage Repair Society (ICRS) scores for the central area of the transplanted area and untreated defects were comparable. In contrast, the score for the area from the edge to the centre of the transplanted area was significantly higher (p=0.001) than the score for the unfilled defects. A biomechanically stable cartilage was built outside the centre of defect. After 52 weeks, all but one empty control defect were covered by bone and a very thin layer of cartilage (ICRS 7 points). The empty hole could still be demonstrated beneath the bone. The histomorphometric evaluation revealed that 81.0±10.6% of TCP was resorbed after 52 weeks. The increase in TCP resorption and replacement by spongy bone during the observation period was highly significant (p<0.0001). In this sheep trial, the mechanical properties of microporous TCP scaffolds seeded with transplanted autologous chondrocytes were similar to those of natural cartilage after 52 weeks of implantation. However, the central area of the implants had a lower ICRS score than healthy cartilage. Microporous TCP was almost fully resorbed at 52 weeks and replaced by bone.
Collapse
|
12
|
Jones E, McGonagle D. Synovial mesenchymal stem cells in vivo: Potential key players for joint regeneration. World J Rheumatol 2011; 1:4-11. [DOI: 10.5499/wjr.v1.i1.4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Unlike bone marrow (BM) mesenchymal stem cells (MSCs), whose in vivo identity has been actively explored in recent years, the biology of MSCs in the synovium remains poorly understood. Synovial MSCs may be of great importance to rheumatology and orthopedics because of the direct proximity and accessibility of the synovium to cartilage, ligament, and meniscus. Their excellent chondrogenic capabilities and suggested transit through the synovial fluid, giving unhindered access to the joint surface, further support a pivotal role for synovial MSCs in homeostatic joint repair. This review highlights several unresolved issues pertaining to synovial MSC isolation, topography, and their relationship with pericytes, synovial fibroblasts, and synovial fluid MSCs. Critically reviewing published data on synovial MSCs, we also draw from our experience of exploring the in vivo biology of MSCs in the BM to highlight key differences. Extending our knowledge of synovial MSCs in vivo could lead to novel therapeutic strategies for arthritic diseases.
Collapse
|
13
|
Thomas RS, Clarke AR, Duance VC, Blain EJ. Effects of Wnt3A and mechanical load on cartilage chondrocyte homeostasis. Arthritis Res Ther 2011; 13:R203. [PMID: 22151902 PMCID: PMC3334656 DOI: 10.1186/ar3536] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 11/02/2011] [Accepted: 12/09/2011] [Indexed: 12/23/2022] Open
Abstract
Introduction Articular cartilage functions in withstanding mechanical loads and provides a lubricating surface for frictionless movement of joints. Osteoarthritis, characterised by cartilage degeneration, develops due to the progressive erosion of structural integrity and eventual loss of functional performance. Osteoarthritis is a multi-factorial disorder; two important risk factors are abnormal mechanical load and genetic predisposition. A single nucleotide polymorphism analysis demonstrated an association of hip osteoarthritis with an Arg324Gly substitution mutation in FrzB, a Wnt antagonist. The purpose of this study was two-fold: to assess whether mechanical stimulation modulates β-catenin signalling and catabolic gene expression in articular chondrocytes, and further to investigate whether there is an interplay of mechanical load and Wnt signalling in mediating a catabolic response. Methods Chondrocytes were pre-stimulated with recombinant Wnt3A for 24 hours prior to the application of tensile strain (7.5%, 1 Hz) for 30 minutes. Activation of Wnt signalling, via β-catenin nuclear translocation and downstream effects including the transcriptional activation of c-jun, c-fos and Lef1, markers of chondrocyte phenotype (type II collagen (col2a1), aggrecan (acan), SOX9) and catabolic genes (MMP3, MMP13, ADAMTS-4, ADAMTS-5) were assessed. Results Physiological tensile strain induced col2a1, acan and SOX9 transcription. Load-induced acan and SOX9 expression were repressed in the presence of Wnt3A. Load induced partial β-catenin nuclear translocation; there was an additive effect of load and Wnt3A on β-catenin distribution, with both extensive localisation in the nucleus and cytoplasm. Immediate early response (c-jun) and catabolic genes (MMP3, ADAMTS-4) were up-regulated in Wnt3A stimulated chondrocytes. With load and Wnt3A there was an additive up-regulation of c-fos, MMP3 and ADAMTS-4 transcription, whereas there was a synergistic interplay on c-jun, Lef1 and ADAMTS-5 transcription. Conclusion Our data suggest that load and Wnt, in combination, can repress transcription of chondrocyte matrix genes, whilst enhancing expression of catabolic mediators. Future studies will investigate the respective roles of abnormal loading and genetic predisposition in mediating cartilage degeneration.
