1
|
Mukherjee G, Samanta S, Bishayi B. TLR-4Ab and IFNγAb with exogenous IL-10 treated LPS induced mice shown differential inflammatory response upon RANKL-M-CSF stimulation in resident bone marrow cells. Microb Pathog 2025; 202:107416. [PMID: 40023455 DOI: 10.1016/j.micpath.2025.107416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 02/19/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
The inflammatory response in bone tissue often triggered by LPS is a complex process. Since LPS through TLR4 and in presence of IFNγ activates osteoclast differentiation and bone resorption, therefore, suppression of osteoclastogenesis through inhibition of TLR4 vs IFNγ mediated inflammation could be a reasonable strategy for the treatment of inflammatory bone loss. Administration of anti-TLR4 (30 mg/kg) and anti-IFNγ antibodies (6.6 mg/kg) were utilized before LPS (5 mg/kg) challenge and subsequently mice were treated with mouse IL-10 (0.02 mg/kg). Then RBMCs were isolated from different groups of mice and stimulated (in vitro) with M-CSF (10 ng/ml) and RANKL (10 ng/ml) to induce bone marrow cell differentiation in presence of LPS (100 ng/ml). The involvement of RANKL and M-CSF in the regulation of bone inflammation underlines the intricate signaling pathways. Furthermore, the study sheds light on the potential therapeutic effects of exogenous IL-10 possibly through STAT3 signaling in the RBMCs. The use of antibodies against TLR4 and IFNγ, in conjugation with IL-10in LPS bone damage model, appears to downregulate the activation of NF-κB, and reduction of many pro-inflammatory cytokines regulating the inflammatory cascade in RBMC. This suggests a promising avenue for the development of treatments aimed at mitigating bone inflammation associated with bacterial infections. Therefore, inhibition of TLR4 and IFNγ could be explored as potential therapeutic agents against LPS induced bone loss.
Collapse
Affiliation(s)
- Gopinath Mukherjee
- Department of Physiology, Immunology and Microbiology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta, 700009, West Bengal, India
| | - Sharmistha Samanta
- Department of Physiology, Immunology and Microbiology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta, 700009, West Bengal, India
| | - Biswadev Bishayi
- Department of Physiology, Immunology and Microbiology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta, 700009, West Bengal, India.
| |
Collapse
|
2
|
Molitoris KH, Balu AR, Huang M, Baht GS. The impact of age and sex on the inflammatory response during bone fracture healing. JBMR Plus 2024; 8:ziae023. [PMID: 38560342 PMCID: PMC10978063 DOI: 10.1093/jbmrpl/ziae023] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 12/29/2023] [Accepted: 02/12/2024] [Indexed: 04/04/2024] Open
Abstract
Inflammation is thought to be dysregulated with age leading to impaired bone fracture healing. However, broad analyses of inflammatory processes during homeostatic bone aging and during repair are lacking. Here, we assessed changes in inflammatory cell and cytokine profiles in circulation and in bone tissue to identify age- and sex-dependent differences during homeostasis and repair. During homeostatic aging, male mice demonstrated accumulation of CD4+ helper T cells and CD8+ cytotoxic T cells within bone while both pro-inflammatory "M1" and anti-inflammatory "M2" macrophage numbers decreased. Female mice saw no age-associated changes in immune-cell population in homeostatic bone. Concentrations of IL-1β, IL-9, IFNγ, and CCL3/MIP-1α increased with age in both male and female mice, whereas concentrations of IL-2, TNFα, TNFR1, IL-4, and IL-10 increased only in female mice - thus we termed these "age-accumulated" cytokines. There were no notable changes in immune cell populations nor cytokines within circulation during aging. Sex-dependent analysis demonstrated slight changes in immune cell and cytokine levels within bone and circulation, which were lost upon fracture injury. Fracture in young male mice caused a sharp decrease in number of M1 macrophages; however, this was not seen in aged male mice nor in female mice of any age. Injury itself induced a decrease in the number of CD8+ T cells within the local tissue of aged male and of female mice but not of young mice. Cytokine analysis of fractured mice revealed that age-accumulated cytokines quickly dissipated after fracture injury, and did not re-accumulate in newly regenerated tissue. Conversely, CXCL1/KC-GRO, CXCL2/MIP-2, IL-6, and CCL2/MCP-1 acted as "fracture response" cytokines: increasing sharply after fracture, eventually returning to baseline. Collectively, we classify measured cytokines into three groups: (1) age-accumulated cytokines, (2) female-specific age-accumulated cytokines, and (3) fracture response cytokines. These inflammatory molecules represent potential points of intervention to improve fracture healing outcome.
