1
|
Naveiro JM, Gracia L, Roces J, Albareda J, Puértolas S. Three-Dimensional Computational Model Simulating the Initial Callus Growth during Fracture Healing in Long Bones: Application to Different Fracture Types. Bioengineering (Basel) 2023; 10:bioengineering10020190. [PMID: 36829684 PMCID: PMC9952223 DOI: 10.3390/bioengineering10020190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/19/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Bone fractures are among the most common and potentially serious injuries to the skeleton, femoral shaft fractures being especially severe. Thanks to recent advances in the area of in silico analysis, several approximations of the bone healing process have been achieved. In this context, the objective of this work was to simulate the initial phase of callus formation in long bones, without a pre-meshed domain in the 3D space. A finite element approach was computationally implemented to obtain the values of the cell concentrations along the whole domain and evaluate the areas where the biological quantities reached the thresholds necessary to trigger callus growth. A voxel model was used to obtain the 3D domain of the bone fragments and callus. A mesh growth algorithm controlled the addition of new elements to the domain at each step of the iterative procedure until complete callus formation. The implemented approach is able to reproduce the generation of the primary callus, which corresponds to the initial phase of fracture healing, independently of the fracture type and complexity, even in the case of several bone fragments. The proposed approach can be applied to the most complex bone fractures such as oblique, severely comminuted or spiral-type fractures, whose simulation remains hardly possible by means of the different existing approaches available to date.
Collapse
Affiliation(s)
- José M. Naveiro
- Department of Mechanical Engineering, University of Zaragoza, 50018 Zaragoza, Spain
- Aragón Institute for Engineering Research, 50018 Zaragoza, Spain
| | - Luis Gracia
- Department of Mechanical Engineering, University of Zaragoza, 50018 Zaragoza, Spain
- Aragón Institute for Engineering Research, 50018 Zaragoza, Spain
| | - Jorge Roces
- Department of Construction and Manufacturing Engineering, University of Oviedo, 33204 Gijón, Spain
| | - Jorge Albareda
- Department of Surgery, University of Zaragoza, 50009 Zaragoza, Spain
- Aragón Health Research Institute, 50009 Zaragoza, Spain
| | - Sergio Puértolas
- Department of Mechanical Engineering, University of Zaragoza, 50018 Zaragoza, Spain
- Aragón Institute for Engineering Research, 50018 Zaragoza, Spain
- Correspondence:
| |
Collapse
|
2
|
Durongbhan P, Silva MO, Li Z, Ansari N, Kour RYN, Davey CE, Stok KS. A microCT imaging protocol for reproducible and efficient quantitative morphometric analysis (QMA) of joint structures of the in situ mouse tibio-femoral joint. Bone 2023; 166:116606. [PMID: 36368467 DOI: 10.1016/j.bone.2022.116606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/19/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
Micro-computed tomography (microCT) offers a three-dimensional (3D), high-resolution technique for the visualisation and analysis of bone microstructure. Using contrast-enhanced microCT, this capability has been expanded in recent studies to include cartilage morphometry and whole joint measures, known together as quantitative morphometric analysis (QMA). However, one of the main challenges in quantitative analysis of joint images is sensitivity to joint pose and alignment, which may influence measures related to both joint space and joint biomechanics. Thus, this study proposes a novel microCT imaging protocol for reproducible and efficient QMA of in situ mouse tibio-femoral joint. This work consists of two parts: an in situ diffusion kinetics study for a known cationic iodinated contrast agent (CA4+) for QMA of the cartilage, and a joint positioning and image processing workflow for whole joint QMA. In the diffusion kinetics study, 8 mice were injected at both of their tibio-femoral joints with distinct CA4+ concentrations and diffusion times. The mice were scanned at different time points after injection, and evaluated using attenuation and cartilage QMA measures. Results show that cartilage segmentation and QMA could be performed for CA4+ solution at a concentration of 48 mg/ml, and that reliable measurement and quantification of cartilage were achieved after 5 min of diffusion following contrast agent injection. We established the joint positioning and image processing workflow by developing a novel positioning device to control joint pose during scanning, and a spherical harmonics-based image processing workflow to ensure consistent alignment during image processing. Both legs of seven mice were scanned 10 times, 5 prior to receiving CA4+ and 5 after, and evaluated using whole joint QMA parameters. Joint QMA evaluation of the workflow showed excellent reproducibility; intraclass correlation coefficients ranged from 0.794 to 0.930, confirming that the imaging protocol enables reproducible and efficient QMA of joint structures in preclinical models, and that contrast agent injection did not cause significant alteration to the measured parameters.
