1
|
Yuan Z, Yao Z, Mao X, Gao X, Wu S, Mao H. Epigenetic mechanisms in stem cell therapies for achilles tendinopathy. Front Cell Dev Biol 2025; 13:1516250. [PMID: 40181824 PMCID: PMC11965899 DOI: 10.3389/fcell.2025.1516250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/20/2025] [Indexed: 04/05/2025] Open
Abstract
Achilles tendinopathy (AT) is a chronic degenerative tendinopathy that affects people's daily lives. Multiple clinical studies have found that current conservative treatments fail to promote quality tendon healing. Recent studies have found that stem cell therapy can target pathophysiological changes in the tendon by replenishing tendon-derived cells, promoting extracellular matrix (ECM) remodeling, and modulating the inflammatory response to improve the microenvironment of Achilles tendon regeneration. And epigenetic modifications play an important role in stem cell fate determination and function. In this review, we provided a brief overview of the biological properties of relevant stem cells. The influence of epigenetic modifications on stem cell proliferation, differentiation, and immune regulatory function in the treatment of AT was also explored. We focused on gene regulatory mechanisms controlled by DNA methylation, histones and non-coding RNAs including microRNAs, circRNAs and long non-coding RNAs. We also discuss the current challenges faced by stem cell therapies in treating AT and their potential solutions. Further research in this area will provide a more comprehensive epigenetic explanation for stem cell therapy for AT, leading to the development of stable, safe and effective stem cell therapies.
Collapse
Affiliation(s)
| | | | | | | | | | - Haijiao Mao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
2
|
Burgan J, Rahmati M, Lee M, Saiz AM. Innate immune response to bone fracture healing. Bone 2025; 190:117327. [PMID: 39522707 DOI: 10.1016/j.bone.2024.117327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
The field of osteoimmunology has primarily focused on fracture healing in isolated musculoskeletal injuries. The innate immune system is the initial response to fracture, with inflammatory macrophages, cytokines, and neutrophils arriving first at the fracture hematoma, followed by an anti-inflammatory phase to begin the process of new bone formation. This review aims to first discuss the current literature and knowledge gaps on the immune responses governing single fracture healing by encompassing the individual role of macrophages, neutrophils, cytokines, mesenchymal stem cells, bone cells, and other immune cells. This paper discusses the interactive effects of these cellular responses underscoring the field of osteoimmunology. The critical role of the metabolic environment in guiding the immune system properties will be highlighted along with some effective therapeutics for fracture healing in the context of osteoimmunology. However, compared to isolated fractures, which frequently heal well, long bone fractures in over 30 % of polytrauma patients exhibit impaired healing. Clinical evidence suggests there may be distinct physiologic and inflammatory pathways altered in polytrauma resulting in nonunion. Nonunion is associated with worse patient outcomes and increased societal healthcare costs. The dysregulated immunomodulatory/inflammatory response seen in polytrauma may lead to this increased nonunion rate. This paper will investigate the differences in immune response between isolated and polytrauma fractures. Finally, future directions for fracture studies are explored with consideration of the emerging roles of newly discovered immune cell functions in fracture healing, the existing challenges and conflicting results in the field, the translational potential of these studies in clinic, and the more complex nature of polytrauma fractures that can alter cell functions in different tissues.
Collapse
Affiliation(s)
- Jane Burgan
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA; Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Maryam Rahmati
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA; Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, PO Box 1109, Blindern, NO-0317 Oslo, Norway
| | - Mark Lee
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA
| | - Augustine Mark Saiz
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA.
| |
Collapse
|
3
|
Dai Y, Wu J, Wang J, Wang H, Guo B, Jiang T, Cai Z, Han J, Zhang H, Xu B, Zhou X, Wang C. Magnesium Ions Promote the Induction of Immunosuppressive Bone Microenvironment and Bone Repair through HIF-1α-TGF-β Axis in Dendritic Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311344. [PMID: 38661278 DOI: 10.1002/smll.202311344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/22/2024] [Indexed: 04/26/2024]
Abstract
The effect of immunoinflammation on bone repair during the recovery process of bone defects needs to be further explored. It is reported that Mg2+ can promote bone repair with immunoregulatory effect, but the underlying mechanism on adaptive immunity is still unclear. Here, by using chitosan and hyaluronic acid-coated Mg2+ (CSHA-Mg) in bone-deficient mice, it is shown that Mg2+ can inhibit the activation of CD4+ T cells and increase regulatory T cell formation by inducing immunosuppressive dendritic cells (imDCs). Mechanistically, Mg2+ initiates the activation of the MAPK signaling pathway through TRPM7 channels on DCs. This process subsequently induces the downstream HIF-1α expression, a transcription factor that amplifies TGF-β production and inhibits the effective T cell function. In vivo, knock-out of HIF-1α in DCs or using a HIF-1α inhibitor PX-478 reverses inhibition of bone inflammation and repair promotion upon Mg2+-treatment. Moreover, roxadustat, which stabilizes HIF-1α protein expression, can significantly promote immunosuppression and bone repair in synergism with CSHA-Mg. Thus, the findings identify a key mechanism for DCs and its HIF-1α-TGF-β axis in the induction of immunosuppressive bone microenvironment, providing potential targets for bone regeneration.
Collapse
Affiliation(s)
- Yuya Dai
- Department of Orthopedic, Changzheng Hospital Affiliated to Naval Medical University, Shanghai, 200003, China
| | - Jinhui Wu
- Department of Orthopedic, Changzheng Hospital Affiliated to Naval Medical University, Shanghai, 200003, China
| | - Junyou Wang
- State-Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Haoze Wang
- Nation Key Laboratory of Medical Immunology, Institute of Immunology, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Bingqing Guo
- Changzhou Hospital of Traditional Chinese Medicine, Changzhou, 213000, China
| | - Tao Jiang
- Changzhou Hospital of Traditional Chinese Medicine, Changzhou, 213000, China
| | - Zhuyun Cai
- Department of Orthopedic, Changzheng Hospital Affiliated to Naval Medical University, Shanghai, 200003, China
| | - Junjie Han
- Department of Orthopedic, Changzheng Hospital Affiliated to Naval Medical University, Shanghai, 200003, China
| | - Haoyu Zhang
- Nation Key Laboratory of Medical Immunology, Institute of Immunology, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Bangzhe Xu
- Department of Orthopedic, Changzheng Hospital Affiliated to Naval Medical University, Shanghai, 200003, China
| | - Xuhui Zhou
- Department of Orthopedic, Changzheng Hospital Affiliated to Naval Medical University, Shanghai, 200003, China
| | - Ce Wang
- Department of Orthopedic, Changzheng Hospital Affiliated to Naval Medical University, Shanghai, 200003, China
| |
Collapse
|
4
|
Han J, Rindone AN, Elisseeff JH. Immunoengineering Biomaterials for Musculoskeletal Tissue Repair across Lifespan. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311646. [PMID: 38416061 PMCID: PMC11239302 DOI: 10.1002/adma.202311646] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/23/2024] [Indexed: 02/29/2024]
Abstract
Musculoskeletal diseases and injuries are among the leading causes of pain and morbidity worldwide. Broad efforts have focused on developing pro-regenerative biomaterials to treat musculoskeletal conditions; however, these approaches have yet to make a significant clinical impact. Recent studies have demonstrated that the immune system is central in orchestrating tissue repair and that targeting pro-regenerative immune responses can improve biomaterial therapeutic outcomes. However, aging is a critical factor negatively affecting musculoskeletal tissue repair and immune function. Hence, understanding how age affects the response to biomaterials is essential for improving musculoskeletal biomaterial therapies. This review focuses on the intersection of the immune system and aging in response to biomaterials for musculoskeletal tissue repair. The article introduces the general impacts of aging on tissue physiology, the immune system, and the response to biomaterials. Then, it explains how the adaptive immune system guides the response to injury and biomaterial implants in cartilage, muscle, and bone and discusses how aging impacts these processes in each tissue type. The review concludes by highlighting future directions for the development and translation of personalized immunomodulatory biomaterials for musculoskeletal tissue repair.
