1
|
Chester JG, Carcamo B, Gudis DA, Bustamante D, Eisig SB, Ombrello MJ, Chung WK, Milner JD. PLCG2 variants in cherubism. J Allergy Clin Immunol 2024; 154:1554-1558. [PMID: 39197752 PMCID: PMC12047677 DOI: 10.1016/j.jaci.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/12/2024] [Accepted: 08/02/2024] [Indexed: 09/01/2024]
Abstract
BACKGROUND Cherubism is most commonly caused by rare heterozygous gain-of-function (GOF) missense variants in SH3BP2, which appear to signal through phospholipase C gamma 2 (PLCG2) to cause excessive osteoclast activity leading to expansile lesions in facial bones in childhood. GOF variants in PLCG2 lead to autoinflammatory PLCG2-associated antibody deficiency and immune dysregulation (autoinflammatory PLAID, or PLAID-GOF), characterized by variably penetrant autoinflammatory, autoimmune, infectious, and atopic manifestations. Cherubism has not been reported in PLAID to date. OBJECTIVE We determined whether GOF PLCG2 variants may be associated with cherubism. METHODS Clinical, laboratory, and genomic data from 2 patients with cherubism and other clinical symptoms observed in patients with PLCG2 variants were reviewed. Primary B-cell receptor-induced calcium flux was assessed by flow cytometry. RESULTS Two patients with lesions consistent with cherubism but no SH3BP2 variants were found to have rare PLCG2 variants previously shown to be GOF in vitro, leading to increased primary B-cell receptor-induced calcium flux in one patient's B cells. Variable humoral defects, autoinflammatory rash, and other clinical and laboratory findings consistent with PLAID were observed as well. CONCLUSION GOF PLCG2 variants likely represent a novel genetic driver of cherubism and should be assessed in SH3BP2-negative cases. Expansile bony lesions expand the phenotypic landscape of autoinflammatory PLAID, and bone imaging should be considered in PLAID patients.
Collapse
Affiliation(s)
- Jennifer G Chester
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care, Columbia University, New York, NY
| | - Benjamin Carcamo
- Department of Pediatrics, Division of Pediatric Hematology Oncology, Texas Tech University Health Sciences Center, El Paso, Tex
| | - David A Gudis
- Department of Otolaryngology-Head and Neck Surgery, Division of Rhinology and Anterior Skull Base Surgery, Columbia University, New York, NY
| | - Daniel Bustamante
- Department of Pathology, Texas Tech University Health Sciences Center, El Paso, Tex
| | - Sidney B Eisig
- Section of Hospital Dentistry, Division of Oral and Maxillofacial Surgery, Columbia University, New York, NY
| | - Michael J Ombrello
- Translational Genetics and Genomics Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Md
| | - Wendy K Chung
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Joshua D Milner
- Department of Pediatrics, Division of Allergy, Immunology, and Rheumatology, Columbia University, New York, NY.
| |
Collapse
|
2
|
Harms FL, Rexach JE, Efthymiou S, Aynekin B, Per H, Güleç A, Nampoothiri S, Sampaio H, Sachdev R, Stoeva R, Myers K, Pena LDM, Kalfa TA, Chard M, Klassen M, Pries M, Kutsche K. Loss of TBC1D2B causes a progressive neurological disorder with gingival overgrowth. Eur J Hum Genet 2024; 32:558-566. [PMID: 38374468 PMCID: PMC11061173 DOI: 10.1038/s41431-024-01563-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 02/21/2024] Open
Abstract
Biallelic loss-of-function variants in TBC1D2B have been reported in five subjects with cognitive impairment and seizures with or without gingival overgrowth. TBC1D2B belongs to the family of Tre2-Bub2-Cdc16 (TBC)-domain containing RAB-specific GTPase activating proteins (TBC/RABGAPs). Here, we report five new subjects with biallelic TBC1D2B variants, including two siblings, and delineate the molecular and clinical features in the ten subjects known to date. One of the newly reported subjects was compound heterozygous for the TBC1D2B variants c.2584C>T; p.(Arg862Cys) and c.2758C>T; p.(Arg920*). In subject-derived fibroblasts, TBC1D2B mRNA level was similar to control cells, while the TBC1D2B protein amount was reduced by about half. In one of two siblings with a novel c.360+1G>T splice site variant, TBC1D2B transcript analysis revealed aberrantly spliced mRNAs and a drastically reduced TBC1D2B mRNA level in leukocytes. The molecular spectrum included 12 different TBC1D2B variants: seven nonsense, three frameshifts, one splice site, and one missense variant. Out of ten subjects, three had fibrous dysplasia of the mandible, two of which were diagnosed as cherubism. Most subjects developed gingival overgrowth. Half of the subjects had developmental delay. Seizures occurred in 80% of the subjects. Six subjects showed a progressive disease with mental deterioration. Brain imaging revealed cerebral and/or cerebellar atrophy with or without lateral ventricle dilatation. The TBC1D2B disorder is a progressive neurological disease with gingival overgrowth and abnormal mandible morphology. As TBC1D2B has been shown to positively regulate autophagy, defects in autophagy and the endolysosomal system could be associated with neuronal dysfunction and the neurodegenerative disease in the affected individuals.