Collapse
Affiliation(s)
- Pholpat Durongbhan
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Australia.
| | - Mateus O Silva
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Australia.
| | - Zihui Li
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Australia
| | - Niloufar Ansari
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Australia
| | - R Y Nigel Kour
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Australia; Department of Mechanical Engineering, The University of Melbourne, Parkville, Australia.
| | - Catherine E Davey
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Australia.
| | - Kathryn S Stok
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Australia.
| |
Collapse
|
3
|
Gao X, Patwa AN, Deng Z, Utsunomiya H, Grinstaff MW, Ruzbarsky JJ, Snyder BD, Ravuri S, Philippon MJ, Huard J. Influence of fixation on CA4+ contrast enhanced microCT of articular cartilage and subsequent feasibility for histological evaluation. Am J Transl Res 2021; 13:8921-8937. [PMID: 34540005 PMCID: PMC8430171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
CA4+ is a novel cationic iodinated contrast agent utilized for contrast-enhanced microCT (CECT). In this study, we compared CA4+ CECT for cartilage quantification of unfixed and neutral buffered formalin (NBF)-fixed rabbit distal femur cartilage after 8-, 24- and 30-hours of contrast agent diffusion. The stability of CA4+ binding to cartilage after PBS soak and decalcification was also investigated by CECT. We further assessed the feasibility of cartilage histology and immunohistochemistry after CA4+ CECT. Contrast-enhanced CA4+ labeled unfixed and NBF-fixed cartilage tissues facilitate articular cartilage quantification and accurate morphological assessment. The NBF fixed tissues demonstrate higher cartilage intensity and imaging characteristics distinct from subchondral bone than unfixed tissues while maintaining stable binding even after decalcification with 10% EDTA. The unfixed tissues labeled with CA4+, after CECT imaging and decalcification, are amenable to H&E, Alcian blue, and Safranin O staining, as well as Col2 immunohistochemistry. In contrast, only H&E and Alcian blue staining can be accomplished with CA4+ labeled NBF fixed cartilage, and CA4+ labeling interferes with downstream immunohistochemistry and Safranin O staining, likely due to its positive charge. In conclusion, CA4+ CECT of NBF fixed tissues provides high quality microCT cartilage images and allows for convenient quantification along with feasible downstream H&E and Alcian blue staining after decalcification. CA4+ CECT of unfixed tissues enables researchers to obtain both quantitative microCT as well as cartilage histology and immunohistochemistry data from one set of animals in a cost-, time-, and labor-efficient manner.
Collapse
Affiliation(s)
- Xueqin Gao
- Steadman Philippon Research InstituteVail, CO, USA
- Department of Orthopaedic Surgery, McGovern Medical School, University of Texas Health Science Center at HoustonHouston, TX, USA
| | - Amit N Patwa
- Department of Biomedical Engineering, Boston UniversityBoston, MA, USA
- Current Institution, School of Science, Navrachana UniversityVadodara, Gujarat, India
| | - Zhenhan Deng
- Department of Orthopaedic Surgery, McGovern Medical School, University of Texas Health Science Center at HoustonHouston, TX, USA
| | | | - Mark W Grinstaff
- Department of Biomedical Engineering, Boston UniversityBoston, MA, USA
| | | | - Brian D Snyder
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBoston, MA, USA
| | | | | | - Johnny Huard
- Steadman Philippon Research InstituteVail, CO, USA
- Department of Orthopaedic Surgery, McGovern Medical School, University of Texas Health Science Center at HoustonHouston, TX, USA
| |
Collapse
|
4
|
Glinkowski W, Chelnokov AN. The orthopaedic surgeon's clinical and experimental experience affect methods used for the fracture healing assessment (FHA) - An International Survey. Injury 2021; 52:2205-2214. [PMID: 33836844 DOI: 10.1016/j.injury.2021.03.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 02/02/2023]
Abstract
Detection of fracture healing (FH), which depends on assessment methods, is a crucial factor affecting treatment. The study aimed to examine orthopedic surgeons in terms of practical methods of fracture healing (FHA) assessment (physical, imaging, measurement, and laboratory) and to check whether surgeons participating in clinical and laboratory experiments or only clinical practitioners prefer different FHA methods. An International Survey on Fracture Healing Assessment Methods was developed and distributed through the Web-based survey portal. Ninety-three orthopedic surgeons, on average age 41.46 years, from 24 countries participated in the study. Thirty-one respondents (33.3%) reported dealing with fractures both in the clinic and in experimental studies, six (6.5%) reported dealing with fractures only in laboratory research work, and fifty-six (60.2%) indicated that they dealt with fractures only clinically. The survey's internal consistency was significantly high (Cronbach's alpha coefficients ranged from 0.84 to 0.96). The majority of respondents (80.83%) use specific clinical criteria to define a fracture union. The FHA was mainly based on the physical examination and plain radiograms. Laboratory findings, patient-oriented outcomes scores, and quantitative methods are rarely used. Orthopaedic surgeons dealing with fractures both in the clinic and in laboratory fracture research studies are more likely to use more quantitative FHA methods. Future research is needed to improve the international standard of the FHA methods for use in research, clinical trials, and clinical practice. Using a quantitative, reliable, and standardized approach, including online support, can be valuable for increasing compliance in the orthopedic surgeon population, effectively improving the adherence of fracture healing assessment in clinical conditions, and improving early detection of fracture healing disorders, improving fracture efficiency treatment.