Collapse
Affiliation(s)
- Kristin Happ Molitoris
- Department of Orthopaedic Surgery, Duke Molecular Physiology Institute, Department of Pathology, Duke University, Durham, NC 27701, United States
| | - Abhinav Reddy Balu
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Mingjian Huang
- Department of Orthopaedic Surgery, Duke Molecular Physiology Institute, Department of Pathology, Duke University, Durham, NC 27701, United States
| | - Gurpreet Singh Baht
- Department of Orthopaedic Surgery, Duke Molecular Physiology Institute, Department of Pathology, Duke University, Durham, NC 27701, United States
| |
Collapse
|
3
|
Bott KN, Feldman E, de Souza RJ, Comelli EM, Klentrou P, Peters SJ, Ward WE. Lipopolysaccharide-Induced Bone Loss in Rodent Models: A Systematic Review and Meta-Analysis. J Bone Miner Res 2023; 38:198-213. [PMID: 36401814 PMCID: PMC10107812 DOI: 10.1002/jbmr.4740] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 11/21/2022]
Abstract
Osteoporosis has traditionally been characterized by underlying endocrine mechanisms, though evidence indicates a role of inflammation in its pathophysiology. Lipopolysaccharide (LPS), a component of gram-negative bacteria that reside in the intestines, can be released into circulation and stimulate the immune system, upregulating bone resorption. Exogenous LPS is used in rodent models to study the effect of systemic inflammation on bone, and to date a variety of different doses, routes, and durations of LPS administration have been used. The study objective was to determine whether systemic administration of LPS induced inflammatory bone loss in rodent models. A systematic search of Medline and four other databases resulted in a total of 110 studies that met the inclusion criteria. Pooled standardized mean differences (SMDs) and corresponding 95% confidence intervals (CI) with a random-effects meta-analyses were used for bone volume fraction (BV/TV) and volumetric bone mineral density (vBMD). Heterogeneity was quantified using the I2 statistic. Shorter-term (<2 weeks) and longer-term (>2 weeks) LPS interventions were analyzed separately because of intractable study design differences. BV/TV was significantly reduced in both shorter-term (SMD = -3.79%, 95% CI [-4.20, -3.38], I2 62%; p < 0.01) and longer-term (SMD = -1.50%, 95% CI [-2.00, -1.00], I2 78%; p < 0.01) studies. vBMD was also reduced in both shorter-term (SMD = -3.11%, 95% CI [-3.78, -2.44]; I2 72%; p < 0.01) and longer-term (SMD = -3.49%, 95% CI [-4.94, -2.04], I2 82%; p < 0.01) studies. In both groups, regardless of duration, LPS negatively impacted trabecular bone structure but not cortical bone structure, and an upregulation in bone resorption demonstrated by bone cell staining and serum biomarkers was reported. This suggests systemically delivered exogenous LPS in rodents is a viable model for studying inflammatory bone loss, particularly in trabecular bone. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Kirsten N Bott
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Evelyn Feldman
- Lakehead University Library, Lakehead University, Thunder Bay, ON, Canada
| | - Russell J de Souza
- Department of Health Research Methods, Evidence, and Impact, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada.,Population Health Research Institute, Hamilton Health Sciences Corporation, Hamilton, ON, Canada
| | - Elena M Comelli
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada.,Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada.,Joannah and Brian Lawson Centre for Child Nutrition, University of Toronto, Toronto, ON, Canada
| | - Panagiota Klentrou
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Sandra J Peters
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Wendy E Ward
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada.,Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada.,Department of Health Sciences, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
4
|
Dong Y, Zhou H, Alhaskawi A, Wang Z, Lai J, Abdullah Ezzi SH, Kota VG, Abdulla Hasan Abdulla MH, Sun Z, Lu H. Alterations in bone fracture healing associated with TNFRSF signaling pathways. Front Pharmacol 2022; 13:905535. [PMID: 36324677 PMCID: PMC9621617 DOI: 10.3389/fphar.2022.905535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 10/03/2022] [Indexed: 11/29/2022] Open
Abstract
Bone fracture healing is a complex process involving various signaling pathways. It remains an unsolved issue the fast and optimal management of complex or multiple fractures in the field of orthopedics and rehabilitation. Bone fracture healing is largely a four-stage process, including initial hematoma formation, intramembrane ossification, chondrogenesis, and endochondral ossification followed by further bone remodeling. Many studies have reported the involvement of immune cells and cytokines in fracture healing. On the other hand, the Tumor Necrosis Factor (TNF) family and TNF receptor superfamily (TNFRSF) play a pivotal role in many physiological processes. The functions of the TNF family and TNFRSF in immune processes, tissue homeostasis, and cell differentiation have been extensively studied by many groups, and treatments targeting specific TNFRSF members are in progress. In terms of bone fracture management, it has been discovered that several members of TNFRSF have very distinct functions in different stages of fracture healing, including TNFR1, TNFR2, and receptor activator of nuclear factor kappa-B (RANK) pathways. More specifically, TNFR1 is associated with osteoclastogenesis and TNFR2 is associated with osteogenic differentiation, while RANK is in association with bone remodeling. In this review, we will discuss and summarize the involvement of members of TNFRSF including TNFR1, TNFR2, and Receptor activator of nuclear factor kappa-B (RANK) pathways in different stages of fracture healing and bone remodeling and the current treatment trend involving TNFRSF agonists and antagonists.