Collapse
Affiliation(s)
- Frederike L Harms
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jessica Erin Rexach
- Department of Neurology, Program in Neurogenetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Stephanie Efthymiou
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Busra Aynekin
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Hüseyin Per
- Division of Pediatric Neurology, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Ayten Güleç
- Division of Pediatric Neurology, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Sheela Nampoothiri
- Department of Pediatric Genetics, Amrita Institute of Medical Sciences and Research Centre, Cochin, Kerala, India
| | - Hugo Sampaio
- Department of Women and Children's Health, University of New South Wales, Randwick Campus, Randwick, NSW, Australia
- Sydney Children's Hospital, Randwick, NSW, Australia
| | - Rani Sachdev
- Centre for Clinical Genetics, Sydney Children's Hospital, Randwick, NSW, Australia
- School of Women's and Children's Health, University of New South Wales, Randwick, NSW, Australia
| | - Radka Stoeva
- Department of Medical Genetics, Le Mans Hospital, Le Mans, France
| | - Kasiani Myers
- Division of Bone Marrow Transplant, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Loren D M Pena
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Theodosia A Kalfa
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Marisa Chard
- Provincial Medical Genetics Program, Newfoundland and Labrador Health Services, St. John's, NL, Canada
- Department of Pediatrics, Memorial University Faculty of Medicine, St. John's, NL, Canada
| | - Megan Klassen
- Provincial Medical Genetics Program, Newfoundland and Labrador Health Services, St. John's, NL, Canada
| | - Megan Pries
- Provincial Medical Genetics Program, Newfoundland and Labrador Health Services, St. John's, NL, Canada
| | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
3
|
Schreuder WH, van der Wal JE, de Lange J, van den Berg H. Multiple versus solitary giant cell lesions of the jaw: Similar or distinct entities? Bone 2021; 149:115935. [PMID: 33771761 DOI: 10.1016/j.bone.2021.115935] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/27/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023]
Abstract
The majority of giant cell lesions of the jaw present as a solitary focus of disease in bones of the maxillofacial skeleton. Less frequently they occur as multifocal lesions. This raises the clinical dilemma if these should be considered distinct entities and therefore each need a specific therapeutic approach. Solitary giant cell lesions of the jaw present with a great diversity of symptoms. Recent molecular analysis revealed that these are associated with somatic gain-of-function mutations in KRAS, FGFR1 or TRPV4 in a large component of the mononuclear stromal cells which all act on the RAS/MAPK pathway. For multifocal lesions, a small group of neoplastic multifocal giant cell lesions of the jaw remain after ruling out hyperparathyroidism. Strikingly, most of these patients are diagnosed with jaw lesions before the age of 20 years, thus before the completion of dental and jaw development. These multifocal lesions are often accompanied by a diagnosis or strong clinical suspicion of a syndrome. Many of the frequently reported syndromes belong to the so-called RASopathies, with germline or mosaic mutations leading to downstream upregulation of the RAS/MAPK pathway. The other frequently reported syndrome is cherubism, with gain-of-function mutations in the SH3BP2 gene leading through assumed and unknown signaling to an autoinflammatory bone disorder with hyperactive osteoclasts and defective osteoblastogenesis. Based on this extensive literature review, a RAS/MAPK pathway activation is hypothesized in all giant cell lesions of the jaw. The different interaction between and contribution of deregulated signaling in individual cell lineages and crosstalk with other pathways among the different germline- and non-germline-based alterations causing giant cell lesions of the jaw can be explanatory for the characteristic clinical features. As such, this might also aid in the understanding of the age-dependent symptomatology of syndrome associated giant cell lesions of the jaw; hopefully guiding ideal timing when installing treatment strategies in the future.