Collapse
Affiliation(s)
- Wojciech Glinkowski
- Centre of Excellence "TeleOrto" for Telediagnostics and Treatment of Disorders and Injuries of the Locomotor System, Medical University of Warsaw, 00581 Warsaw, Poland; Department of Medical Informatics and Telemedicine, Medical University of Warsaw, 00581 Warsaw, Poland; Polish Telemedicine and eHealth Society, 03728 Warsaw, Poland; Gabinet Lekarski, 03728 Warsaw, Poland.
| | | |
Collapse
|
5
|
McDermott AM, Herberg S, Mason DE, Collins JM, Pearson HB, Dawahare JH, Tang R, Patwa AN, Grinstaff MW, Kelly DJ, Alsberg E, Boerckel JD. Recapitulating bone development through engineered mesenchymal condensations and mechanical cues for tissue regeneration. Sci Transl Med 2020; 11:11/495/eaav7756. [PMID: 31167930 DOI: 10.1126/scitranslmed.aav7756] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 05/13/2019] [Indexed: 01/08/2023]
Abstract
Large bone defects cannot form a callus and exhibit high complication rates even with the best treatment strategies available. Tissue engineering approaches often use scaffolds designed to match the properties of mature bone. However, natural fracture healing is most efficient when it recapitulates development, forming bone via a cartilage intermediate (endochondral ossification). Because mechanical forces are critical for proper endochondral bone development and fracture repair, we hypothesized that recapitulating developmental mechanical forces would be essential for large bone defect regeneration in rats. Here, we engineered mesenchymal condensations that mimic the cellular organization and lineage progression of the early limb bud in response to local transforming growth factor-β1 presentation from incorporated gelatin microspheres. We then controlled mechanical loading in vivo by dynamically tuning fixator compliance. Mechanical loading enhanced mesenchymal condensation-induced endochondral bone formation in vivo, restoring functional bone properties when load initiation was delayed to week 4 after defect formation. Live cell transplantation produced zonal human cartilage and primary spongiosa mimetic of the native growth plate, whereas condensation devitalization before transplantation abrogated bone formation. Mechanical loading induced regeneration comparable to high-dose bone morphogenetic protein-2 delivery, but without heterotopic bone formation and with order-of-magnitude greater mechanosensitivity. In vitro, mechanical loading promoted chondrogenesis and up-regulated pericellular matrix deposition and angiogenic gene expression. In vivo, mechanical loading regulated cartilage formation and neovascular invasion, dependent on load timing. This study establishes mechanical cues as key regulators of endochondral bone defect regeneration and provides a paradigm for recapitulating developmental programs for tissue engineering.
Collapse
Affiliation(s)
- Anna M McDermott
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.,Department of Mechanical Engineering, Trinity Center for Bioengineering, Trinity College Dublin, Dublin D02 PN40, Ireland
| | - Samuel Herberg
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Devon E Mason
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Joseph M Collins
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hope B Pearson
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - James H Dawahare
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Rui Tang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Amit N Patwa
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Mark W Grinstaff
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Daniel J Kelly
- Department of Mechanical Engineering, Trinity Center for Bioengineering, Trinity College Dublin, Dublin D02 PN40, Ireland
| | - Eben Alsberg
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA. .,Department of Orthopaedic Surgery, Case Western Reserve University, Cleveland, OH 44106, USA.,National Center for Regenerative Medicine, Division of General Medical Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Joel D Boerckel
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. .,Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
de Bournonville S, Vangrunderbeeck S, Ly HGT, Geeroms C, De Borggraeve WM, Parac-Vogt TN, Kerckhofs G. Exploring polyoxometalates as non-destructive staining agents for contrast-enhanced microfocus computed tomography of biological tissues. Acta Biomater 2020; 105:253-262. [PMID: 31996331 DOI: 10.1016/j.actbio.2020.01.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/08/2020] [Accepted: 01/22/2020] [Indexed: 11/28/2022]
Abstract
To advance clinical translation of regenerative medicine, there is, amongst others, still need for better insights in tissue development and disease. For this purpose, more precise imaging of the 3D microstructure and spatial interrelationships of the different tissues within organs is crucial. Despite being destructive towards the sample, conventional histology still is the gold standard for structural analysis of biological tissues. It is, however, limited by 2D sections of a 3D object, prohibiting full 3D structural analysis. MicroCT has proven to provide full 3D structural information of mineralized tissues and dense biomaterials. However, the intrinsic low X-ray absorption of soft tissues requires contrast-enhancing staining agents (CESAs). In a previous study, we showed that hafnium-substituted Wells-Dawson polyoxometalate (Hf-WD POM) allows simultaneous contrast-enhanced microCT (CE-CT) visualization of bone and its marrow vascularization and adiposity. In this study, other POM species have been examined for their potential as soft tissue CESAs. Four Wells-Dawson POMs, differing in structure and overall charge, were used to stain murine long bones and kidneys. Their staining potential and diffusion rate were compared to those of Hf-WD POM and phosphotungstic acid (PTA), a frequently