Collapse
Affiliation(s)
- Yanzhao Dong
- Department of Orthopedics, B Department of Rehabilitation Medicine, the First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Haiying Zhou
- Department of Orthopedics, B Department of Rehabilitation Medicine, the First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Ahmad Alhaskawi
- Department of Orthopedics, B Department of Rehabilitation Medicine, the First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Zewei Wang
- Zhejiang University School of Medicine, Hangzhou, China
| | - Jingtian Lai
- Zhejiang University School of Medicine, Hangzhou, China
| | | | | | | | - Zhenyu Sun
- Department of Orthopedics, B Department of Rehabilitation Medicine, the First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Hui Lu
- Department of Orthopedics, B Department of Rehabilitation Medicine, the First Affiliated Hospital, Zhejiang University, Hangzhou, China
- Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Kangari P, Talaei-Khozani T, Razeghian-Jahromi I, Razmkhah M. Mesenchymal stem cells: amazing remedies for bone and cartilage defects. Stem Cell Res Ther 2020; 11:492. [PMID: 33225992 PMCID: PMC7681994 DOI: 10.1186/s13287-020-02001-1] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022] Open
Abstract
Skeletal disorders are among the leading debilitating factors affecting millions of people worldwide. The use of stem cells for tissue repair has raised many promises in various medical fields, including skeletal disorders. Mesenchymal stem cells (MSCs) are multipotent stromal cells with mesodermal and neural crest origin. These cells are one of the most attractive candidates in regenerative medicine, and their use could be helpful in repairing and regeneration of skeletal disorders through several mechanisms including homing, angiogenesis, differentiation, and response to inflammatory condition. The most widely studied sources of MSCs are bone marrow (BM), adipose tissue, muscle, umbilical cord (UC), umbilical cord blood (UCB), placenta (PL), Wharton's jelly (WJ), and amniotic fluid. These cells are capable of differentiating into osteoblasts, chondrocytes, adipocytes, and myocytes in vitro. MSCs obtained from various sources have diverse capabilities of secreting many different cytokines, growth factors, and chemokines. It is believed that the salutary effects of MSCs from different sources are not alike in terms of repairing or reformation of injured skeletal tissues. Accordingly, differential identification of MSCs' secretome enables us to make optimal choices in skeletal disorders considering various sources. This review discusses and compares the therapeutic abilities of MSCs from different sources for bone and cartilage diseases.
Collapse
Affiliation(s)
- Parisa Kangari
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Talaei-Khozani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Tissue Engineering Laboratory, Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mahboobeh Razmkhah
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
6
|
Huang Y, Jia Z, Xu Y, Qin M, Feng S. Selenium protects against LPS-induced MC3T3-E1 cells apoptosis through modulation of microRNA-155 and PI3K/Akt signaling pathways. Genet Mol Biol 2020; 43:e20190153. [PMID: 32511663 PMCID: PMC7278977 DOI: 10.1590/1678-4685-gmb-2019-0153] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 04/06/2020] [Indexed: 12/15/2022] Open
Abstract
Bone infection or osteomyelitis is usually a complication of inflammation-related traumatic bone injury. Selenium has been shown to have potential cytoprotective effects and the ability to reduce oxidative stress and apoptotic events in osteomyelitis, but the exact mechanism remains unclear. Here, we used LPS-induced apoptotic MC3T3-E1 cells and aimed to confirm selenium's protective effect on cell apoptosis as well as to investigate the underlying mechanisms of this role. Our investigation confirmed selenium-mediated inhibition of LPS-induced cell apoptosis and ROS accumulation in MC3T3-E1 cells. Upon selenium treatment, the bcl-2 levels were upregulated, while the levels of Bax and cyto-C were down-regulated. Furthermore, these effects were accompanied by the suppression of miR-155 and the phosphorylation of protein kinase B (Akt). A more in-depth study demonstrated that LY294002 (a specific inhibitor of PI3K), abolished the selenium-mediated cytoprotective effect of MC3T3-E1 cells against LPS-induced injury and down-regulation of miR-155. In general, these results demonstrated that selenium exerts a cytoprotective effect by attenuating cell apoptosis and oxidative damage via a PI3K/Akt/miR-155-dependent mechanism.