Collapse
Affiliation(s)
- Jin Han
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University; Baltimore, MD 21231, USA
| | - Alexandra N. Rindone
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University; Baltimore, MD 21231, USA
| | - Jennifer H. Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University; Baltimore, MD 21231, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine; Baltimore, MD 21231, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University; Baltimore, MD 21231, USA
| |
Collapse
|
5
|
Avery D, Morandini L, Sheakley L, Grabiec M, Olivares-Navarrete R. CD4 + and CD8 + T cells reduce inflammation and promote bone healing in response to titanium implants. Acta Biomater 2024; 179:385-397. [PMID: 38554889 PMCID: PMC11045310 DOI: 10.1016/j.actbio.2024.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/11/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
T cells are adaptive immune cells essential in pathogenic response, cancer, and autoimmune disorders. During the integration of biomaterials with host tissue, T cells modify the local inflammatory environment by releasing cytokines that promote inflammatory resolution following implantation. T cells are vital for the modulation of innate immune cells, recruitment and proliferation of mesenchymal stem cells (MSCs), and formation of functional tissue around the biomaterial implant. We have demonstrated that deficiency of αβ T cells promotes macrophage polarization towards a pro-inflammatory phenotype and attenuates MSC recruitment and proliferation in vitro and in vivo. The goal of this study was to understand how CD4+ and CD8+ T cells, subsets of the αβ T cell family, impact the inflammatory response to titanium (Ti) biomaterials. Deficiency of either CD4+ or CD8+ T cells increased the proportion of pro-inflammatory macrophages, lowered anti-inflammatory macrophages, and diminished MSC recruitment in vitro and in vivo. In addition, new bone formation at the implantation site was significantly reduced in T cell-deficient mice compared to T cell-competent mice. Deficiency of CD4+ T cells exacerbated these effects compared to CD8+ T cell deficiency. Our results show the importance of CD4+ and CD8+ T cells in modulating the inflammatory response and promoting new bone formation in response to modified Ti implants. STATEMENT OF SIGNIFICANCE: CD4+ and CD8+ T cells are essential in modulating the peri-implant microenvironment during the inflammatory response to biomaterial implantation. This study shows that deficiency of either CD4+ or CD8+ T cell subsets altered macrophage polarization and reduced MSC recruitment and proliferation at the implantation site.
Collapse
Affiliation(s)
- Derek Avery
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 70 S. Madison Street, Room 3328, Richmond, VA 23220, United States
| | - Lais Morandini
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 70 S. Madison Street, Room 3328, Richmond, VA 23220, United States
| | - Luke Sheakley
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 70 S. Madison Street, Room 3328, Richmond, VA 23220, United States
| | - Melissa Grabiec
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 70 S. Madison Street, Room 3328, Richmond, VA 23220, United States
| | - Rene Olivares-Navarrete
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 70 S. Madison Street, Room 3328, Richmond, VA 23220, United States.
| |
Collapse
|
6
|
Palomares Cabeza V, Fahy N, Kiernan CH, Lolli A, Witte-Bouma J, Fahmy Garcia S, Merino A, Kops N, Ridwan Y, Wolvius EB, Brama PAJ, Hoogduijn MJ, Farrell E. Bone formation by human paediatric marrow stromal cells in a functional allogeneic immune system. Biomaterials 2024; 306:122471. [PMID: 38377846 DOI: 10.1016/j.biomaterials.2024.122471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 02/22/2024]
Abstract
Allogeneic stem-cell based regenerative medicine is a promising approach for bone defect repair. The use of chondrogenically differentiated human marrow stromal cells (MSCs) has been shown to lead to bone formation by endochondral ossification in immunodeficient pre-clinical models. However, an insight into the interactions between the allogeneic immune system and the human MSC-derived bone grafts has not been fully achieved yet. The choice of a potent source of MSCs isolated from pediatric donors with consistent differentiation and high proliferation abilities, as well as low immunogenicity, could increase the chance of success for bone allografts. In this study, we employed an immunodeficient animal model humanised with allogeneic immune cells to study the immune responses towards chondrogenically differentiated human pediatric MSCs (ch-pMSCs). We show that ch-differentiated pMSCs remained non-immunogenic to allogeneic CD4 and CD8 T cells in an in vitro co-culture model. After subcutaneous implantation in mice, ch-pMSC-derived grafts were able to initiate bone mineralisation in the presence of an allogeneic immune system for 3 weeks without the onset of immune responses. Re-exposing the splenocytes of the humanised animals to pMSCs did not trigger further T cell proliferation, suggesting an absence of secondary immune responses. Moreover, ch-pMSCs generated mature bone after 8 weeks of implantation that persisted for up to 6 more weeks in the presence of an allogeneic immune system. These data collectively show that human allogeneic chondrogenically differentiated pediatric MSCs might be a safe and potent option for bone defect repair in the tissue engineering and regenerative medicine setting.
Collapse
Affiliation(s)
- Virginia Palomares Cabeza
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Niamh Fahy
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Orthopedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Applied Science, Technological University of the Shannon: Midlands Midwest, Limerick, Ireland
| | - Caoimhe H Kiernan
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Andrea Lolli
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Janneke Witte-Bouma
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Shorouk Fahmy Garcia
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Orthopedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Ana Merino
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Nicole Kops
- Department of Orthopedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Yanto Ridwan
- AMIE Core Facility, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Eppo B Wolvius
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Pieter A J Brama
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Martin J Hoogduijn
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Eric Farrell
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| |
Collapse
|
7
|
Xu W, Yang Y, Li N, Hua J. Interaction between Mesenchymal Stem Cells and Immune Cells during Bone Injury Repair. Int J Mol Sci 2023; 24:14484. [PMID: 37833933 PMCID: PMC10572976 DOI: 10.3390/ijms241914484] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
Fractures are the most common large organ trauma in humans. The initial inflammatory response promotes bone healing during the initial post-fracture phase, but chronic and persistent inflammation due to infection or other factors does not contribute to the healing process. The precise mechanisms by which immune cells and their cytokines are regulated in bone healing remain unclear. The use of mesenchymal stem cells (MSCs) for cellular therapy of bone injuries is a novel clinical treatment approach. Bone progenitor MSCs not only differentiate into bone, but also interact with the immune system to promote the healing process. We review in vitro and in vivo studies on the role of the immune system and bone marrow MSCs in bone healing and their interactions. A deeper understanding of this paradigm may provide clues to potential therapeutic targets in the healing process, thereby improving the reliability and safety of clinical applications of MSCs to promote bone healing.
Collapse
Affiliation(s)
| | | | - Na Li
- Shaanxi Centre of Stem Cells Engineering & Technology, College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (W.X.); (Y.Y.)
| | - Jinlian Hua
- Shaanxi Centre of Stem Cells Engineering & Technology, College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (W.X.); (Y.Y.)
| |
Collapse
|
8
|
Molecular Basis beyond Interrelated Bone Resorption/Regeneration in Periodontal Diseases: A Concise Review. Int J Mol Sci 2023; 24:ijms24054599. [PMID: 36902030 PMCID: PMC10003253 DOI: 10.3390/ijms24054599] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/19/2023] [Accepted: 02/06/2023] [Indexed: 03/02/2023] Open
Abstract
Periodontitis is the sixth most common chronic inflammatory disease, destroying the tissues supporting the teeth. There are three distinct stages in periodontitis: infection, inflammation, and tissue destruction, where each stage has its own characteristics and hence its line of treatment. Illuminating the underlying mechanisms of alveolar bone loss is vital in the treatment of periodontitis to allow for subsequent reconstruction of the periodontium. Bone cells, including osteoclasts, osteoblasts, and bone marrow stromal cells, classically were thought to control bone destruction in periodontitis. Lately, osteocytes were found to assist in inflammation-related bone remodeling besides being able to initiate physiological bone remodeling. Furthermore, mesenchymal stem cells (MSCs) either transplanted or homed exhibit highly immunosuppressive properties, such as preventing monocytes/hematopoietic precursor differentiation and downregulating excessive release of inflammatory cytokines. In the early stages of bone regeneration, an acute inflammatory response is critical for the recruitment of MSCs, controlling their migration, and their differentiation. Later during bone remodeling, the interaction and balance between proinflammatory and anti-inflammatory cytokines could regulate MSC properties, resulting in either bone formation or bone resorption. This narrative review elaborates on the important interactions between inflammatory stimuli during periodontal diseases, bone cells, MSCs, and subsequent bone regeneration or bone resorption. Understanding these concepts will open up new possibilities for promoting bone regeneration and hindering bone loss caused by periodontal diseases.
Collapse
|
9
|
McColl LF, Chen X, Solga MD, Schlegel K, Haughey SP, Lobo PI, Fread K, Zunder E, Cha R, Park S, Christophel JJ, Cui Q, Dighe AS. BMP-6 promotes type 2 immune response during enhancement of rat mandibular bone defect healing. Front Immunol 2023; 14:1064238. [PMID: 36845161 PMCID: PMC9950738 DOI: 10.3389/fimmu.2023.1064238] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/31/2023] [Indexed: 02/12/2023] Open
Abstract
Introduction Bone morphogenetic proteins (BMPs) are used as key therapeutic agents for the treatment of difficult fractures. While their effects on osteoprogenitors are known, little is known about their effects on the immune system. Methods We used permutations of BMP-6 (B), vascular endothelial growth factor (V), and Hedgehog signaling pathway activator smoothened agonist (S), to treat a rat mandibular defect and investigated healing outcomes at week 8, in correlation with the cellular landscape of the immune cells in the fracture callus at week 2. Results Maximum recruitment of immune cells to the fracture callus is known to occur at week 2. While the control, S, V, and VS groups remained as nonunions at week 8; all BMP-6 containing groups - B, BV, BS and BVS, showed near-complete to complete healing. This healing pattern was strongly associated with significantly higher ratios of CD4 T (CD45+CD3+CD4+) to putative CD8 T cells (CD45+CD3+CD4-), in groups treated with any permutation of BMP-6. Although, the numbers of putative M1 macrophages (CD45+CD3-CD11b/c+CD38high) were significantly lower in BMP-6 containing groups in comparison with S and VS groups, percentages of putative - Th1 cells or M1 macrophages (CD45+CD4+IFN-γ+) and putative - NK, NKT or cytotoxic CD8T cells (CD45+CD4-IFN-γ+) were similar in control and all treatment groups. Further interrogation revealed that the BMP-6 treatment promoted type 2 immune response by significantly increasing the numbers of CD45+CD3-CD11b/c+CD38low putative M2 macrophages, putative - Th2 cells or M2 macrophages (CD45+CD4+IL-4+) cells and putative - mast cells, eosinophils or basophils (CD45+CD4-IL-4+ cells). CD45- non-haematopoietic fractions of cells which encompass all known osteoprogenitor stem cells populations, were similar in control and treatment groups. Discussion This study uncovers previously unidentified regulatory functions of BMP-6 and shows that BMP-6 enhances fracture healing by not only acting on osteoprogenitor stem cells but also by promoting type 2 immune response.