used but destructive CESA. Monolacunary Wells-Dawson POM (Mono-WD POM) showed similar soft tissue enhancement as Hf-WD POM and PTA. Moreover, Mono-WD POM is less destructive, shows a better diffusion than PTA, and its synthesis requires less time and cost than Hf-WD POM. Finally, the solubility of Mono-WD POM was improved by addition of lithium chloride (LiCl) to the staining solution, enhancing further the soft tissue contrast. STATEMENT OF SIGNIFICANCE: To advance clinical translation of regenerative medicine, there is, amongst others, still need for better insights in tissue development and disease. For this purpose, more precise imaging of the 3D microstructure and spatial interrelationships of the different tissues within organs is crucial. Current standard structural analysis techniques (e.g. 2D histomorphometry), however, do not allow full 3D assessment. Contrast-enhanced X-ray computed tomography has emerged as a powerful 3D structural characterization tool of soft biological tissues. In this study, from a library of Wells Dawson polyoxometalates (WD POMs), we identified monolacunary WD POM together with lithium chloride, dissolved in phosphate buffered saline, as the most suitable contrast-enhancing staining agent solution for different biological tissues without tissue shrinkage.
Collapse
Affiliation(s)
- Sébastien de Bournonville
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium; Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Sarah Vangrunderbeeck
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Leuven, Belgium; Biomechanics Lab, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium
| | - Hong Giang T Ly
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Leuven, Belgium; Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho, Vietnam
| | - Carla Geeroms
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium; Skeletal Biology and Engineering Research Center, Department Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Wim M De Borggraeve
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Tatjana N Parac-Vogt
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Greet Kerckhofs
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium; Biomechanics Lab, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium; IREC, Institute of Experimental and Clinical Research, UCLouvain, Woluwé-Saint-Lambert, Belgium; Department Materials Engineering, KU Leuven, Leuven, Belgium.
| |
Collapse
|
7
|
Drenkard LMM, Kupratis ME, Li K, Gerstenfeld LC, Morgan EF. Local Changes to the Distal Femoral Growth Plate Following Injury in Mice. J Biomech Eng 2019; 139:2627000. [PMID: 28492928 DOI: 10.1115/1.4036686] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Injury to the growth plate is associated with growth disturbances, most notably premature cessation of growth. The goal of this study was to identify spatial changes in the structure and composition of the growth plate in response to injury to provide a foundation for developing therapies that minimize the consequences for skeletal development. We used contrast-enhanced microcomputed tomography (CECT) and histological analyses of a murine model of growth plate injury to quantify changes in the cartilaginous and osseous tissue of the growth plate. To distinguish between local and global changes, the growth plate was divided into regions of interest near to and far from the injury site. We noted increased thickness and CECT attenuation (a measure correlated with glycosaminoglycan (GAG) content) near the injury, and increased tissue mineral density (TMD) of bone bridges within the injury site, compared to outside the injury site and contralateral growth plates. Furthermore, we noted disruption of the normal zonal organization of the physis. The height of the hypertrophic zone was increased at the injury site, and the relative height of the proliferative zone was decreased across the entire injured growth plate. These results indicate that growth plate injury leads to localized disruption of cellular activity and of endochondral ossification. These local changes in tissue structure and composition may contribute to the observed retardation in femur growth. In particular, the changes in proliferative and hypertrophic zone heights seen following injury may impact growth and could be targeted when developing therapies for growth plate injury.
Collapse
|
8
|
Alexandrovskaya YM, Evtushenko EG, Obrezkova MM, Tuchin VV, Sobol EN. Control of optical transparency and infrared laser heating of costal cartilage via injection of iohexol. JOURNAL OF BIOPHOTONICS 2018; 11:e201800195. [PMID: 30043483 DOI: 10.1002/jbio.201800195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/21/2016] [Accepted: 07/23/2018] [Indexed: 06/08/2023]
Abstract
Infrared (IR) laser impact has no analogues for rapid and safe cartilage reshaping. For better penetration of radiation optical clearing agents (OCAs) can be applied. In present work, the effect of low-osmolality agent iohexol on costal cartilage is studied. Specifically, it is shown that ½ of total increase of optical transparency occurs in 20 minutes of immersion. Maximally, cartilage transparency on 1560 nm can be increased in 1.5 times. Injection of iohexol results in increased tissue hygroscopicity, lower drying rate and higher percentage of bound water. Effective diffusion coefficients of water liberation at 21°C are (5.3 ± 0.4) × 10-7 and (3.3 ± 0.1) × 10-7 cm2 /s for untreated and iohexol-modified tissue, respectively. Raman spectroscopy of irradiated iohexol solution reveals its photo and thermo-stability under clinically used IR laser energies up to 350 W/cm2 for exposure times of several seconds. At energies higher than 500 W/cm2 [Correction added on 5 September 2018, after first online publication: This unit has been changed] decomposition of iohexol occurs rapidly through formation of molecular iodine and fluorescent residue.