Collapse
Affiliation(s)
- Yan Huang
- Department of Orthopaedics, Hunan Provincial People's Hospital, Changsha, Hunan Province, P.R. China
| | - Zhen Jia
- Department of Orthopaedics, Hunan Provincial People's Hospital, Changsha, Hunan Province, P.R. China
| | - YongQiang Xu
- Department of Orthopaedics, Hunan Provincial People's Hospital, Changsha, Hunan Province, P.R. China
| | - MeiLan Qin
- Department of Orthopaedics, Hunan Provincial People's Hospital, Changsha, Hunan Province, P.R. China
| | - SiYin Feng
- Department of Orthopaedics, Hunan Provincial People's Hospital, Changsha, Hunan Province, P.R. China
| |
Collapse
|
7
|
Kim EN, Kim YG, Lee JH, Min BS, Jeong GS. 6,7,4'-Trihydroxyflavone inhibits osteoclast formation and bone resorption in vitro and in vivo. Phytother Res 2019; 33:2948-2959. [PMID: 31478281 DOI: 10.1002/ptr.6468] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 07/05/2019] [Accepted: 07/09/2019] [Indexed: 12/30/2022]
Abstract
The balance between the osteoblasts and the osteoclasts is important for the maintenance of the skeleton of the human body. The osteoclasts absorb bone after differentiated into polymorphonuclear cells by the fusion of monocytes/macrophages. We have found that 6,7,4'-Trihydroxyflavone (THF), a compound from the heartwood of Dalbergia Odorifera inhibits receptor activator of NF-κB ligand (RANKL)-induced osteoclast differentiation, actin ring formation, and bone resorption in RAW 264.7 cells and bone marrow macrophage. THF significantly inhibited the c-Jun-N-terminal kinase signaling pathway without affecting extracellular signal-regulated kinase, p38, and AKT signaling. Moreover, THF inhibited the expression of c-Fos, nuclear factor-activated T cells cytoplasm 1, cathepsin K, and c-src by RANKL. We used a lipopolysaccharide (LPS)-induced bone loss model in mice. Consequently, bone volume per tissue volume, trabecular number's reduction was recovered in THF-treated mice, and trabecular separation's augmentation was also attenuated by THF administration. In summary, THF inhibits RANKL-induced osteoclast differentiation by MAPK signaling pathway and inhibits bone resorption by destroying the actin ring in mature osteoclasts. THF also prevented LPS-induced bone loss in a mice model. Thus, THF may be useful in the treatment of bone diseases associated with excessive osteoclast differentiation and bone resorption.
Collapse
Affiliation(s)
- Eun-Nam Kim
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| | - Yu Gyeong Kim
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| | - Jeong-Hyung Lee
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Byung Sun Min
- College of Pharmacy, Catholic University of Daegu, Gyeongsan, Republic of Korea
| | - Gil-Saeng Jeong
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| |
Collapse
|
8
|
Li H, Zhang S, Nie B, Long T, Qu X, Yue B. KR-12-a5 Reverses Adverse Effects of Lipopolysaccharides on HBMSC Osteogenic Differentiation by Influencing BMP/Smad and P38 MAPK Signaling Pathways. Front Pharmacol 2019; 10:639. [PMID: 31231225 PMCID: PMC6561377 DOI: 10.3389/fphar.2019.00639] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/17/2019] [Indexed: 12/16/2022] Open
Abstract
KR-12-a5 is an analogue of the antimicrobial peptide KR-12. Both of these two agents can play key effects in the treatment of infections such as osteomyelitis. Our previous work demonstrated that the osteogenic differentiation of human bone marrow mesenchymal stem cells (HBMSCs) can be enhanced by KR-12. The present study investigated if KR-12-a5 could reverse the adverse effects of lipopolysaccharides (LPS) on HBMSC osteogenesis and the involved molecular mechanisms. We observed the proliferation, cell cycle, and apoptosis of HBMSCs in the presence of KR-12-a5 by a cell counting kit-8 assay and flow cytometry. The osteogenic differentiation of HBMSCs was studied by alkaline phosphatase, Alizarin Red staining, and quantitative assays. Osteogenic differentiation marker levels were detected using real-time quantitative PCR analysis, which demonstrated that KR-12-a5 treatment reversed the inhibition of osteogenesis. Western blot analysis indicated that LPS-activated P38 mitogen-activated protein kinase (MAPK) signaling was inhibited and BMP/Smad pathway was reactivated after KR-12-a5 treatment under induced osteogenic conditions. Furthermore, flow cytometry results demonstrated that KR-12-a5 relieved LPS-induced oxidative stress. Combining the LPS-treated mouse model results, we proved that KR-12-a5 reversed the adverse effects of LPS on HBMSC osteogenic differentiation by influencing the BMP/Smad and P38 MAPK signaling pathways.