Collapse
Affiliation(s)
- Logan F. McColl
- Department of Orthopedic Surgery, University of Virginia Health System, Charlottesville, VA, United States
| | - Xizhao Chen
- Department of Orthopedic Surgery, University of Virginia Health System, Charlottesville, VA, United States
| | - Michael D. Solga
- Flow Cytometry Core Facility, University of Virginia, Charlottesville, VA, United States
| | - Kailo Schlegel
- Department of Nephrology, University of Virginia Health System, Charlottesville, VA, United States
| | - Sean P. Haughey
- Department of Orthopedic Surgery, University of Virginia Health System, Charlottesville, VA, United States
| | - Peter I. Lobo
- Department of Nephrology, University of Virginia Health System, Charlottesville, VA, United States
| | - Kristen Fread
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Eli Zunder
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Ryan Cha
- Department of Orthopedic Surgery, University of Virginia Health System, Charlottesville, VA, United States
| | - Stephen Park
- Department of Otolaryngology–Head and Neck Surgery, University of Virginia Health System, Charlottesville, VA, United States
| | - J. Jared Christophel
- Department of Otolaryngology–Head and Neck Surgery, University of Virginia Health System, Charlottesville, VA, United States
| | - Quanjun Cui
- Department of Orthopedic Surgery, University of Virginia Health System, Charlottesville, VA, United States
| | - Abhijit S. Dighe
- Department of Orthopedic Surgery, University of Virginia Health System, Charlottesville, VA, United States,*Correspondence: Abhijit S. Dighe,
| |
Collapse
|
10
|
Saul D, Khosla S. Fracture Healing in the Setting of Endocrine Diseases, Aging, and Cellular Senescence. Endocr Rev 2022; 43:984-1002. [PMID: 35182420 PMCID: PMC9695115 DOI: 10.1210/endrev/bnac008] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Indexed: 11/19/2022]
Abstract
More than 2.1 million age-related fractures occur in the United States annually, resulting in an immense socioeconomic burden. Importantly, the age-related deterioration of bone structure is associated with impaired bone healing. Fracture healing is a dynamic process which can be divided into four stages. While the initial hematoma generates an inflammatory environment in which mesenchymal stem cells and macrophages orchestrate the framework for repair, angiogenesis and cartilage formation mark the second healing period. In the central region, endochondral ossification favors soft callus development while next to the fractured bony ends, intramembranous ossification directly forms woven bone. The third stage is characterized by removal and calcification of the endochondral cartilage. Finally, the chronic remodeling phase concludes the healing process. Impaired fracture healing due to aging is related to detrimental changes at the cellular level. Macrophages, osteocytes, and chondrocytes express markers of senescence, leading to reduced self-renewal and proliferative capacity. A prolonged phase of "inflammaging" results in an extended remodeling phase, characterized by a senescent microenvironment and deteriorating healing capacity. Although there is evidence that in the setting of injury, at least in some tissues, senescent cells may play a beneficial role in facilitating tissue repair, recent data demonstrate that clearing senescent cells enhances fracture repair. In this review, we summarize the physiological as well as pathological processes during fracture healing in endocrine disease and aging in order to establish a broad understanding of the biomechanical as well as molecular mechanisms involved in bone repair.
Collapse
Affiliation(s)
- Dominik Saul
- Kogod Center on Aging and Division of Endocrinology, Mayo Clinic, Rochester, Minnesota 55905, USA.,Department of Trauma, Orthopedics and Reconstructive Surgery, Georg-August-University of Goettingen, 37073 Goettingen, Germany
| | - Sundeep Khosla
- Kogod Center on Aging and Division of Endocrinology, Mayo Clinic, Rochester, Minnesota 55905, USA
| |
Collapse
|
11
|
Palovarotene Can Attenuate Heterotopic Ossification Induced by Tendon Stem Cells by Downregulating the Synergistic Effects of Smad and NF-κB Signaling Pathway following Stimulation of the Inflammatory Microenvironment. Stem Cells Int 2022; 2022:1560943. [PMID: 35530413 PMCID: PMC9071930 DOI: 10.1155/2022/1560943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 11/18/2022] Open
Abstract
Heterotopic ossification (HO) is defined as the formation of bone tissues outside the bones, such as in the muscles. Currently, the mechanism of HO is still unclear. Tendon stem cells (TSCs) play important roles in the occurrence and development of HO. The inflammatory microenvironment dominated by macrophages also plays an important role in the course of HO. The commonly used clinical treatment methods, such as nonsteroidal anti-inflammatory drugs and radiotherapy, have relatively large side effects, and more efficient treatment methods are needed in clinical practice. Under physiological conditions, retinoic acid receptor (RAR) signal transduction pathway inhibits osteogenic progenitor cell aggregation and chondrocyte differentiation. We focus on palovarotene, a retinoic acid γ-receptor activator, showing an inhibitory effect on HO mice, but the specific mechanism is still unclear. This study was aimed at exploring the specific molecular mechanism of palovarotene by blocking osteogenic differentiation and HO formation of TSCs in vitro and in vivo in an inflammatory microenvironment. We constructed a coculture model of TCSs and polarized macrophages, as well as overexpression and knockdown models of the Smad signaling pathway of TCSs. In addition, a rat model of HO, which was constructed by Achilles tendon resection, was also established. These models explored the role of inflammatory microenvironment and Smad signaling pathways in the osteogenic differentiation of TSCs which lead to HO, as well as the reversal role played by palovarotene in this process. Our results suggest that, under the stimulation of inflammatory microenvironment and trauma, the injured site was in an inflammatory state, and macrophages were highly concentrated in the injured site. The expression of osteogenic and inflammation-related proteins, as well as Smad proteins, was upregulated. Osteogenic differentiation was performed in TCSs. We also found that TCSs activated Smad and NF-κB signaling pathways, which initiated the formation of HO. Palovarotene inhibited the aggregation of osteogenic progenitor cells and macrophages and attenuated HO by blocking Smad and NF-κB signaling pathways. Therefore, palovarotene may be a novel HO inhibitor, while other drugs or antibodies targeting Smad and NF-κB signaling pathways may also prevent or treat HO. The expressions of Smad5, Id1, P65, and other proteins may predict HO formation.
Collapse
|
12
|
Chen R, Hao Z, Wang Y, Zhu H, Hu Y, Chen T, Zhang P, Li J. Mesenchymal Stem Cell-Immune Cell Interaction and Related Modulations for Bone Tissue Engineering. Stem Cells Int 2022; 2022:7153584. [PMID: 35154331 PMCID: PMC8825274 DOI: 10.1155/2022/7153584] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/03/2022] [Indexed: 12/11/2022] Open
Abstract
Critical bone defects and related delayed union and nonunion are still worldwide problems to be solved. Bone tissue engineering is mainly aimed at achieving satisfactory bone reconstruction. Mesenchymal stem cells (MSCs) are a kind of pluripotent stem cells that can differentiate into bone cells and can be used as one of the key pillars of bone tissue engineering. In recent decades, immune responses play an important role in bone regeneration. Innate immune responses provide a suitable inflammatory microenvironment for bone regeneration and initiate bone regeneration in the early stage of fracture repair. Adaptive immune responses maintain bone regeneration and bone remodeling. MSCs and immune cells regulate each other. All kinds of immune cells and secreted cytokines can regulate the migration, proliferation, and osteogenic differentiation of MSCs, which have a strong immunomodulatory ability to these immune cells. This review mainly introduces the interaction between MSCs and immune cells on bone regeneration and its potential mechanism, and discusses the practical application in bone tissue engineering by modulating this kind of cell-to-cell crosstalk. Thus, an in-depth understanding of these principles of bone immunology can provide a new way for bone tissue engineering.