Collapse
Affiliation(s)
- Willem H Schreuder
- Department of Oral and Maxillofacial Surgery, Amsterdam UMC and Academic Center for Dentistry Amsterdam, University of Amsterdam, Amsterdam, the Netherlands; Department of Head and Neck Surgery and Oncology, Antoni van Leeuwenhoek / Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Jacqueline E van der Wal
- Department of Pathology, Antoni van Leeuwenhoek / Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jan de Lange
- Department of Oral and Maxillofacial Surgery, Amsterdam UMC and Academic Center for Dentistry Amsterdam, University of Amsterdam, Amsterdam, the Netherlands
| | - Henk van den Berg
- Department of Pediatrics / Oncology, Amsterdam UMC, University of Amsterdam, Emma Children's Hospital, Amsterdam, the Netherlands
| |
Collapse
|
4
|
Chrcanovic BR, Guimarães LM, Gomes CC, Gomez RS. Cherubism: a systematic literature review of clinical and molecular aspects. Int J Oral Maxillofac Surg 2021; 50:43-53. [PMID: 32620450 DOI: 10.1016/j.ijom.2020.05.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/10/2020] [Indexed: 12/13/2022]
Abstract
The purpose of this review was to integrate the clinical, radiological, microscopic, and molecular data of published cherubism cases, in addition to therapeutic approaches, to provide more concise information about the disease. An electronic search was undertaken in September 2019. Eligibility criteria included publications having enough clinical, radiological, and histological information to confirm the diagnosis. A total of 260 publications reporting 513 cherubism cases were included. Familial history was observed in 310/458 cases (67.7%). SH3BP2 mutations were reported in 101/108 cases (93.5%) and mainly occurred at protein residues 415, 418, 419, and 420. Retrospective clinical grading was possible in 175 cases. Advanced clinical grading was associated with tooth agenesis, but not with other clinical, radiological, and genetic features. Specific amino acid substitutions of SH3BP2 mutations were not associated with the clinical grading of the disease. 'Wait and see' was the most common therapeutic approach. In a small number of cases, drugs were used in the treatment, with variable response. In conclusion, there is no clear correlation between the genotype and the phenotype of the disease, but additional genomic and gene expression regulation information is necessary for a better understanding of cherubism.
Collapse
Affiliation(s)
- B R Chrcanovic
- Department of Prosthodontics, Faculty of Odontology, Malmö University, Malmö, Sweden.
| | - L M Guimarães
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | - C C Gomes
- Department of Pathology, Institute of Biological Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | - R S Gomez
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
5
|
Tankyrase (PARP5) Inhibition Induces Bone Loss through Accumulation of Its Substrate SH3BP2. Cells 2019; 8:cells8020195. [PMID: 30813388 PMCID: PMC6406327 DOI: 10.3390/cells8020195] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 12/13/2022] Open
Abstract
There is considerable interest in tankyrase because of its potential use in cancer therapy. Tankyrase catalyzes the ADP-ribosylation of a variety of target proteins and regulates various cellular processes. The anti-cancer effects of tankyrase inhibitors are mainly due to their suppression of Wnt signaling and inhibition of telomerase activity, which are mediated by AXIN and TRF1 stabilization, respectively. In this review, we describe the underappreciated effects of another substrate, SH3 domain-binding protein 2 (SH3BP2). Specifically, SH3BP2 is an adaptor protein that regulates intracellular signaling pathways. Additionally, in the human genetic disorder cherubism, the gain-of-function mutations in SH3BP2 enhance osteoclastogenesis. The pharmacological inhibition of tankyrase in mice induces bone loss through the accumulation of SH3BP2 and the subsequent increase in osteoclast formation. These findings reveal the novel functions of tankyrase influencing bone homeostasis, and imply that tankyrase inhibitor treatments in a clinical setting may be associated with adverse effects on bone mass.