Collapse
Affiliation(s)
| | | | | | | | | | - Bing Yue
- Department of Bone and Joint Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Lordén G, Sanjuán-García I, de Pablo N, Meana C, Alvarez-Miguel I, Pérez-García MT, Pelegrín P, Balsinde J, Balboa MA. Lipin-2 regulates NLRP3 inflammasome by affecting P2X7 receptor activation. J Exp Med 2016; 214:511-528. [PMID: 28031477 PMCID: PMC5294860 DOI: 10.1084/jem.20161452] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/23/2016] [Accepted: 12/12/2016] [Indexed: 01/31/2023] Open
Abstract
Lordén et al. show that the phosphatidic acid phosphatase lipin-2 is a key regulator of the cellular machinery that generates IL-1β in macrophages. This work provides a molecular explanation for the development of the autoinflammatory disease known as Majeed syndrome. Mutations in human LPIN2 produce a disease known as Majeed syndrome, the clinical manifestations of which are ameliorated by strategies that block IL-1β or its receptor. However the role of lipin-2 during IL-1β production remains elusive. We show here that lipin-2 controls excessive IL-1β formation in primary human and mouse macrophages by several mechanisms, including activation of the inflammasome NLRP3. Lipin-2 regulates MAPK activation, which mediates synthesis of pro–IL-1β during inflammasome priming. Lipin-2 also inhibits the activation and sensitization of the purinergic receptor P2X7 and K+ efflux, apoptosis-associated speck-like protein with a CARD domain oligomerization, and caspase-1 processing, key events during inflammasome activation. Reduced levels of lipin-2 in macrophages lead to a decrease in cellular cholesterol levels. In fact, restoration of cholesterol concentrations in cells lacking lipin-2 decreases ion currents through the P2X7 receptor, and downstream events that drive IL-1β production. Furthermore, lipin-2–deficient mice exhibit increased sensitivity to high lipopolysaccharide doses. Collectively, our results unveil lipin-2 as a critical player in the negative regulation of NLRP3 inflammasome.
Collapse
Affiliation(s)
- Gema Lordén
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, 47003 Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain
| | - Itziar Sanjuán-García
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, 47003 Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain
| | - Nagore de Pablo
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, 47003 Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain
| | - Clara Meana
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, 47003 Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain
| | - Inés Alvarez-Miguel
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, 47003 Valladolid, Spain.,Departamento de Fisiología, Facultad de Medicina, Universidad de Valladolid, 47003 Valladolid, Spain
| | - M Teresa Pérez-García
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, 47003 Valladolid, Spain.,Departamento de Fisiología, Facultad de Medicina, Universidad de Valladolid, 47003 Valladolid, Spain
| | - Pablo Pelegrín
- Molecular Inflammation Group, Murcia Biomedical Research Institute, Hospital Virgen de la Arrixaca, Carretera Buenavista, 30120 Murcia, Spain
| | - Jesús Balsinde
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, 47003 Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain
| | - María A Balboa
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, 47003 Valladolid, Spain .,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, 28029 Madrid, Spain
| |
Collapse
|
10
|
Crémet L, Broquet A, Brulin B, Jacqueline C, Dauvergne S, Brion R, Asehnoune K, Corvec S, Heymann D, Caroff N. Pathogenic potential of Escherichia coli clinical strains from orthopedic implant infections towards human osteoblastic cells. Pathog Dis 2015; 73:ftv065. [PMID: 26333570 DOI: 10.1093/femspd/ftv065] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2015] [Indexed: 01/18/2023] Open
Abstract
Escherichia coli is one of the first causes of Gram-negative orthopedic implant infections (OII), but little is known about the pathogenicity of this species in such infections that are increasing due to the ageing of the population. We report how this pathogen interacts with human osteoblastic MG-63 cells in vitro, by comparing 20 OII E. coli strains to two Staphylococcus aureus and two Pseudomonas aeruginosa strains. LDH release assay revealed that 6/20 (30%) OII E. coli induced MG-63 cell lysis whereas none of the four control strains was cytotoxic after 4 h of coculture. This high cytotoxicity was associated with hemolytic properties and linked to hlyA gene expression. We further showed by gentamicin protection assay and confocal microscopy that the non-cytotoxic E. coli were not able to invade MG-63 cells unlike S. aureus strains (internalization rate <0.01% for the non-cytotoxic E. coli versus 8.88 ± 2.31% and 4.60 ± 0.42% for both S. aureus). The non-cytotoxic E. coli also demonstrated low adherence rates (<7%), the most adherent E. coli eliciting higher IL-6 and TNF-α mRNA expression in the osteoblastic cells. Either highly cytotoxic or slightly invasive OII E. coli do not show the same infection strategies as S. aureus towards osteoblasts.