Collapse
Affiliation(s)
- Renxin Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Zhuowen Hao
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yi Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Hongzhen Zhu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yingkun Hu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Tianhong Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Peng Zhang
- Department of Orthopedics, Suzhou Science and Technology Town Hospital, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou 215153, China
| | - Jingfeng Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| |
Collapse
|
13
|
Kaneda-Ikeda E, Iwata T, Mizuno N, Nagahara T, Kajiya M, Ouhara K, Yoshioka M, Ishida S, Kawaguchi H, Kurihara H. Regulation of osteogenesis via miR-101-3p in mesenchymal stem cells by human gingival fibroblasts. J Bone Miner Metab 2020; 38:442-455. [PMID: 31970478 DOI: 10.1007/s00774-019-01080-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/27/2019] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Mesenchymal stem cells (MSCs) can differentiate into various types of cells and can thus be used for periodontal regenerative therapy. However, the mechanism of differentiation is still unclear. Transplanted MSCs are, via their transcription factors or microRNAs (miRNAs), affected by periodontal cells with direct contact or secretion of humoral factors. Therefore, transplanted MSCs are regulated by humoral factors from human gingival fibroblasts (HGF). Moreover, insulin-like growth factor (IGF)-1 is secreted from HGF and regulates periodontal regeneration. To clarify the regulatory mechanism for MSC differentiation by humoral factors from HGF, we identified key genes, specifically miRNAs, involved in this process, and determined their function in MSC differentiation. MATERIALS AND METHODS Mesenchymal stem cells were indirectly co-cultured with HGF in osteogenic or growth conditions and then evaluated for osteogenesis, undifferentiated MSC markers, and characteristic miRNAs. MSCs had their miRNA expression levels adjusted or were challenged with IGF-1 during osteogenesis, or both of which were performed, and then, MSCs were evaluated for osteogenesis or undifferentiated MSC markers. RESULTS Mesenchymal stem cells co-cultured with HGF showed suppression of osteogenesis and characteristic expression of ETV1, an undifferentiated MSC marker, as well as miR-101-3p. Over-expression of miR-101-3p regulated osteogenesis and ETV1 expression as well as indirect co-culture with HGF. IGF-1 induced miR-101-3p and ETV1 expression. However, IGF-1 did not suppress osteogenesis. CONCLUSIONS Humoral factors from HGF suppressed osteogenesis in MSCs. The effect was regulated by miRNAs and undifferentiated MSC markers. miR-101-3p and ETV1 were the key factors and were regulated by IGF-1.
Collapse
Affiliation(s)
- Eri Kaneda-Ikeda
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| | - Tomoyuki Iwata
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan.
| | - Noriyoshi Mizuno
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| | - Takayoshi Nagahara
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| | - Mikihito Kajiya
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| | - Kazuhisa Ouhara
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| | - Minami Yoshioka
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| | - Shu Ishida
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| | - Hiroyuki Kawaguchi
- Department of Department of General Dentistry, Hiroshima University Hospital, Hiroshima, 734-8553, Japan
| | - Hidemi Kurihara
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| |
Collapse
|
14
|
Matsuo K, Chavez RD, Barruet E, Hsiao EC. Inflammation in Fibrodysplasia Ossificans Progressiva and Other Forms of Heterotopic Ossification. Curr Osteoporos Rep 2019; 17:387-394. [PMID: 31721068 PMCID: PMC7271746 DOI: 10.1007/s11914-019-00541-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE OF REVIEW Heterotopic ossification (HO) is associated with inflammation. The goal of this review is to examine recent findings on the roles of inflammation and the immune system in HO. We examine how inflammation changes in fibrodysplasia ossificans progressiva, in traumatic HO, and in other clinical conditions of HO. We also discuss how inflammation may be a target for treating HO. RECENT FINDINGS Both genetic and acquired forms of HO show similarities in their inflammatory cell types and signaling pathways. These include macrophages, mast cells, and adaptive immune cells, along with hypoxia signaling pathways, mesenchymal stem cell differentiation signaling pathways, vascular signaling pathways, and inflammatory cytokines. Because there are common inflammatory mediators across various types of HO, these mediators may serve as common targets for blocking HO. Future research may focus on identifying new inflammatory targets and testing combinatorial therapies based on these results.
Collapse
Affiliation(s)
- Koji Matsuo
- Division of Endocrinology and Metabolism, University of California, 513 Parnassus Ave., HSE901, San Francisco, CA, 94143-0794, USA
- Department of Medicine, The Institute for Human Genetics, University of California, CA, San Francisco, USA
- The Program in Craniofacial Biology, University of California, CA, San Francisco, USA
| | - Robert Dalton Chavez
- Division of Endocrinology and Metabolism, University of California, 513 Parnassus Ave., HSE901, San Francisco, CA, 94143-0794, USA
- Department of Medicine, The Institute for Human Genetics, University of California, CA, San Francisco, USA
- The Program in Craniofacial Biology, University of California, CA, San Francisco, USA
| | - Emilie Barruet
- Division of Endocrinology and Metabolism, University of California, 513 Parnassus Ave., HSE901, San Francisco, CA, 94143-0794, USA
- Department of Medicine, The Institute for Human Genetics, University of California, CA, San Francisco, USA
- The Program in Craniofacial Biology, University of California, CA, San Francisco, USA
| | - Edward C Hsiao
- Division of Endocrinology and Metabolism, University of California, 513 Parnassus Ave., HSE901, San Francisco, CA, 94143-0794, USA.
- Department of Medicine, The Institute for Human Genetics, University of California, CA, San Francisco, USA.
- The Program in Craniofacial Biology, University of California, CA, San Francisco, USA.
| |
Collapse
|
15
|
Lopes D, Martins-Cruz C, Oliveira MB, Mano JF. Bone physiology as inspiration for tissue regenerative therapies. Biomaterials 2018; 185:240-275. [PMID: 30261426 PMCID: PMC6445367 DOI: 10.1016/j.biomaterials.2018.09.028] [Citation(s) in RCA: 239] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/15/2018] [Accepted: 09/17/2018] [Indexed: 12/14/2022]
Abstract
The development, maintenance of healthy bone and regeneration of injured tissue in the human body comprise a set of intricate and finely coordinated processes. However, an analysis of current bone regeneration strategies shows that only a small fraction of well-reported bone biology aspects has been used as inspiration and transposed into the development of therapeutic products. Specific topics that include inter-scale bone structural organization, developmental aspects of bone morphogenesis, bone repair mechanisms, role of specific cells and heterotypic cell contact in the bone niche (including vascularization networks and immune system cells), cell-cell direct and soluble-mediated contact, extracellular matrix composition (with particular focus on the non-soluble fraction of proteins), as well as mechanical aspects of native bone will be the main reviewed topics. In this Review we suggest a systematic parallelization of (i) fundamental well-established biology of bone, (ii) updated and recent advances on the understanding of biological phenomena occurring in native and injured tissue, and (iii) critical discussion of how those individual aspects have been translated into tissue regeneration strategies using biomaterials and other tissue engineering approaches. We aim at presenting a perspective on unexplored aspects of bone physiology and how they could be translated into innovative regeneration-driven concepts.
Collapse
Affiliation(s)
- Diana Lopes
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago,, 3810 193 Aveiro, Portugal
| | - Cláudia Martins-Cruz
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago,, 3810 193 Aveiro, Portugal
| | - Mariana B Oliveira
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago,, 3810 193 Aveiro, Portugal.
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago,, 3810 193 Aveiro, Portugal.
| |
Collapse
|
16
|
Autologous Mesenchymal Stroma Cells Are Superior to Allogeneic Ones in Bone Defect Regeneration. Int J Mol Sci 2018; 19:ijms19092526. [PMID: 30149650 PMCID: PMC6163925 DOI: 10.3390/ijms19092526] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/10/2018] [Accepted: 08/22/2018] [Indexed: 12/19/2022] Open
Abstract
The application of autologous mesenchymal stem cells (MSC) for the treatment of bone defects requires two invasive procedures and several weeks of ex vivo cell expansion. To overcome these limitations, the administration of allogeneic MSC may be attractive, because they are anticipated to be immunoprivileged. Because preclinical studies using various animal models are conflicting with respect to the efficacy of allogeneic MSC, we investigated whether autologous and allogeneic human MSC (hMSC) are equally effective in regenerating bone in a humanized mouse model resembling the human immune system. Applying autologous and allogeneic hMSC in critically sized femoral defects, we found that allogeneic hMSC elicited a mild immune response early after implantation, whereas early angiogenic processes were similar in both treatments. At later healing time points, the transplantation of allogeneic hMSC resulted in less bone formation than autologous hMSC, associated with a reduced expression of the osteogenic factor Runx2 and impaired angiogenesis. We found by species-specific staining for collagen-type-1α2 that MSCs of either source did not synthesize new bone matrix, indicating an indirect contribution of transplanted hMSC to bone regeneration. In conclusion, our data suggest that the application of autologous hMSC is superior to that of allogeneic cells for bone defect treatment.