Collapse
|
6
|
Phospholipases of mineralization competent cells and matrix vesicles: roles in physiological and pathological mineralizations. Int J Mol Sci 2013; 14:5036-129. [PMID: 23455471 PMCID: PMC3634480 DOI: 10.3390/ijms14035036] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 01/24/2013] [Accepted: 01/25/2013] [Indexed: 02/08/2023] Open
Abstract
The present review aims to systematically and critically analyze the current knowledge on phospholipases and their role in physiological and pathological mineralization undertaken by mineralization competent cells. Cellular lipid metabolism plays an important role in biological mineralization. The physiological mechanisms of mineralization are likely to take place in tissues other than in bones and teeth under specific pathological conditions. For instance, vascular calcification in arteries of patients with renal failure, diabetes mellitus or atherosclerosis recapitulates the mechanisms of bone formation. Osteoporosis—a bone resorbing disease—and rheumatoid arthritis originating from the inflammation in the synovium are also affected by cellular lipid metabolism. The focus is on the lipid metabolism due to the effects of dietary lipids on bone health. These and other phenomena indicate that phospholipases may participate in bone remodelling as evidenced by their expression in smooth muscle cells, in bone forming osteoblasts, chondrocytes and in bone resorbing osteoclasts. Among various enzymes involved, phospholipases A1 or A2, phospholipase C, phospholipase D, autotaxin and sphingomyelinase are engaged in membrane lipid remodelling during early stages of mineralization and cell maturation in mineralization-competent cells. Numerous experimental evidences suggested that phospholipases exert their action at various stages of mineralization by affecting intracellular signaling and cell differentiation. The lipid metabolites—such as arachidonic acid, lysophospholipids, and sphingosine-1-phosphate are involved in cell signaling and inflammation reactions. Phospholipases are also important members of the cellular machinery engaged in matrix vesicle (MV) biogenesis and exocytosis. They may favour mineral formation inside MVs, may catalyse MV membrane breakdown necessary for the release of mineral deposits into extracellular matrix (ECM), or participate in hydrolysis of ECM. The biological functions of phospholipases are discussed from the perspective of animal and cellular knockout models, as well as disease implications, development of potent inhibitors and therapeutic interventions.
Collapse
|
7
|
Fan C, Gaivin RJ, Marth TA, Willard B, Levine MA, Lietman SA. Cloning and characterization of the human SH3BP2 promoter. Biochem Biophys Res Commun 2012; 425:25-32. [PMID: 22820184 PMCID: PMC3423545 DOI: 10.1016/j.bbrc.2012.07.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Accepted: 07/11/2012] [Indexed: 11/17/2022]
Abstract
SH3BP2 activating mutations lead to an unique clinical condition in which patients develop symmetrical bone resorptive lesions of the jaw, a condition termed cherubism. Due to this specific temporal sequence and location of bone resorption, we investigated the transcriptional regulation of SH3BP2 expression. Analyses of 5'- and 3'-serial promoter deletions defined the core promoter/regulatory elements, including two repressor sites (from -1,200 to -1,000 and from +86 to +115, respectively) and two activator sites (a PARP1 binding site from -44 to -21 and a second activator site from +57 to +86). We identified that PARP1 binds to DNA from -44 to -21 by Streptavidin-biotin purification and confirmed this binding by electrophoretic mobility shift assay (EMSA). Mutagenesis of the PARP1 binding site on the SH3BP2 promoter showed that this binding site is essential for SH3BP2 expression. EMSA and chromatin immunoprecipitation (ChIP) assays confirmed that PARP1 was able to bind to the SH3BP2 promoter in vitro and in vivo. Indeed, knockout of Parp1 in mice BMMs reduced expression of SH3BP2. These results demonstrate that PARP1 regulates expression of SH3BP2.