Collapse
Affiliation(s)
- Lise Crémet
- UPRES EA3826, Laboratory of Clinical and Experimental Therapeutics of Infections., Medicine Faculty, University of Nantes, 1, rue G. Veil, F-44000 Nantes, France Department of Bacteriology-Hygiene, Nantes University Hospital, F-44000 Nantes, France
| | - Alexis Broquet
- UPRES EA3826, Laboratory of Clinical and Experimental Therapeutics of Infections., Medicine Faculty, University of Nantes, 1, rue G. Veil, F-44000 Nantes, France
| | - Bénédicte Brulin
- INSERM, UMR 957, Pathophysiology of Bone Resorption Laboratory and Therapy of Primary Bone Tumors, Medicine Faculty, University of Nantes, 1, rue G. Veil, F-44000 Nantes, France
| | - Cédric Jacqueline
- UPRES EA3826, Laboratory of Clinical and Experimental Therapeutics of Infections., Medicine Faculty, University of Nantes, 1, rue G. Veil, F-44000 Nantes, France
| | - Sandie Dauvergne
- UPRES EA3826, Laboratory of Clinical and Experimental Therapeutics of Infections., Medicine Faculty, University of Nantes, 1, rue G. Veil, F-44000 Nantes, France
| | - Régis Brion
- INSERM, UMR 957, Pathophysiology of Bone Resorption Laboratory and Therapy of Primary Bone Tumors, Medicine Faculty, University of Nantes, 1, rue G. Veil, F-44000 Nantes, France
| | - Karim Asehnoune
- UPRES EA3826, Laboratory of Clinical and Experimental Therapeutics of Infections., Medicine Faculty, University of Nantes, 1, rue G. Veil, F-44000 Nantes, France Department of Bacteriology-Hygiene, Nantes University Hospital, F-44000 Nantes, France INSERM, UMR 957, Pathophysiology of Bone Resorption Laboratory and Therapy of Primary Bone Tumors, Medicine Faculty, University of Nantes, 1, rue G. Veil, F-44000 Nantes, France Intensive Care Unit, Anesthesia and Critical Care Department, Nantes University Hospital, F-44000 Nantes, France
| | - Stéphane Corvec
- UPRES EA3826, Laboratory of Clinical and Experimental Therapeutics of Infections., Medicine Faculty, University of Nantes, 1, rue G. Veil, F-44000 Nantes, France Department of Bacteriology-Hygiene, Nantes University Hospital, F-44000 Nantes, France
| | - Dominique Heymann
- INSERM, UMR 957, Pathophysiology of Bone Resorption Laboratory and Therapy of Primary Bone Tumors, Medicine Faculty, University of Nantes, 1, rue G. Veil, F-44000 Nantes, France
| | - Nathalie Caroff
- UPRES EA3826, Laboratory of Clinical and Experimental Therapeutics of Infections., Medicine Faculty, University of Nantes, 1, rue G. Veil, F-44000 Nantes, France
| |
Collapse
|
11
|
Targher G, Lonardo A, Rossini M. Nonalcoholic fatty liver disease and decreased bone mineral density: is there a link? J Endocrinol Invest 2015; 38:817-825. [PMID: 26003827 DOI: 10.1007/s40618-015-0315-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 05/15/2015] [Indexed: 02/07/2023]
Abstract
PURPOSE Liver diseases are associated with decreased bone mineral density (BMD) and evidence suggests that nonalcoholic fatty liver disease (NAFLD) affects several extra-hepatic organs, interacting with the regulation of multiple endocrine and metabolic pathways. This review focuses on the rapidly expanding body of evidence that supports a strong association between NAFLD and the risk of decreased BMD, expression of low bone mass (osteoporosis), or reduced mineralization (osteomalacia). METHODS We identified studies by searching PubMed for original articles published in English through March 2015 using the keywords "nonalcoholic fatty liver disease" or "fatty liver" combined with "bone mineral density", "osteoporosis", or "osteomalacia". RESULTS Recent cross-sectional and case-control studies involving both adults and children have consistently shown that patients with NAFLD exhibit a greater prevalence of decreased BMD compared with age-, sex-, and body mass index-matched healthy controls. Accumulating clinical and experimental evidence suggests that NAFLD may contribute to the pathophysiology of low BMD, possibly through the direct contribution of NAFLD to whole-body and hepatic insulin resistance and/or the systemic release of multiple pro-inflammatory, pro-coagulant, and pro-fibrogenic mediators. CONCLUSIONS Although more research is needed before firm conclusions can be drawn, it appears that there is a non-chance, statistical association between NAFLD and low BMD. This finding argues for more careful monitoring and evaluation of BMD among patients with NAFLD. The potential contribution of NAFLD itself to the development and progression of decreased BMD warrants further study.