Collapse
|
17
|
Meyers CA, Xu J, Zhang L, Asatrian G, Ding C, Yan N, Broderick K, Sacks J, Goyal R, Zhang X, Ting K, Péault B, Soo C, James AW. Early Immunomodulatory Effects of Implanted Human Perivascular Stromal Cells During Bone Formation. Tissue Eng Part A 2018; 24:448-457. [PMID: 28683667 PMCID: PMC5833257 DOI: 10.1089/ten.tea.2017.0023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 06/06/2017] [Indexed: 01/20/2023] Open
Abstract
Human perivascular stem/stromal cells (PSC) are a multipotent mesodermal progenitor cell population defined by their perivascular residence. PSC are most commonly derived from subcutaneous adipose tissue, and recent studies have demonstrated the high potential for clinical translation of this fluorescence-activated cell sorting-derived cell population for bone tissue engineering. Specifically, purified PSC induce greater bone formation than unpurified stroma taken from the same patient sample. In this study, we examined the differences in early innate immune response to human PSC or unpurified stroma (stromal vascular fraction [SVF]) during the in vivo process of bone formation. Briefly, SVF or PSC from the same patient sample were implanted intramuscularly in the hindlimb of severe combined immunodeficient (SCID) mice using an osteoinductive demineralized bone matrix carrier. Histological examination of early inflammatory infiltrates was examined by hematoxylin and eosin and immunohistochemical staining (Ly-6G, F4/80). Results showed significantly greater neutrophilic and macrophage infiltrates within and around SVF in comparison to PSC-laden implants. Differences in early postoperative inflammation among SVF-laden implants were associated with reduced osteogenic differentiation and bone formation. Similar findings were recapitulated with PSC implantation in immunocompetent mice. Exaggerated postoperative inflammation was associated with increased IL-1α, IL-1β, IFN-γ, and TNF-α gene expression among SVF samples, and conversely increased IL-6 and IL-10 expression among PSC samples. These data document a robust immunomodulatory effect of implanted PSC, and an inverse correlation between host inflammatory cell infiltration and stromal progenitor cell-mediated ossification.
Collapse
Affiliation(s)
- Carolyn A. Meyers
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Jiajia Xu
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Lei Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
- Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, PR China
| | - Greg Asatrian
- Section of Orthodontics, Division of Growth and Development, School of Dentistry, University of California, Los Angeles, Los Angeles, California
| | - Catherine Ding
- Section of Orthodontics, Division of Growth and Development, School of Dentistry, University of California, Los Angeles, Los Angeles, California
| | - Noah Yan
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Kristen Broderick
- Department of Plastic Surgery, Johns Hopkins University, Baltimore, Maryland
| | - Justin Sacks
- Department of Plastic Surgery, Johns Hopkins University, Baltimore, Maryland
| | - Raghav Goyal
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Xinli Zhang
- Section of Orthodontics, Division of Growth and Development, School of Dentistry, University of California, Los Angeles, Los Angeles, California
| | - Kang Ting
- Section of Orthodontics, Division of Growth and Development, School of Dentistry, University of California, Los Angeles, Los Angeles, California
| | - Bruno Péault
- Center for Cardiovascular Science and MRC Center for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
- UCLA Orthopedic Hospital Department of Orthopedic Surgery and the Orthopedic Hospital Research Center, Los Angeles, California
| | - Chia Soo
- UCLA Orthopedic Hospital Department of Orthopedic Surgery and the Orthopedic Hospital Research Center, Los Angeles, California
- Division of Plastic and Reconstructive Surgery, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Aaron W. James
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
- UCLA Orthopedic Hospital Department of Orthopedic Surgery and the Orthopedic Hospital Research Center, Los Angeles, California
| |
Collapse
|
18
|
Abstract
Achieving satisfactory reconstruction of bone remains an important goal in orthopedic and dental conditions such as bone trauma, osteoporosis, arthritis, osteonecrosis, and periodontitis. Appropriate temporal and spatial differentiation of mesenchymal stem cells (MSCs) is essential for postnatal bone regeneration. Additionally, an acute inflammatory response is crucial at the onset of bone repair, while an adaptive immune response has important implications during late bone remodeling. Various reports have indicated bidirectional interactions between MSCs and inflammatory cells or molecules. For example, inflammatory cells can recruit MSCs, direct their migration and differentiation, so as to exert anabolic effects on bone repair. Furthermore, both pro-inflammatory and anti-inflammatory cytokines can regulate MSCs properties and subsequent bone regeneration. MSCs have demonstrated highly immunosuppressive functions, such as inhibiting the differentiation of monocytes/hematopoietic precursors and suppressing the secretion of pro-inflammatory cytokines. This review emphasizes the important interactions between inflammatory stimuli, MSCs, and bone regeneration as well as the underlying regulatory mechanisms. Better understanding of these principles will provide new opportunities for promoting bone regeneration and the treatment of bone loss associated with immunological diseases.
Collapse
|
19
|
Barrachina L, Remacha AR, Romero A, Vázquez FJ, Albareda J, Prades M, Ranera B, Zaragoza P, Martín-Burriel I, Rodellar C. Inflammation affects the viability and plasticity of equine mesenchymal stem cells: possible implications in intra-articular treatments. J Vet Sci 2017; 18:39-49. [PMID: 27297420 PMCID: PMC5366301 DOI: 10.4142/jvs.2017.18.1.39] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/19/2016] [Accepted: 05/12/2016] [Indexed: 01/01/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are gaining relevance for treating equine joint injuries because of their ability to limit inflammation and stimulate regeneration. Because inflammation activates MSC immunoregulatory function, proinflammatory priming could improve MSC efficacy. However, inflammatory molecules present in synovial fluid or added to the culture medium might have deleterious effects on MSCs. Therefore, this study was conducted to investigate the effects of inflammatory synovial fluid and proinflammatory cytokines priming on viability and plasticity of equine MSCs. Equine bone marrow derived MSCs (eBM-MSCs) from three animals were cultured for 72 h in media supplemented with: 20% inflammatory synovial fluid (SF); 50 ng/mL IFN-γ and TNF-α (CK50); and 20 ng/mL IFN-γ and TNF-α (CK20). Proliferation assay and expression of proliferation and apoptosis-related genes showed that SF exposed-eBM-MSCs maintained their viability, whereas the viability of CK primed-eBM-MSCs was significantly impaired. Tri-lineage differentiation assay revealed that exposure to inflammatory synovial fluid did not alter eBM-MSCs differentiation potential; however, eBM-MSCs primed with cytokines did not display osteogenic, adipogenic or chondrogenic phenotype. The inflammatory synovial environment is well tolerated by eBM-MSCs, whereas cytokine priming negatively affects the viability and differentiation abilities of eBM-MSCs, which might limit their in vivo efficacy.
Collapse
Affiliation(s)
- Laura Barrachina
- Laboratory of Biochemical Genetics LAGENBIO, Veterinary Hospital, University of Zaragoza, 50013 Zaragoza, Spain.,Service of Equine Surgery and Medicine, Veterinary Hospital, University of Zaragoza, 50013 Zaragoza, Spain
| | - Ana Rosa Remacha
- Laboratory of Biochemical Genetics LAGENBIO, Veterinary Hospital, University of Zaragoza, 50013 Zaragoza, Spain
| | - Antonio Romero
- Laboratory of Biochemical Genetics LAGENBIO, Veterinary Hospital, University of Zaragoza, 50013 Zaragoza, Spain.,Service of Equine Surgery and Medicine, Veterinary Hospital, University of Zaragoza, 50013 Zaragoza, Spain
| | - Francisco José Vázquez
- Laboratory of Biochemical Genetics LAGENBIO, Veterinary Hospital, University of Zaragoza, 50013 Zaragoza, Spain.,Service of Equine Surgery and Medicine, Veterinary Hospital, University of Zaragoza, 50013 Zaragoza, Spain
| | - Jorge Albareda
- Laboratory of Biochemical Genetics LAGENBIO, Veterinary Hospital, University of Zaragoza, 50013 Zaragoza, Spain.,Service of Orthopedic Surgery and Traumatology, University Clinical Hospital Lozano Blesa, 50009 Zaragoza, Spain
| | - Marta Prades
- Laboratory of Biochemical Genetics LAGENBIO, Veterinary Hospital, University of Zaragoza, 50013 Zaragoza, Spain.,Service of Equine Surgery, Veterinary Hospital, Autonomous University of Barcelona, 08193 Barcelona, Spain
| | - Beatriz Ranera
- Laboratory of Biochemical Genetics LAGENBIO, Veterinary Hospital, University of Zaragoza, 50013 Zaragoza, Spain
| | - Pilar Zaragoza
- Laboratory of Biochemical Genetics LAGENBIO, Veterinary Hospital, University of Zaragoza, 50013 Zaragoza, Spain
| | - Inmaculada Martín-Burriel
- Laboratory of Biochemical Genetics LAGENBIO, Veterinary Hospital, University of Zaragoza, 50013 Zaragoza, Spain
| | - Clementina Rodellar
- Laboratory of Biochemical Genetics LAGENBIO, Veterinary Hospital, University of Zaragoza, 50013 Zaragoza, Spain
| |
Collapse
|
20
|
Yao Y, Deng Q, Sun C, Song W, Liu H, Zhou Y. A genome-wide analysis of the gene expression profiles and alternative splicing events during the hypoxia-regulated osteogenic differentiation of human cartilage endplate-derived stem cells. Mol Med Rep 2017; 16:1991-2001. [PMID: 28656244 PMCID: PMC5562021 DOI: 10.3892/mmr.2017.6846] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 04/25/2017] [Indexed: 12/20/2022] Open
Abstract
It has been hypothesized that intervertebral disc degeneration is initiated by degeneration of the cartilage endplate (CEP), which is characterized by cartilage ossification. CEP‑derived stem cells (CESCs), with the potential for chondro‑osteogenic differentiation, may be responsible for the balance between chondrification and ossification in the CEP. The CEP remains in an avascular and hypoxic microenvironment; the present study observed that hypoxia was able to markedly inhibit the osteogenic differentiation of CESCs. This tissue‑specific CESC differentiation in response to a hypoxic microenvironment was physiologically important for the prevention of ossification in the CEP. In order to study the hypoxia‑regulated mechanisms underlying osteogenic differentiation of CESCs, a Human Transcriptome Array 2.0 was used to detect differentially expressed genes (DEGs) and alternatively spliced genes (ASGs) during the osteogenic differentiation of CESCs under hypoxia, compared with those induced under normoxia. High‑throughput analysis of DEGs and ASGs demonstrated that genes in the complement pathway were enriched, which may be a potential mechanism underlying hypoxia inhibition of CESCs osteogenesis. The results of the present study may provide a basis for future mechanistic studies regarding gene expression levels and alternative splicing events during the hypoxia‑regulated inhibition of osteogenesis, which may be helpful in identifying targets for CEP degeneration therapy.