Collapse
Affiliation(s)
- Yulia M Alexandrovskaya
- Institute of Photon Technologies, Federal Scientific Research Centre "Crystallography and Photonics" of the Russian Academy of Sciences, Moscow, Russia
| | | | | | - Valery V Tuchin
- Research-Educational Institute of Optics and Biophotonics, Saratov State University, Saratov, Russia
- Laboratory of Laser Diagnostics of Technical and Living Systems, Institute of Precision Mechanics and Control RAS, Saratov, Russia
- Interdisciplinary Laboratory of Biophotonics, Tomsk State University, Tomsk, Russia
| | - Emil N Sobol
- Institute of Photon Technologies, Federal Scientific Research Centre "Crystallography and Photonics" of the Russian Academy of Sciences, Moscow, Russia
- IPG Medical Corporation, Marlborough, Massachusetts
| |
Collapse
|
9
|
Noguchi T, Hussein AI, Horowitz N, Carroll D, Gower AC, Demissie S, Gerstenfeld LC. Hypophosphatemia Regulates Molecular Mechanisms of Circadian Rhythm. Sci Rep 2018; 8:13756. [PMID: 30213970 PMCID: PMC6137060 DOI: 10.1038/s41598-018-31830-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 08/13/2018] [Indexed: 12/31/2022] Open
Abstract
Transcriptomic analysis showed that the central circadian pathway genes had significantly altered expression in fracture calluses from mice fed a low phosphate diet. This led us to hypothesize that phosphate deficiency altered the circadian cycle in peripheral tissues. Analysis of the expression of the central clock genes over a 24-36 hour period in multiple peripheral tissues including fracture callus, proximal tibia growth plate and cardiac tissues after 12 days on a low phosphate diet showed higher levels of gene expression in the hypophosphatemia groups (p < 0.001) and a 3 to 6 hour elongation of the circadian cycle. A comparative analysis of the callus tissue transcriptome genes that were differentially regulated by hypophosphatemia with published data for the genes in bone that are diurnally regulated identified 1879 genes with overlapping differential regulation, which were shown by ontology assessment to be associated with oxidative metabolism and apoptosis. Network analysis of the central circadian pathway genes linked their expression to the up regulated expression of the histone methyltransferase gene EZH2, a gene that when mutated in both humans and mice controls overall skeletal growth. These data suggest that phosphate is an essential metabolite that controls circadian function in both skeletal and non skeletal peripheral tissues and associates its levels with the overall oxidative metabolism and skeletal growth of animals.
Collapse
Affiliation(s)
- Takashi Noguchi
- Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, USA
| | - Amira I Hussein
- Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, USA
| | - Nina Horowitz
- Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, USA
| | - Deven Carroll
- Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, USA
| | - Adam C Gower
- Clinical and Translational Science Institute, Boston University School of Medicine, Boston, USA
| | - Serkalem Demissie
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Louis C Gerstenfeld
- Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, USA.
| |
Collapse
|
10
|
Kerckhofs G, Stegen S, van Gastel N, Sap A, Falgayrac G, Penel G, Durand M, Luyten FP, Geris L, Vandamme K, Parac-Vogt T, Carmeliet G. Simultaneous three-dimensional visualization of mineralized and soft skeletal tissues by a novel microCT contrast agent with polyoxometalate structure. Biomaterials 2018; 159:1-12. [DOI: 10.1016/j.biomaterials.2017.12.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/08/2017] [Accepted: 12/20/2017] [Indexed: 12/14/2022]
|
11
|
Morgan EF, Pittman J, DeGiacomo A, Cusher D, de Bakker CMJ, Mroszczyk KA, Grinstaff MW, Gerstenfeld LC. BMPR1A antagonist differentially affects cartilage and bone formation during fracture healing. J Orthop Res 2016; 34:2096-2105. [PMID: 26990682 DOI: 10.1002/jor.23233] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 03/10/2016] [Indexed: 02/04/2023]
Abstract
A soluble form of BMP receptor type 1A (mBMPR1A-mFC) acts as an antagonist to endogenous BMPR1A and has been shown to increase bone mass in mice. The goal of this study was to examine the effects of mBMPR1A-mFC on secondary fracture healing. Treatment consisted of 10 mg/kg intraperitoneal injections of mBMPR1A-mFC twice weekly in male C57BL/6 mice. Treatment beginning at 1, 14, and 21 days post-fracture assessed receptor function during endochondral bone formation, at the onset of secondary bone formation, and during coupled remodeling, respectively. Control animals received saline injections. mBMPR1A-mFC treatment initiated on day 1 delayed cartilage maturation in the callus and resulted in large regions of fibrous tissue. Treatment initiated on day 1 also increased the amount of mineralized tissue and up-regulated many bone-associated genes (p = 0.002) but retarded periosteal bony bridging and impaired strength and toughness at day 35 (p < 0.035). Delaying the onset of treatment to day 14 or 21 partially mitigated these effects and produced evidence of accelerated coupled remodeling. These results indicate that inhibition of the BMPR1A-mediated signaling has negative effects on secondary fracture healing that are differentially manifested at different stages of healing and within different cell populations. These effects are most pronounced during the endochondral period and appear to be mediated by selective inhibition of BMPRIA signaling within the periosteum. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:2096-2105, 2016.