Collapse
Affiliation(s)
- Chun Fan
- Department of Biomedical Engineering, The Cleveland Clinic, Cleveland, OH, USA
| | - Robert J Gaivin
- Department of Biomedical Engineering, The Cleveland Clinic, Cleveland, OH, USA
| | - Thomas A Marth
- Department of Biomedical Engineering, The Cleveland Clinic, Cleveland, OH, USA
| | - Belinda Willard
- Department of Proteomics Laboratory, The Cleveland Clinic, Cleveland, OH, USA
| | - Michael A Levine
- Division of Endocrinology, The Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Steven A Lietman
- Department of Biomedical Engineering, The Cleveland Clinic, Cleveland, OH, USA
- Department of Orthopaedic Surgery, The Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
8
|
Reichenberger EJ, Levine MA, Olsen BR, Papadaki ME, Lietman SA. The role of SH3BP2 in the pathophysiology of cherubism. Orphanet J Rare Dis 2012; 7 Suppl 1:S5. [PMID: 22640988 PMCID: PMC3359958 DOI: 10.1186/1750-1172-7-s1-s5] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cherubism is a rare bone dysplasia that is characterized by symmetrical bone resorption limited to the jaws. Bone lesions are filled with soft fibrous giant cell-rich tissue that can expand and cause severe facial deformity. The disorder typically begins in children at ages of 2-5 years and the bone resorption and facial swelling continues until puberty; in most cases the lesions regress spontaneously thereafter. Most patients with cherubism have germline mutations in the gene encoding SH3BP2, an adapter protein involved in adaptive and innate immune response signaling. A mouse model carrying a Pro416Arg mutation in SH3BP2 develops osteopenia and expansile lytic lesions in bone and some soft tissue organs. In this review we discuss the genetics of cherubism, the biological functions of SH3BP2 and the analysis of the mouse model. The data suggest that the underlying cause for cherubism is a systemic autoinflammatory response to physiologic challenges despite the localized appearance of bone resorption and fibrous expansion to the jaws in humans.
Collapse
Affiliation(s)
- Ernst J Reichenberger
- Department of Reconstructive Sciences, Center for Regenerative Medicine and Skeletal Development, University of Connecticut Health Center, Farmington, CT, USA.
| | | | | | | | | |
Collapse
|
9
|
Kawamoto T, Fan C, Gaivin RJ, Levine MA, Lietman SA. Decreased SH3BP2 inhibits osteoclast differentiation and function. J Orthop Res 2011; 29:1521-7. [PMID: 21448930 PMCID: PMC3150609 DOI: 10.1002/jor.21408] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 02/24/2011] [Indexed: 02/04/2023]
Abstract
Germline mutations in SH3BP2 gene have been identified in patients with cherubism, a skeletal disorder characterized by excessive osteoclastic bone resorption that is limited to the mandible and maxilla. We previously demonstrated that SH3BP2 overexpression in Raw264.7 cells increased RANKL-induced osteoclastogenesis. Here, we examine the effect of decreased SH3BP2 on osteoclastogenesis. shRNA knockdown of SH3BP2 decreased PLCγ2 phosphorylation and NFATc1 expression, and reduced the expression of osteoclast-specific genes. In BMMs knockdown of SH3BP2 led to reductions in both the number and the surface area of TRAP positive and multinucleated osteoclasts. Bone resorptive activity was also dramatically blocked by shRNA knockdown of SH3BP2. Similarly Sh3bp2(-/-) deficient mice BMMs formed smaller osteoclasts that stained less with TRAP than wild-type mice. Taken together, this study demonstrates that SH3BP2 knockdown significantly decreases osteoclast differentiation and function. These results suggest that SH3BP2 plays a critical role in osteoclastogenesis and is a potential target for suppression of pathologic bone resorption.
Collapse
Affiliation(s)
- Teruya Kawamoto
- Department of Anatomic Pathology, The Cleveland Clinic Foundation, Cleveland, OH, USA, Department of Biomedical Engineering, The Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Chun Fan
- Department of Biomedical Engineering, The Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Robert J Gaivin
- Department of Biomedical Engineering, The Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Michael A Levine
- Division of Endocrinology, The Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Steven A Lietman
- Department of Biomedical Engineering, The Cleveland Clinic Foundation, Cleveland, OH, USA, Department of Orthopaedic Surgery, The Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|