Collapse
Affiliation(s)
- Yuan Yao
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Qiyue Deng
- Department of Neurobiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, P.R. China
| | - Chao Sun
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Weiling Song
- Department of Ophthalmology, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Huan Liu
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Yue Zhou
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| |
Collapse
|
21
|
El-Zayadi AA, Jones EA, Churchman SM, Baboolal TG, Cuthbert RJ, El-Jawhari JJ, Badawy AM, Alase AA, El-Sherbiny YM, McGonagle D. Interleukin-22 drives the proliferation, migration and osteogenic differentiation of mesenchymal stem cells: a novel cytokine that could contribute to new bone formation in spondyloarthropathies. Rheumatology (Oxford) 2017; 56:488-493. [PMID: 27940584 DOI: 10.1093/rheumatology/kew384] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES. The SpAs are genetically and therapeutically linked to IL-23, which in turn regulates IL-22, a cytokine that has been implicated in the regulation of new bone formation in experimental models. We hypothesize that IL-22, a master regulator of stem cells in other niches, might also regulate human mesenchymal stem cell (MSC) osteogenesis. METHODS. The effects of IL-22 on in vitro MSC proliferation, migration and osteogenic differentiation were evaluated in the presence or absence of IFN-γ and TNF (to ascertain IL-22 activity in pro-inflammatory environments). Colorimetric XTT assay, trans-well migration assays, quantitative real-time PCR (qRT-PCR) for MSC lineage markers and osteogenesis assays were used. RESULTS. Combined treatment of MSC with IL-22, IFN-γ and TNF resulted in increased MSC proliferation ( P = 0.008) and migration ( P = 0.04), an effect that was not seen in cells treated with IL-22 alone and untreated cells. Osteogenic and adipogenic, but not chondrogenic, transcription factors were upregulated by IL-22 alone ( P < 0.05). MSC osteogenesis was enhanced following IL-22 exposure ( P = 0.03, measured by calcium production). The combination of IFN-γ and TNF with or without IL-22 suppressed MSC osteogenesis ( P = 0.03). CONCLUSION. This work shows that IL-22 is involved in human MSC proliferation/migration in inflammatory environments, with MSC osteogenesis occurring only in the absence of IFN-γ/TNF. These effects of IL-22 on MSC function is a novel pathway for exploring pathological, post-inflammation osteogenesis in human SpA.
Collapse
Affiliation(s)
- Ahmed A El-Zayadi
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- Department of Obstetrics and Gynaecology, Mansoura University Hospitals, Mansoura University, Mansoura, Egypt
| | - Elena A Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- NIHR-Leeds Musculoskeletal and Biomedical Research Unit, Chapel Allerton, Leeds Teaching Hospital Trust, Leeds, West Yorkshire, UK
| | - Sarah M Churchman
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- NIHR-Leeds Musculoskeletal and Biomedical Research Unit, Chapel Allerton, Leeds Teaching Hospital Trust, Leeds, West Yorkshire, UK
| | - Thomas G Baboolal
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Richard J Cuthbert
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Jehan J El-Jawhari
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- Clinical Pathology Department, Mansoura University Hospitals, Mansoura University, Mansoura, Egypt
| | - Ahmed M Badawy
- Department of Obstetrics and Gynaecology, Mansoura University Hospitals, Mansoura University, Mansoura, Egypt
| | - Adewonuola A Alase
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Yasser M El-Sherbiny
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- Clinical Pathology Department, Mansoura University Hospitals, Mansoura University, Mansoura, Egypt
| | - Dennis McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- NIHR-Leeds Musculoskeletal and Biomedical Research Unit, Chapel Allerton, Leeds Teaching Hospital Trust, Leeds, West Yorkshire, UK
| |
Collapse
|
22
|
Barrachina L, Remacha AR, Romero A, Vázquez FJ, Albareda J, Prades M, Gosálvez J, Roy R, Zaragoza P, Martín-Burriel I, Rodellar C. Priming Equine Bone Marrow-Derived Mesenchymal Stem Cells with Proinflammatory Cytokines: Implications in Immunomodulation–Immunogenicity Balance, Cell Viability, and Differentiation Potential. Stem Cells Dev 2017; 26:15-24. [DOI: 10.1089/scd.2016.0209] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Laura Barrachina
- Laboratorio de Genetica Bioquimica LAGENBIO (Universidad de Zaragoza), Instituto Agroalimentario de Aragon– IA2 – (Universidad de Zaragoza-CITA), Instituto de Investigacion Sanitaria de Aragon (IIS), Zaragoza, Spain
- Servicio de Cirugía y Medicina Equina, Hospital Veterinario, Universidad de Zaragoza, Zaragoza, Spain
| | - Ana Rosa Remacha
- Laboratorio de Genetica Bioquimica LAGENBIO (Universidad de Zaragoza), Instituto Agroalimentario de Aragon– IA2 – (Universidad de Zaragoza-CITA), Instituto de Investigacion Sanitaria de Aragon (IIS), Zaragoza, Spain
| | - Antonio Romero
- Laboratorio de Genetica Bioquimica LAGENBIO (Universidad de Zaragoza), Instituto Agroalimentario de Aragon– IA2 – (Universidad de Zaragoza-CITA), Instituto de Investigacion Sanitaria de Aragon (IIS), Zaragoza, Spain
- Servicio de Cirugía y Medicina Equina, Hospital Veterinario, Universidad de Zaragoza, Zaragoza, Spain
| | - Francisco José Vázquez
- Laboratorio de Genetica Bioquimica LAGENBIO (Universidad de Zaragoza), Instituto Agroalimentario de Aragon– IA2 – (Universidad de Zaragoza-CITA), Instituto de Investigacion Sanitaria de Aragon (IIS), Zaragoza, Spain
- Servicio de Cirugía y Medicina Equina, Hospital Veterinario, Universidad de Zaragoza, Zaragoza, Spain
| | - Jorge Albareda
- Laboratorio de Genetica Bioquimica LAGENBIO (Universidad de Zaragoza), Instituto Agroalimentario de Aragon– IA2 – (Universidad de Zaragoza-CITA), Instituto de Investigacion Sanitaria de Aragon (IIS), Zaragoza, Spain
- Servicio de Cirugía Ortopédica y Traumatología, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Zaragoza, Spain
| | - Marta Prades
- Laboratorio de Genetica Bioquimica LAGENBIO (Universidad de Zaragoza), Instituto Agroalimentario de Aragon– IA2 – (Universidad de Zaragoza-CITA), Instituto de Investigacion Sanitaria de Aragon (IIS), Zaragoza, Spain
- Departament de Medicina i Cirugia Animal, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Jaime Gosálvez
- Departamento de Biología, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, Madrid, Spain
| | - Rosa Roy
- Departamento de Biología, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, Madrid, Spain
| | - Pilar Zaragoza
- Laboratorio de Genetica Bioquimica LAGENBIO (Universidad de Zaragoza), Instituto Agroalimentario de Aragon– IA2 – (Universidad de Zaragoza-CITA), Instituto de Investigacion Sanitaria de Aragon (IIS), Zaragoza, Spain
| | - Inmaculada Martín-Burriel
- Laboratorio de Genetica Bioquimica LAGENBIO (Universidad de Zaragoza), Instituto Agroalimentario de Aragon– IA2 – (Universidad de Zaragoza-CITA), Instituto de Investigacion Sanitaria de Aragon (IIS), Zaragoza, Spain
| | - Clementina Rodellar
- Laboratorio de Genetica Bioquimica LAGENBIO (Universidad de Zaragoza), Instituto Agroalimentario de Aragon– IA2 – (Universidad de Zaragoza-CITA), Instituto de Investigacion Sanitaria de Aragon (IIS), Zaragoza, Spain
| |
Collapse
|
23
|
El-Jawhari JJ, Jones E, Giannoudis PV. The roles of immune cells in bone healing; what we know, do not know and future perspectives. Injury 2016; 47:2399-2406. [PMID: 27809990 DOI: 10.1016/j.injury.2016.10.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Key events occurring during the bone healing include well-orchestrated and complex interactions between immune cells, multipotential stromal cells (MSCs), osteoblasts and osteoclasts. Through three overlapping phases of this physiological process, innate and adaptive immune cells, cytokines and chemokines have a significant role to play. The aim of the escalating immune response is to achieve an osseous healing in the shortest time and with the least complications facilitating the restoration of function. The uninterrupted progression of these biological events in conjunction with a favourable mechanical environment (stable fracture fixation) remains the hallmark of successful fracture healing. When failure occurs, either the biological environment or the mechanical one could have been disrupted. Not infrequently both may be compromised. Consequently, regenerative treatments involving the use of bone autograft, allograft or synthetic matrices supplemented with MSCs are increasingly used. A better understanding of the bone biology and osteoimmunology can help to improve these evolving cell-therapy based strategies. Herein, an up to date status of the role of immune cells during the different phases of bone healing is presented. Additionally, the known and yet to know events about immune cell interactions with MSCs and osteoblasts and osteoclasts and the therapeutic implications are being discussed.