Collapse
Affiliation(s)
- G Targher
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Piazzale Stefani, 1, 37126, Verona, Italy,
| | | | | |
Collapse
|
12
|
Effects of randomized rosuvastatin compared with placebo on bone and body composition among HIV-infected adults. AIDS 2015; 29:175-82. [PMID: 25396266 DOI: 10.1097/qad.0000000000000526] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Statins have a beneficial effect on bone mineral density (BMD) and lean mass in some studies of HIV-uninfected adults; however, this has never been investigated in the setting of HIV infection. DESIGN HIV-infected individuals on stable antiretroviral therapy with a low-density lipoprotein cholesterol level of 130 mg/dl or less and evidence of heightened immune activation or inflammation were randomized to rosuvastatin 10 mg daily or placebo for 96 weeks. METHODS This was a prespecified interim analysis at 48 weeks. Between-group and within-group differences were compared; multivariable regression models were constructed. RESULTS Seventy-two individuals were randomized to statin therapy and 75 to placebo. Modest 48-week relative increases in trochanter BMD [0.9%; 95% confidence interval (95% CI) -0.9 to 0.6] and total hip BMD (0.6%; 95% CI 0.0-1.1) in the statin arm were significantly greater than placebo (P < 0.05). The relationship between statin use and total hip BMD change was robust to adjustment of age, sex, race and smoking status (P = 0.02) and strengthened by inclusion of baseline (P = 0.01) and week 48 change in soluble tumour necrosis factor-α receptor (sTNFR)-1 (P = 0.009). Relative increases in total body, trunk and limb fat were similar between statin and placebo arms (P ≥ 0.58). Although a significant gain in leg lean mass was seen in the statin arm, this was not significantly different compared with placebo (P = 0.36). CONCLUSION The improvements seen in total hip BMD after 48 weeks of rosuvastatin therapy support further potential benefits of statin therapy in HIV, beyond a reduction of cardiovascular risk.
Collapse
|
13
|
Guo C, Yuan L, Wang JG, Wang F, Yang XK, Zhang FH, Song JL, Ma XY, Cheng Q, Song GH. Lipopolysaccharide (LPS) induces the apoptosis and inhibits osteoblast differentiation through JNK pathway in MC3T3-E1 cells. Inflammation 2014; 37:621-31. [PMID: 24272171 DOI: 10.1007/s10753-013-9778-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Bone degradation is a serious complication of chronic inflammatory diseases such as septic arthritis, osteomyelitis, and infected orthopedic implant failure. Up to date, effective therapeutic treatments for bacteria-caused bone destruction are limited. In our previous study, we found that LPS promoted osteoclast differentiation and activity through activation of mitogen-activated protein kinases (MAPKs) pathway such as c-Jun N-terminal kinases (JNK) and extracellular signal regulated kinase (ERK1/2). The current study was to evaluate the mechanism of LPS on the apoptosis and osteoblast differentiation in MC3T3-E1 cells. MC3T3-E1 osteoblasts were non-treated, treated with LPS. After treatment, the cell viability, the activity of alkaline phosphatase (ALP) and caspase-3 were measured. The expressions of osteoblast-specific genes and Bax, Bcl-2, and caspase-3 were determined by real-time quantitative polymerase chain reaction (qPCR). Protein levels of Bax, Bcl-2, caspase-3, and phosphorylation of MAPKs were measured using Western blotting assays. The MAPK signaling pathway was blocked by pretreatment with JNK inhibitor SP600125. LPS treatment induced a significant decrease in cell metabolism, viability, and ALP activity in MC3T3-E1 cells. LPS also significantly decreased mRNA expressions of osteoblast-related genes in MC3T3-E1 cells. On the other hand, LPS significantly upregulated mRNA expressions and protein levels of Bax and caspase-3 as well as activation of caspase-3, whereas decreased Bcl-2 expression in MC3T3-E1 cells. Furthermore, LPS significantly promoted MAPK pathway including the phosphorylation of JNK and the phosphorylation of ERK1/2; moreover, pretreatment with JNK inhibitor not only attenuated both of phosphorylation-JNK and ERK1/2 enhanced by LPS in MC3T3-E1 cells, but also reversed the downregulated expressions of osteoblast-specific genes including ALP and BSP induced by LPS. In conclusion, LPS could induce osteoblast apoptosis and inhibit osteoblast differentiation via activation of JNK pathway.