Collapse
Affiliation(s)
- Elise F Morgan
- Department of Mechanical Engineering, Boston University, Boston, MA, 02215.,Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, MA, 02118.,Department of Biomedical Engineering, Boston University, Boston, MA, 02215
| | - Jason Pittman
- Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, MA, 02118
| | - Anthony DeGiacomo
- Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, MA, 02118
| | - Daniel Cusher
- Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, MA, 02118
| | | | - Keri A Mroszczyk
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215
| | - Mark W Grinstaff
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215.,Department of Chemistry, Boston University, Boston, MA, 02215
| | - Louis C Gerstenfeld
- Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, MA, 02118
| |
Collapse
|
12
|
Lin KH, Wu Q, Leib DJ, Tang SY. A novel technique for the contrast-enhanced microCT imaging of murine intervertebral discs. J Mech Behav Biomed Mater 2016; 63:66-74. [PMID: 27341292 DOI: 10.1016/j.jmbbm.2016.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/30/2016] [Accepted: 06/01/2016] [Indexed: 10/21/2022]
Abstract
Disc degeneration is one of the leading factors that contribute to low back pain. Thus, the further understanding of the mechanisms contributing to degeneration of the intervertebral disc degeneration is critical for the development of therapies and strategies for treating low back pain. Rodent models are attractive for conducting mechanistic studies particularly because of the availability of genetically modified animals. However, current imaging technologies such as magnetic resonance imaging, do not have the ability to resolve spatial features at the tens- to single- micrometer scale. We propose here a contrast-enhanced microCT technique to conduct high-resolution imaging of the rodent intervertebral discs at 10µm spatial resolution. Based on the iodinated-hydrophilic contrast agent Ioversol, we are able to conduct high resolution imaging on rat and mouse intervertebral discs. Leveraging the hydrophilic characteristic of the contrast agent, we are able to discriminate the annulus fibrosus from the water-rich nucleus pulposus. Moreover, this technique allows for the quantitative measurement of disc morphologies and volumes, and we demonstrate the versatility of this technique on cultured live intervertebral discs. Coupled with our semi-automated segmentation technique, we are able to quantify the intervertebral disc volumes with a high degree of reproducibility. The contrast-enhanced microCT images were qualitatively and quantitatively indistinguishable from the traditional histological assessment of the same sample. Furthermore, stereological measures compared well between histology and microCT images. Taken together, the results reveal that rat and mouse intervertebral discs can be imaged longitudinally in vitro at high resolutions, with no adverse effects on viability and features of the intervertebral disc.
Collapse
Affiliation(s)
- Kevin H Lin
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Qi Wu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Daniel J Leib
- Department of Orthopaedic Surgery, Washington University in St. Louis, United States
| | - Simon Y Tang
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States; Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, United States; Department of Orthopaedic Surgery, Washington University in St. Louis, United States.
| |
Collapse
|
13
|
Bragdon B, Lybrand K, Gerstenfeld L. Overview of biological mechanisms and applications of three murine models of bone repair: closed fracture with intramedullary fixation, distraction osteogenesis, and marrow ablation by reaming. CURRENT PROTOCOLS IN MOUSE BIOLOGY 2015; 5:21-34. [PMID: 25727198 PMCID: PMC4358754 DOI: 10.1002/9780470942390.mo140166] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Fractures are one of the most common large-organ, traumatic injuries in humans, and osteoporosis-related fractures are the fastest growing health care problem of aging. Elective orthopedic surgeries of the bones and joints also represent some of most common forms of elective surgeries performed. Optimal repair of skeletal tissues is necessary for successful outcomes of these many different orthopedic surgical treatments. Research focused on post-natal skeletal repair is therefore of immense clinical importance and of particular relevance in situations in which bone tissue healing is compromised due to the extent of tissue trauma or specific medical co-morbidities. Three commonly used murine surgical models of bone healing, closed fracture with intramedullary fixation, distraction osteogenesis (DO), and marrow ablation by reaming, are presented. The biological aspects of these models are contrasted and the types of research questions that may be addressed with these models are presented.