Collapse
Affiliation(s)
- Jehan J El-Jawhari
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, St. James Hospital, University of Leeds, UK; NIHR Biomedical Research Unit, Chapel Allerton Hospital, University of Leeds, UK; Clinical Pathology Department, Faculty of Medicine, Mansoura University, Egypt
| | - Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, St. James Hospital, University of Leeds, UK; NIHR Biomedical Research Unit, Chapel Allerton Hospital, University of Leeds, UK
| | - Peter V Giannoudis
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, St. James Hospital, University of Leeds, UK; NIHR Biomedical Research Unit, Chapel Allerton Hospital, University of Leeds, UK.
| |
Collapse
|
24
|
Trauma-induced heterotopic bone formation and the role of the immune system: A review. J Trauma Acute Care Surg 2016; 80:156-65. [PMID: 26491794 DOI: 10.1097/ta.0000000000000883] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Extremity trauma, spinal cord injuries, head injuries, and burn injuries place patients at high risk of pathologic extraskeletal bone formation. This heterotopic bone causes severe pain, deformities, and joint contractures. The immune system has been increasingly implicated in this debilitating condition. This review summarizes the various roles immune cells and inflammation play in the formation of ectopic bone and highlights potential areas of future investigation and treatment. Cell types in both the innate and adaptive immune system such as neutrophils, macrophages, mast cells, B cells, and T cells have all been implicated as having a role in ectopic bone formation through various mechanisms. Many of these cell types are promising areas of therapeutic investigation for potential treatment. The immune system has also been known to also influence osteoclastogenesis, which is heavily involved in ectopic bone formation. Chronic inflammation is also known to have an inhibitory role in the formation of ectopic bone, whereas acute inflammation is necessary for ectopic bone formation.
Collapse
|
25
|
Croes M, Öner FC, van Neerven D, Sabir E, Kruyt MC, Blokhuis TJ, Dhert WJA, Alblas J. Proinflammatory T cells and IL-17 stimulate osteoblast differentiation. Bone 2016; 84:262-270. [PMID: 26780388 DOI: 10.1016/j.bone.2016.01.010] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 01/04/2016] [Accepted: 01/07/2016] [Indexed: 12/15/2022]
Abstract
The local immune response is important to consider when the aim is to improve bone regeneration. Recently T lymphocytes and their associated cytokines have been identified as regulators in fracture callus formation, but it is not known whether T cells affect bone progenitor cells directly. The goal of this in vitro study was to investigate the role of different T cell subsets and their secreted factors on the osteogenic differentiation of human mesenchymal stem cells (MSCs). Significant increases in the alkaline phosphatase activity and the subsequent matrix mineralization by MSCs were found after their exposure to activated T cells or activated T cell-derived conditioned medium. Blocking IFN-γ in the conditioned medium abolished its pro-osteogenic effect, while blocking TGF-β further enhanced osteogenesis. The relative contribution of an anti- or proinflammatory T cell phenotype in MSC osteogenic differentiation was studied next. Enrichment of the fraction of anti-inflammatory regulatory T cells had no beneficial osteogenic effect. In contrast, soluble factors derived from enriched T helper 17 cells upregulated the expression of osteogenic markers by MSCs. IL-17A, and IL-17F, their main proinflammatory cytokines, similarly exhibited strong osteogenic effects when exposed directly to MSCs. IL-17A in particular showed a synergistic action together with bone morphogenetic protein 2. These results indicate that individual T cell subsets, following their activation, affect osteoblast maturation in a different manner through the production of soluble factors. From all T cells, the proinflammatory T cells, including the T helper 17 cells, are most stimulatory for osteogenesis.
Collapse
Affiliation(s)
- Michiel Croes
- Department of Orthopedics, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, The Netherlands.
| | - F Cumhur Öner
- Department of Orthopedics, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, The Netherlands.
| | - Danihel van Neerven
- Department of Orthopedics, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, The Netherlands.
| | - Ekrem Sabir
- Department of Orthopedics, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, The Netherlands.
| | - Moyo C Kruyt
- Department of Orthopedics, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, The Netherlands.
| | - Taco J Blokhuis
- Department of Surgery, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, The Netherlands.
| | - Wouter J A Dhert
- Department of Orthopedics, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, The Netherlands; Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3508 TD Utrecht, The Netherlands.
| | - Jacqueline Alblas
- Department of Orthopedics, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, The Netherlands.
| |
Collapse
|
26
|
Bush JR, Liang H, Dickinson M, Botchwey EA. Xylan hemicellulose improves chitosan hydrogel for bone tissue regeneration. POLYM ADVAN TECHNOL 2016; 27:1050-1055. [PMID: 27587941 DOI: 10.1002/pat.3767] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The hemicellulose xylan, which has immunomodulatory effects, has been combined with chitosan to form a composite hydrogel to improve the healing of bone fractures. This thermally responsive and injectable hydrogel, which is liquid at room temperature and gels at physiological temperature, improves the response of animal host tissue compared with similar pure chitosan hydrogels in tissue engineering models. The composite hydrogel was placed in a subcutaneous model where the composite hydrogel is replaced by host tissue within 1 week, much earlier than chitosan hydrogels. A tibia fracture model in mice showed that the composite encourages major remodeling of the fracture callus in less than 4 weeks. A non-union fracture model in rat femurs was used to demonstrate that the composite hydrogel allows bone regeneration and healing of defects that with no treatment are unhealed after 6 weeks. These results suggest that the xylan/chitosan composite hydrogel is a suitable bone graft substitute able to aid in the repair of large bone defects.
Collapse
Affiliation(s)
- Joshua R Bush
- Department of Orthopaedic Surgery, University of Virginia, PO Box 800374, Charlottesville, VA, 22908, USA
| | - Haixiang Liang
- Department of Orthopaedic Surgery, University of Virginia, PO Box 800374, Charlottesville, VA, 22908, USA
| | - Molly Dickinson
- Department of Biomedical Engineering, University of Virginia, PO Box 800359, Charlottesville, VA, 22908, USA
| | - Edward A Botchwey
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
| |
Collapse
|
27
|
Gładysz D, Hozyasz KK. Stem cell regenerative therapy in alveolar cleft reconstruction. Arch Oral Biol 2015; 60:1517-32. [PMID: 26263541 DOI: 10.1016/j.archoralbio.2015.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 05/23/2015] [Accepted: 07/04/2015] [Indexed: 12/17/2022]
Abstract
Achieving a successful and well-functioning reconstruction of craniofacial deformities still remains a challenge. As for now, autologous bone grafting remains the gold standard for alveolar cleft reconstruction. However, its aesthetic and functional results often remain unsatisfactory, which carries a long-term psychosocial and medical sequelae. Therefore, searching for novel therapeutic approaches is strongly indicated. With the recent advances in stem cell research, cell-based tissue engineering strategies move from the bench to the patients' bedside. Successful stem cell engineering employs a carefully selected stem cell source, a biodegradable scaffold with osteoconductive and osteoinductive properties, as well as an addition of growth factors or cytokines to enhance osteogenesis. This review highlights recent advances in mesenchymal stem cell tissue engineering, discusses animal models and case reports of stem cell enhanced bone regeneration, as well as ongoing clinical trials.