Collapse
Affiliation(s)
- Chun Guo
- Luohe Medical College, 148 Daxue Road, Luohe, 462002, Henan, People's Republic of China,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Marriott I. Apoptosis-associated uncoupling of bone formation and resorption in osteomyelitis. Front Cell Infect Microbiol 2013; 3:101. [PMID: 24392356 PMCID: PMC3867676 DOI: 10.3389/fcimb.2013.00101] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 12/04/2013] [Indexed: 01/18/2023] Open
Abstract
The mechanisms underlying the destruction of bone tissue in osteomyelitis are only now being elucidated. While some of the tissue damage associated with osteomyelitis likely results from the direct actions of bacteria and infiltrating leukocytes, perhaps exacerbated by bacterial manipulation of leukocyte survival pathways, infection-induced bone loss predominantly results from an uncoupling of the activities of osteoblasts and osteoclasts. Bacteria or their products can directly increase osteoclast formation and activity, and the inflammatory milieu at sites of infection can further promote bone resorption. In addition, osteoclast activity is critically regulated by osteoblasts that can respond to bacterial pathogens and foster both inflammation and osteoclastogenesis. Importantly, bone loss during osteomyelitis is also brought about by a decline in new bone deposition due to decreased bone matrix synthesis and by increased rates of osteoblast apoptosis. Extracellular bacterial components may be sufficient to reduce osteoblast viability, but the causative agents of osteomyelitis are also capable of inducing continuous apoptosis of these cells by activating intrinsic and extrinsic cell death pathways to further uncouple bone formation and resorption. Interestingly, bacterial internalization appears to be required for maximal osteoblast apoptosis, and cytosolic inflammasome activation may act in concert with autocrine/paracrine death receptor-ligand signaling to induce cell death. The manipulation of apoptotic pathways in infected bone cells could be an attractive new means to limit inflammatory damage in osteomyelitis. However, the mechanism that is the most important in bacterium-induced bone loss has not yet been identified. Furthermore, it remains to be determined whether the host would be best served by preventing osteoblast cell death or by promoting apoptosis in infected cells.
Collapse
Affiliation(s)
- Ian Marriott
- Department of Biology, University of North Carolina at Charlotte Charlotte, NC, USA
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Tumor necrosis factor (TNF) inhibitors are effective for achieving disease control in several inflammatory diseases. Although anti-TNF agents can inhibit bone loss in vitro, their role in the prevention of clinically relevant outcomes such as osteoporosis and fractures has not been clearly established. RECENT FINDINGS There are many studies of the effects of TNF inhibitors on markers of bone turnover; however, few have measured bone mineral density (BMD) or fractures. Most of these studies have small sample sizes and a minority had a placebo control group. Overall these studies suggest that the antiresorptive effects of anti-TNF therapy are related to control of disease activity. SUMMARY The antiresorptive effects of TNF inhibitors are likely related to their anti-inflammatory properties. Studies to date have not demonstrated any advantages of TNF inhibitors over traditional nonbiologic therapies in the prevention of bone loss and fractures.
Collapse
|
16
|
Rani S, Barbe MF, Barr AE, Litivn J. Role of TNF alpha and PLF in bone remodeling in a rat model of repetitive reaching and grasping. J Cell Physiol 2010; 225:152-67. [PMID: 20458732 PMCID: PMC3688633 DOI: 10.1002/jcp.22208] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have previously developed a voluntary rat model of highly repetitive reaching that provides an opportunity to study effects of non-weight bearing muscular loads on bone and mechanisms of naturally occurring inflammation on upper limb tissues in vivo. In this study, we investigated the relationship between inflammatory cytokines and matricellular proteins (Periostin-like-factor, PLF, and connective tissue growth factor, CTGF) using our model. We also examined the relationship between inflammatory cytokines, PLF and bone formation processes. Rats underwent initial training for 5 weeks, and then performed a high repetition high force (HRHF) task (12 reaches/min, 60% maximum grip force, 2 h/day, 3 days/week) for 6 weeks. We then examined the effect of training or task performance with or without treatment with a rat specific TNFalpha antibody on inflammatory cytokines, osteocalcin (a bone formation marker), PLF, CTGF, and behavioral indicators of pain or discomfort. The HRHF task decreased grip strength and induced forepaw mechanical hypersensitivity in both trained control and 6-week HRHF animals. Two weeks of anti-TNFalpha treatment improved grip strength in both groups, but did not ameliorate forepaw hypersensitivity. Moreover, anti-TNFalpha treatment attenuated task-induced increases in inflammatory cytokines (TNFalpha, IL-1alpha, and MIP2 in serum; TNFalpha in forelimb bone and muscles) and serum osteocalcin in 6-week HRHF animals. PLF levels in forelimb bones and flexor digitorum muscles increased significantly in 6-week HRHF animals, increases attenuated by anti-TNFalpha treatment. CTGF levels were unaffected by task performance or anti-TNFalpha treatment in 6-week HRHF muscles. In primary osteoblast cultures, TNFalpha, MIP2 and MIP3a treatment increased PLF levels in a dose dependent manner. Also in primary osteoblast cultures, increased PLF promoted proliferation and differentiation, the latter assessed by measuring Runx2, alkaline phosphatase (ALP) and osteocalcin mRNA levels; ALP activity; as well as calcium deposition and mineralization. Increased PLF also promoted cell adhesion in MC3T3-E1 osteoblast-like cell cultures. Thus, tissue loading in vivo resulted in increased TNFalpha, which increased PLF, which then induced anabolic bone formation, the latter results confirmed in vitro.
Collapse
Affiliation(s)
- Shobha Rani
- Department of Anatomy and Cell Biology, Temple Medical School, Philadelphia, Pennsylvania 19140, USA
| | | | | | | |
Collapse
|