Collapse
Affiliation(s)
- Beth Bragdon
- Orthopaedic Research Laboratory, Boston University School of Medicine. Department of Orthopeadic Surgery Boston University Medical Center
| | - Kyle Lybrand
- Orthopaedic Research Laboratory, Boston University School of Medicine. Department of Orthopeadic Surgery Boston University Medical Center
| | - Louis Gerstenfeld
- Orthopaedic Research Laboratory, Boston University School of Medicine. Department of Orthopeadic Surgery Boston University Medical Center
| |
Collapse
|
14
|
Abstract
Characterization of articular cartilage morphology and composition using microcomputed tomography (microCT) techniques requires the use of contrast agents to enhance X-ray attenuation of the tissue. This chapter describes the use of an anionic iodinated contrast agent at equilibrium with articular cartilage. In this technique, negatively charged contrast agent molecules distribute themselves inversely with respect to the negatively charged proteoglycans (PGs) within the cartilage tissue (Palmer et al. Proc Natl Acad Sci U S A 103:19255-19260, 2006). This relationship allows for assessment of cartilage degradation, as areas of high X-ray attenuation have been shown to correspond to areas of depleted PGs (Palmer et al. Proc Natl Acad Sci U S A 103:19255-19260, 2006; Xie et al. Osteoarthritis Cartilage 18:65-72, 2010).
Collapse
Affiliation(s)
- Angela S P Lin
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
| | | | | |
Collapse
|
15
|
A Longitudinal Low Dose μCT Analysis of Bone Healing in Mice: A Pilot Study. Adv Orthop 2014; 2014:791539. [PMID: 25431676 PMCID: PMC4241339 DOI: 10.1155/2014/791539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 10/13/2014] [Indexed: 02/07/2023] Open
Abstract
Low dose microcomputed tomography (μCT) is a recently matured technique that enables the study of longitudinal bone healing and the testing of experimental treatments for bone repair. This imaging technique has been used for studying craniofacial repair in mice but not in an orthopedic context. This is mainly due to the size of the defects (approximately 1.0 mm) in long bone, which heal rapidly and may thus negatively impact the assessment of the effectiveness of experimental treatments. We developed a longitudinal low dose μCT scan analysis method combined with a new image segmentation and extraction software using Hounsfield unit (HU) scores to quantitatively monitor bone healing in small femoral cortical defects in live mice. We were able to reproducibly quantify bone healing longitudinally over time with three observers. We used high speed intramedullary reaming to prolong healing in order to circumvent the rapid healing typical of small defects. Bone healing prolongation combined with μCT imaging to study small bone defects in live mice thus shows potential as a promising tool for future preclinical research on bone healing.
Collapse
|
16
|
Freedman JD, Lusic H, Snyder BD, Grinstaff MW. Tantalum oxide nanoparticles for the imaging of articular cartilage using X-ray computed tomography: visualization of ex vivo/in vivo murine tibia and ex vivo human index finger cartilage. Angew Chem Int Ed Engl 2014; 53:8406-10. [PMID: 24981730 PMCID: PMC4303344 DOI: 10.1002/anie.201404519] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Indexed: 12/20/2022]
Abstract
The synthesis and characterization of tantalum oxide (Ta2O5) nanoparticles (NPs) as new X-ray contrast media for microcomputed tomography (μCT) imaging of articular cartilage are reported. NPs, approximately 5-10 nm in size, and possessing distinct surface charges, were synthesized using phosphonate (neutral), ammonium (cationic), and carboxylate (anionic) ligands as end functional groups. Assessment of a cartilage defect in a human cadaver distal metacarpophalangeal (MCP) joint with the ammonium nanoparticles showed good visualization of damage and preferential uptake in areas surrounding the defect. Finally, an optimized nontoxic cationic NP contrast agent was evaluated in an in vivo murine model and the cartilage was imaged. These nanoparticles represent a new type of contrast agent for imaging articular cartilage, and the results demonstrate the importance of surface charge in the design of nanoparticulate agents for targeting the surface or interior zones of articular cartilage.