Collapse
Affiliation(s)
- Dominika Gładysz
- Department of Pediatrics, Institute of Mother and Child, Warsaw, Poland
| | - Kamil K Hozyasz
- Department of Pediatrics, Institute of Mother and Child, Warsaw, Poland.
| |
Collapse
|
28
|
Li KC, Chang YH, Lin CY, Hwang SM, Wang TH, Hu YC. Preclinical Safety Evaluation of ASCs Engineered by FLPo/Frt-Based Hybrid Baculovirus: In Vitro and Large Animal Studies. Tissue Eng Part A 2015; 21:1471-82. [DOI: 10.1089/ten.tea.2014.0465] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Kuei-Chang Li
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Han Chang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Orthopedic, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chin-Yu Lin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Shiaw-Min Hwang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan
| | - Tzu-Hao Wang
- Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yu-Chen Hu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
29
|
Interactions between MSCs and immune cells: implications for bone healing. J Immunol Res 2015; 2015:752510. [PMID: 26000315 PMCID: PMC4427002 DOI: 10.1155/2015/752510] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 01/18/2015] [Accepted: 01/19/2015] [Indexed: 02/07/2023] Open
Abstract
It is estimated that, of the 7.9 million fractures sustained in the United States each year, 5% to 20% result in delayed or impaired healing requiring therapeutic intervention. Following fracture injury, there is an initial inflammatory response that plays a crucial role in bone healing; however, prolonged inflammation is inhibitory for fracture repair. The precise spatial and temporal impact of immune cells and their cytokines on fracture healing remains obscure. Some cytokines are reported to be proosteogenic while others inhibit bone healing. Cell-based therapy utilizing mesenchymal stromal cells (MSCs) is an attractive option for augmenting the fracture repair process. Osteoprogenitor MSCs not only differentiate into bone, but they also exert modulatory effects on immune cells via a variety of mechanisms. In this paper, we review the current literature on both in vitro and in vivo studies on the role of the immune system in fracture repair, the use of MSCs in the enhancement of fracture healing, and interactions between MSCs and immune cells. Insight into this paradigm can provide valuable clues in identifying cellular and noncellular targets that can potentially be modulated to enhance both natural bone healing and bone repair augmented by the exogenous addition of MSCs.
Collapse
|
30
|
Zhang Y, Li X, Chihara T, Mizoguchi T, Hori A, Udagawa N, Nakamura H, Hasegawa H, Taguchi A, Shinohara A, Kagami H. Comparing immunocompetent and immunodeficient mice as animal models for bone tissue engineering. Oral Dis 2015; 21:583-92. [PMID: 25648203 DOI: 10.1111/odi.12319] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/04/2015] [Accepted: 01/16/2015] [Indexed: 12/12/2022]
Abstract
OBJECTIVES To understand the differences and similarities between immunocompetent and immunodeficient mice as ectopic transplantation animal models for bone tissue engineering. MATERIALS AND METHODS Osteogenic cells from mouse leg bones were cultured, seeded on β-TCP granules, and transplanted onto the backs of either immunocompetent or immunodeficient nude mice. At 1, 2, 4, and 8 weeks postoperatively, samples were harvested and evaluated by hematoxylin-eosin staining, tartrate-resistant acid phosphatase (TRAP) staining, and immunohistochemical staining and quantitative PCR. RESULTS In immunocompetent mice, inflammatory cell infiltration was evident at 1 week postoperatively and relatively higher expression of TNF-α and IL-4 was observed. In immunodeficient mice, new bone area and the number of TRAP-positive cells were larger at 4 weeks than in immunocompetent mice. The volume of new bone area in immunodeficient mice was reduced by 8 weeks. CONCLUSIONS Bone regeneration was feasible in immunocompetent mice. However, some differences were observed between immunocompetent and immunodeficient mice in the bone regeneration process possibly due to different cytokine expression, which should be considered when utilizing in vivo animal models.
Collapse
Affiliation(s)
- Y Zhang
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan
| | - X Li
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan.,Institute for Oral Science, Matsumoto Dental University, Shiojiri, Japan
| | - T Chihara
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan.,Department of Oral and Maxillofacial Surgery, School of Dentistry, Matsumoto Dental University, Shiojiri, Japan
| | - T Mizoguchi
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan.,Institute for Oral Science, Matsumoto Dental University, Shiojiri, Japan
| | - A Hori
- Division of Molecular Therapy, The Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - N Udagawa
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan.,Institute for Oral Science, Matsumoto Dental University, Shiojiri, Japan
| | - H Nakamura
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan.,Second Department of Oral Anatomy, Matsumoto Dental University, Shiojiri, Japan
| | - H Hasegawa
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan.,Department of Oral Pathology, School of Dentistry, Matsumoto Dental University, Shiojiri, Japan
| | - A Taguchi
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan.,Department of Oral and Maxillofacial Radiology, School of Dentistry, Matsumoto Dental University, Shiojiri, Japan
| | - A Shinohara
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan.,Department of Oral and Maxillofacial Surgery, School of Dentistry, Matsumoto Dental University, Shiojiri, Japan
| | - H Kagami
- Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Japan.,Department of Oral and Maxillofacial Surgery, School of Dentistry, Matsumoto Dental University, Shiojiri, Japan.,Division of Molecular Therapy, The Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
31
|
Madhu V, Li CJ, Dighe AS, Balian G, Cui Q. BMP-non-responsive Sca1+ CD73+ CD44+ mouse bone marrow derived osteoprogenitor cells respond to combination of VEGF and BMP-6 to display enhanced osteoblastic differentiation and ectopic bone formation. PLoS One 2014; 9:e103060. [PMID: 25048464 PMCID: PMC4105618 DOI: 10.1371/journal.pone.0103060] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 06/25/2014] [Indexed: 12/29/2022] Open
Abstract
Clinical trials on fracture repair have challenged the effectiveness of bone morphogenetic proteins (BMPs) but suggest that delivery of mesenchymal stem cells (MSCs) might be beneficial. It has also been reported that BMPs could not increase mineralization in several MSCs populations, which adds ambiguity to the use of BMPs. However, an exogenous supply of MSCs combined with vascular endothelial growth factor (VEGF) and BMPs is reported to synergistically enhance fracture repair in animal models. To elucidate the mechanism of this synergy, we investigated the osteoblastic differentiation of cloned mouse bone marrow derived MSCs (D1 cells) in vitro in response to human recombinant proteins of VEGF, BMPs (-2, -4, -6, -9) and the combination of VEGF with BMP-6 (most potent BMP). We further investigated ectopic bone formation induced by MSCs pre-conditioned with VEGF, BMP-6 or both. No significant increase in mineralization, phosphorylation of Smads 1/5/8 and expression of the ALP, COL1A1 and osterix genes was observed upon addition of VEGF or BMPs alone to the cells in culture. The lack of CD105, Alk1 and Alk6 expression in D1 cells correlated with poor response to BMPs indicating that a greater care in the selection of MSCs is necessary. Interestingly, the combination of VEGF and BMP-6 significantly increased the expression of ALP, COL1A1 and osterix genes and D1 cells pre-conditioned with VEGF and BMP-6 induced greater bone formation in vivo than the non-conditioned control cells or the cells pre-conditioned with either VEGF or BMP-6 alone. This enhanced bone formation by MSCs correlated with higher CADM1 expression and OPG/RANKL ratio in the implants. Thus, combined action of VEGF and BMP on MSCs enhances osteoblastic differentiation of MSCs and increases their bone forming ability, which cannot be achieved through use of BMPs alone. This strategy can be effectively used for bone repair.
Collapse
Affiliation(s)
- Vedavathi Madhu
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia, United States of America
| | - Ching-Ju Li
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia, United States of America
| | - Abhijit S. Dighe
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia, United States of America
| | - Gary Balian
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia, United States of America
| | - Quanjun Cui
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
32
|
Wang L, Zhao Y, Liu Y, Akiyama K, Chen C, Qu C, Jin Y, Shi S. IFN-γ and TNF-α synergistically induce mesenchymal stem cell impairment and tumorigenesis via NFκB signaling. Stem Cells 2014; 31:1383-95. [PMID: 23553791 DOI: 10.1002/stem.1388] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 02/18/2013] [Accepted: 03/04/2013] [Indexed: 12/25/2022]
Abstract
An inflammatory microenvironment may cause organ degenerative diseases and malignant tumors. However, the precise mechanisms of inflammation-induced diseases are not fully understood. Here, we show that the proinflammatory cytokines interferon-γ (IFN-γ) and tumor necrosis factor α (TNF-α) synergistically impair self-renewal and differentiation of mesenchymal stem cells (MSCs) via nuclear factor κB (NFκB)-mediated activation of mothers against decapentaplegic homolog 7 (SMAD7) in ovariectomized (OVX) mice. More interestingly, a long-term elevated levels of IFN-γ and TNF-α result in significantly increased susceptibility to malignant transformation in MSCs through NFκB-mediated upregulation of the oncogenes c-Fos and c-Myc. Depletion of either IFN-γ or TNF-α in OVX mice abolishes MSC impairment and the tendency toward malignant transformation with no NFκB-mediated oncogene activation. Systemic administration of aspirin, which significantly reduces the levels of IFN-γ and TNF-α, results in blockage of MSC deficiency and tumorigenesis by inhibition of NFκB/SMAD7 and NFκB/c-FOS and c-MYC pathways in OVX mice. In summary, this study reveals that inflammation factors, such as IFN-γ and TNF-α, synergistically induce MSC deficiency via NFκB/SMAD7 signaling and tumorigenesis via NFκB-mediated oncogene activation.
Collapse
Affiliation(s)
- Lei Wang
- University of Southern California, Los Angeles, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|