Collapse
Affiliation(s)
- Rhian S Thomas
- Welsh School of Pharmacy, Redwood Building, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| | | | | | | |
Collapse
|
14
|
Mizuno S, Ogawa R. Using changes in hydrostatic and osmotic pressure to manipulate metabolic function in chondrocytes. Am J Physiol Cell Physiol 2011; 300:C1234-45. [PMID: 21270297 DOI: 10.1152/ajpcell.00309.2010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Articular cartilage has distinct histological depth zones. In each zone, chondrocytes are subject to different hydrostatic (HP) and osmotic pressure (OP) due to weight-bearing and joint-loading. Previous in vitro studies of regeneration and pathophysiology in cartilage have failed to consider the characteristics of histological heterogeneity and the effects of combinations of changes in HP and OP. Thus, we have constructed molecular, biochemical, and histological profiles of anabolic and catabolic molecules produced by chondrocytes from each depth zone isolated from bovine articular cartilage in response to changes in HP and OP. We cultured the chondrocytes with combinations of loading or off-loading of HP at 0-0.5 MPa, 0.5 Hz, and changes in OP of 300-450 mosM over 1 wk, and evaluated mRNA expression and immunohistology of both anabolic and catabolic molecules and amounts of accumulated sulfated glycosaminoglycan. Any changes in HP and OP upregulated mRNA of anabolic and catabolic molecules in surface-, middle-, and deep-zone cells, in descending order of magnitude. Off-loading HP maintained the anabolic and reduced the catabolic mRNA; high OP retained upregulation of catabolic mRNA. These molecular profiles were consistent with immunohistological and biochemical findings. Changes in HP and OP are essential for simulating chondrocyte physiology and useful for manipulating phenotypes.
Collapse
Affiliation(s)
- Shuichi Mizuno
- Orthopedic Research, Brigham and Women's Hospital, 75 Francis St., Boston, MA 02115, USA.
| | | |
Collapse
|
15
|
Abstract
Articular cartilage lesions in the athletic population are observed with increasing frequency and, due to limited intrinsic healing capacity, can lead to progressive pain and functional limitation over time. If left untreated, isolated cartilage lesions can lead to progressive chondropenia or global cartilage loss over time. A chondropenia curve is described to help predict the outcome of cartilage injury based on different lesion and patient characteristics. Nutriceuticals and chondroprotective agents are being investigated as tools to slow the development of chondropenia. Several operative techniques have been described for articular cartilage repair or replacement and, more recently, cartilage regeneration. Rehabilitation guidelines are being developed to meet the needs of these new techniques. Next-generation techniques are currently evaluated to optimize articular cartilage repair biology and to provide a repair cartilage tissue that can withstand the high mechanical loads experienced by the athlete with consistent long-term durability.
Collapse
Affiliation(s)
| | - Kai Mithoefer
- Harvard Vanguard Orthopedics and Sports Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | | | | |
Collapse
|
16
|
Takahashi N, Knudson CB, Thankamony S, Ariyoshi W, Mellor L, Im HJ, Knudson W. Induction of CD44 cleavage in articular chondrocytes. ARTHRITIS AND RHEUMATISM 2010; 62:1338-48. [PMID: 20178130 PMCID: PMC2896278 DOI: 10.1002/art.27410] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE The hyaluronan receptor CD44 provides chondrocytes with a mechanism for sensing and responding to changes in the extracellular matrix. The purpose of this study was to document the fragmentation and loss of CD44 and to determine the likely mechanisms involved. METHODS A polyclonal anti-CD44 cytotail antibody was generated to detect CD44 fragmentation by Western blot analysis. Chondrocytes were isolated from human or bovine articular cartilage. Primary articular chondrocytes were treated with interleukin-1beta (IL-1beta), hyaluronan oligosaccharides, or phorbol myristate acetate or were passaged and subcultured in monolayer to induce dedifferentiation. Conditions that altered the capacity of CD44 to transit into lipid rafts, or pharmacologic inhibitors of metalloproteinase or gamma-secretase activity were used to define the mechanism of fragmentation of CD44. RESULTS Chondrocytes from osteoarthritic cartilage exhibited CD44 fragmentation as low molecular mass bands, corresponding to the CD44-EXT and CD44-ICD bands. Following dedifferentiation of chondrocytes or treatment of primary chondrocytes with hyaluronan oligosaccharides, IL-1beta, or phorbol myristate acetate, CD44 fragmentation was enhanced. Subsequent culture of the dedifferentiated chondrocytes in 3-dimensional alginate beads rescued the chondrocyte phenotype and diminished the fragmentation of CD44. Fragmentation of CD44 in chondrocytes was blocked in the presence of the metalloproteinase inhibitor GM6001 and the gamma-secretase inhibitor DAPT. CONCLUSION CD44 fragmentation, consistent with a signature pattern reported for sequential metalloproteinase/gamma-secretase cleavage of CD44, is a common metabolic feature of chondrocytes that have undergone dedifferentiation in vitro and osteoarthritic chondrocytes. Transit of CD44 into lipid rafts may be required for its fragmentation.