Collapse
Affiliation(s)
- Jonathan D. Freedman
- Departments of Biomedical Engineering, Chemistry and Pharmacology, Boston University, Boston, MA 02115 (USA), Homepage: http://people.bu.edu/mgrin/
| | - Hrvoje Lusic
- Departments of Biomedical Engineering, Chemistry and Pharmacology, Boston University, Boston, MA 02115 (USA), Homepage: http://people.bu.edu/mgrin/
| | - Brian D. Snyder
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115 (USA)
| | - Mark W. Grinstaff
- Departments of Biomedical Engineering, Chemistry and Pharmacology, Boston University, Boston, MA 02115 (USA), Homepage: http://people.bu.edu/mgrin/
| |
Collapse
|
17
|
Freedman JD, Lusic H, Snyder BD, Grinstaff MW. Tantalum Oxide Nanoparticles for the Imaging of Articular Cartilage Using X-Ray Computed Tomography: Visualization of Ex Vivo/In Vivo Murine Tibia and Ex Vivo Human Index Finger Cartilage. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201404519] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
18
|
Augat P, Morgan EF, Lujan TJ, MacGillivray TJ, Cheung WH. Imaging techniques for the assessment of fracture repair. Injury 2014; 45 Suppl 2:S16-22. [PMID: 24857023 DOI: 10.1016/j.injury.2014.04.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Imaging of a healing fracture provides a non-invasive and often instructive reproduction of the fracture repair progress and the healing status of bone. However, the interpretation of this reproduction is often qualitative and provides only an indirect and surrogate measure of the mechanical stability of the healing fracture. Refinements of the available imaging techniques have been suggested to more accurately determine the healing status of bone. Plain radiographs provide the ability to determine the degree of bridging of the fracture gap and to quantify the amount of periosteal callus formation. Absorptiometric measures including dual X-ray absorptiometry and computed tomography provide quantitative information on the amount and the density of newly formed bone around the site of the fracture. To include the effect of spatial distribution of newly formed bone, finite element models of healing fracture can be employed to estimate its load bearing capacity. Ultrasound technology not only avoids radiation doses to the patients but also provides the ability to additionally measure vascularity in the surrounding soft tissue of the fracture and in the fracture itself.
Collapse
Affiliation(s)
- P Augat
- Institute of Biomechanics, Trauma Center Murnau, Prof.-Kuentscher-Str. 8, 82418 Murnau, Germany; Institute of Biomechanics, Paracelsus Medical University Salzburg, Strubergasse 21, Salzburg, Austria.
| | - E F Morgan
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA 02215, USA.
| | - T J Lujan
- Department of Mechanical and Biomedical Engineering, Boise State University, 1910 University Drive, Boise, ID 83725, USA.
| | - T J MacGillivray
- Clinical Research Imaging Centre, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| | - W H Cheung
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
19
|
Geusens P, Chapurlat R, Schett G, Ghasem-Zadeh A, Seeman E, de Jong J, van den Bergh J. High-resolution in vivo imaging of bone and joints: a window to microarchitecture. Nat Rev Rheumatol 2014; 10:304-13. [DOI: 10.1038/nrrheum.2014.23] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
20
|
Lakin BA, Grasso DJ, Stewart RC, Freedman JD, Snyder BD, Grinstaff MW. Contrast enhanced CT attenuation correlates with the GAG content of bovine meniscus. J Orthop Res 2013; 31:1765-71. [PMID: 23832854 PMCID: PMC3931129 DOI: 10.1002/jor.22421] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 06/07/2013] [Indexed: 02/04/2023]
Abstract
We determined whether contrast-enhanced computed tomography (CECT) attenuation obtained using a µCT scanner correlated with the glycosaminoglycan (GAG) content and distribution in ex vivo bovine menisci. Bovine samples were immersed in different concentrations of the contrast agents CA4+ and Ioxaglate, and the µCT images were compared to Safranin-O staining. CA4+ and Ioxaglate diffusion-in kinetics and the correlation between their CECT attenuations and GAG content were investigated. CA4+ and Ioxaglate both reached steady state in the meniscal regions within 95 h, with tau values of 20.6 ± 3.98 and 25.9 ± 3.71 h (mean ± SD), respectively. Both agents diffused preferentially through the proximal and secondarily through the distal surface. The CA4+ CECT attenuation was strongly and positively correlated with the GAG content of the meniscus regions (R(2) = 0.89, p < 0.001) at low concentrations (12 mgI/ml), while the Ioxaglate CECT attenuation was moderately and negatively correlated with the GAG content (R(2) = 0.51, p = 0.03) at 60 mgI/ml. CECT can image ex vivo menisci, and the CA4+, compared to Ioxaglate, enhanced attenuation strongly correlates with the GAG content and distribution in bovine meniscus.
Collapse
Affiliation(s)
- Bejamin A. Lakin
- Department of Biomedical Engineering and Chemistry, Boston University, Boston, Massachusetts,Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Daniel J. Grasso
- Department of Biomedical Engineering and Chemistry, Boston University, Boston, Massachusetts
| | - Rachel C. Stewart
- Department of Biomedical Engineering and Chemistry, Boston University, Boston, Massachusetts,Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Jonathan D. Freedman
- Department of Biomedical Engineering and Chemistry, Boston University, Boston, Massachusetts,Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Brian D. Snyder
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts,Children’s Hospital, Boston, Massachusetts
| | - Mark W. Grinstaff
- Department of Biomedical Engineering and Chemistry, Boston University, Boston, Massachusetts
| |
Collapse
|