Collapse
Affiliation(s)
- Nobunori Takahashi
- Nobunori Takahashi, MD, PhD, Cheryl B. Knudson, PhD, Wataru Ariyoshi, DDS, PhD, Liliana Mellor, MS, Warren Knudson, PhD: The Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Cheryl B. Knudson
- Nobunori Takahashi, MD, PhD, Cheryl B. Knudson, PhD, Wataru Ariyoshi, DDS, PhD, Liliana Mellor, MS, Warren Knudson, PhD: The Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Sai Thankamony
- Sai Thankamony, PhD, Hee-Jeong Im, PhD: Rush University Medical Center, Chicago, Illinois
| | - Wataru Ariyoshi
- Nobunori Takahashi, MD, PhD, Cheryl B. Knudson, PhD, Wataru Ariyoshi, DDS, PhD, Liliana Mellor, MS, Warren Knudson, PhD: The Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Liliana Mellor
- Nobunori Takahashi, MD, PhD, Cheryl B. Knudson, PhD, Wataru Ariyoshi, DDS, PhD, Liliana Mellor, MS, Warren Knudson, PhD: The Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Hee-Jeong Im
- Sai Thankamony, PhD, Hee-Jeong Im, PhD: Rush University Medical Center, Chicago, Illinois
| | - Warren Knudson
- Nobunori Takahashi, MD, PhD, Cheryl B. Knudson, PhD, Wataru Ariyoshi, DDS, PhD, Liliana Mellor, MS, Warren Knudson, PhD: The Brody School of Medicine, East Carolina University, Greenville, North Carolina
| |
Collapse
|
17
|
Lee JH, Fitzgerald JB, DiMicco MA, Cheng DM, Flannery CR, Sandy JD, Plaas AH, Grodzinsky AJ. Co-culture of mechanically injured cartilage with joint capsule tissue alters chondrocyte expression patterns and increases ADAMTS5 production. Arch Biochem Biophys 2009; 489:118-26. [PMID: 19607802 PMCID: PMC2752630 DOI: 10.1016/j.abb.2009.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 06/29/2009] [Accepted: 07/09/2009] [Indexed: 01/24/2023]
Abstract
We studied changes in chondrocyte gene expression, aggrecan degradation, and aggrecanase production and activity in normal and mechanically injured cartilage co-cultured with joint capsule tissue. Chondrocyte expression of 21 genes was measured at 1, 2, 4, 6, 12, and 24h after treatment; clustering analysis enabled identification of co-expression profiles. Aggrecan fragments retained in cartilage and released to medium and loss of cartilage sGAG were quantified. Increased expression of MMP-13 and ADAMTS4 clustered with effects of co-culture, while increased expression of ADAMTS5, MMP-3, TGF-beta, c-fos, c-jun clustered with cartilage injury. ADAMTS5 protein within cartilage (immunohistochemistry) increased following injury and with co-culture. Cartilage sGAG decreased over 16-days, most severely following injury plus co-culture. Cartilage aggrecan was cleaved at aggrecanase sites in the interglobular and C-terminal domains, resulting in loss of the G3 domain, especially after injury plus co-culture. Together, these results support the hypothesis that interactions between injured cartilage and other joint tissues are important in matrix catabolism after joint injury.
Collapse
Affiliation(s)
- J H Lee
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Fan J, Varshney RR, Ren L, Cai D, Wang DA. Synovium-derived mesenchymal stem cells: a new cell source for musculoskeletal regeneration. TISSUE ENGINEERING PART B-REVIEWS 2009; 15:75-86. [PMID: 19196118 DOI: 10.1089/ten.teb.2008.0586] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Ever since synovium-derived mesenchymal stem cells (SMSCs) were first identified and successfully isolated in 2001, as a brand new member in MSC families, they have been increasingly regarded as a promising therapeutic cell species for musculoskeletal regeneration, particularly for reconstructions of cartilage, bones, tendons, and muscles. Besides the general multipotency in common among the MSC community, SMSCs excel other sourced MSCs in higher ability of proliferation and superiority in chondrogenesis. This review summarizes the latest advances in SMSC-related studies covering their specific isolation methodologies, biological insights, and practical applications in musculoskeletal therapeutics of which an emphasis is cast on engineered chondrogenesis.
Collapse
Affiliation(s)
- Jiabing Fan
- Center for Stem Cell Biology and Tissue Engineering, Sun Yat-sen University, Guangzhou, PR China
| | | | | | | | | |
Collapse
|