1
|
Gaballah A, Genedy D, Ghayaty E, El-Hawwary AA, Elmasry A. Standardized study of atorvastatin possible osteoarthritis disease-modifying effect in a rat model of osteoarthritis. Fundam Clin Pharmacol 2021; 36:296-305. [PMID: 34612533 DOI: 10.1111/fcp.12730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/23/2021] [Accepted: 10/04/2021] [Indexed: 11/29/2022]
Abstract
We studied the osteoarthritis (OA)-modifying effects of atorvastatin in an experimental OA rat model and possible underlining mechanisms. We used 62 adult male Sprague-Dawley rats (250-300 g): 32 rats were used to assess the effects of atorvastatin on surgically induced OA in the knee, and 30 rats were used to assess the potential inflammatory effects of carrageenan-induced paw edema. In the OA model, joint stiffness was assessed by measuring the knee extension angle, and pathological changes in the OA knee joint were determined by histological examination and the measurement of serum biochemical markers, including interleukin-1β (IL-1β), matrix metalloproteinase-13 (MMP-13), and reduced glutathione (GSH). In the carrageenan-induced paw edema model, both paw thickness and pain threshold were assessed in different groups. Atorvastatin significantly improved joint stiffness, pathological changes, a significant mitigation of the higher MMP-13 and IL-1β, and a significant increase of reduced GSH in OA rats. Additionally, atorvastatin significantly improved both paw thickness and pain threshold in animals. Atorvastatin is a potential OA-modifying drug that warrants further clinical investigation.
Collapse
Affiliation(s)
- Ali Gaballah
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Doaa Genedy
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Essam Ghayaty
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Amany A El-Hawwary
- Department of Histology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ahlam Elmasry
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
2
|
Glucosamine and Chondroitin Sulfate: Is There Any Scientific Evidence for Their Effectiveness as Disease-Modifying Drugs in Knee Osteoarthritis Preclinical Studies?-A Systematic Review from 2000 to 2021. Animals (Basel) 2021; 11:ani11061608. [PMID: 34072407 PMCID: PMC8228516 DOI: 10.3390/ani11061608] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/19/2021] [Accepted: 05/27/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Osteoarthritis is the most common progressive joint disease diagnosed in companion animals and its management continues to be a significant challenge. Nutraceuticals have been widely investigated over the years in the treatment of osteoarthritis and among them, glucosamine and chondroitin sulfate treatments are probably the most common therapies used in veterinary management. However, heterogeneous results were obtained among animal studies and the evidence of their efficacy is still controversial. Animal models have a crucial role in studying the histological changes and evaluating the therapy efficacy of different drugs. Consequently, we consider it may be of interest to evaluate the effectiveness of the most representative nutraceuticals in experimental animal studies of osteoarthritis. In this systematic review, we found a large inconsistency among the experimental protocols, but a positive cartilage response and biochemical modulation were observed in half of the evaluated articles, mainly associated with pre-emptive administrations and with some therapies’ combinations. Even though some of these results were promising, additional data are needed to draw solid conclusions, and further studies evaluating their efficacy in the long term and focusing on other synovial components may be needed to clarify their function. Abstract Glucosamine and chondroitin sulfate have been proposed due to their physiological and functional benefits in the management of osteoarthritis in companion animals. However, the scientific evidence for their use is still controversial. The purpose of this review was to critically elucidate the efficacy of these nutraceutical therapies in delaying the progression of osteoarthritis, evaluating their impact on the synovial knee joint tissues and biochemical markers in preclinical studies by systematically reviewing the last two decades of peer-reviewed publications on experimental osteoarthritis. Three databases (PubMed, Scopus and, Web of Science) were screened for eligible studies. Twenty-two articles were included in the review. Preclinical studies showed a great heterogeneity among the experimental designs and their outcomes. Generally, the evaluated nutraceuticals, alone or in combination, did not seem to prevent the subchondral bone changes, the synovial inflammation or the osteophyte formation. However, further experimental studies may be needed to evaluate their effect at those levels. Regarding the cartilage status and biomarkers, positive responses were identified in approximately half of the evaluated articles. Furthermore, beneficial effects were associated with the pre-emptive administrations, higher doses and, multimodality approaches with some combined therapies. However, additional studies in the long term and with good quality and systematic design are required.
Collapse
|
3
|
Novel glucosamine-loaded thermosensitive hydrogels based on poloxamers for osteoarthritis therapy by intra-articular injection. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111352. [PMID: 33254972 DOI: 10.1016/j.msec.2020.111352] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 07/03/2020] [Accepted: 08/03/2020] [Indexed: 11/23/2022]
Abstract
Glucosamine (GlcN) is a common drug used to treat osteoarthritis (OA). To prolong the action time of glucosamine on OA and improve its therapeutic effect, this research explored the potential application of GlcN-loaded thermosensitive hydrogels based on poloxamer 407 and poloxamer 188 for OA therapy by intra-articular injection. The thermosensitive hydrogels were prepared by cold method, and the effects of P407, P188, and GlcN on sol-gel transition temperature (Tsol-gel) were compared. After screening was performed, the optimized formulation showed good temperature sensitivity, and Tsol-gel was approximately 35 °C. In vitro release tests showed that GlcN was slowly released from the thermosensitive hydrogels. After the gels were intra-articularly administered to treat OA in rabbits, the degree of swelling and inflammatory factors were significantly decreased in the hydrogel group compared with those in the OA model group (P < 0.05). Histological results showed that the GlcN-administered group had a good repair effect on damaged cartilage. At the same dose, the effect of the thermosensitive hydrogels was better than that of the aqueous solution. Therefore, GlcN-loaded thermosensitive hydrogels based on poloxamers are promising sustainable delivery systems for OA therapy by intra-articular injection.
Collapse
|
4
|
Kim JE, Song DH, Kim SH, Jung Y, Kim SJ. Development and characterization of various osteoarthritis models for tissue engineering. PLoS One 2018. [PMID: 29534084 PMCID: PMC5849317 DOI: 10.1371/journal.pone.0194288] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Osteoarthritis (OA) is characterized by a progressive loss of articular cartilage, subchondral bone sclerosis and synovial inflammation and is the most common chronic condition worldwide today. However, most treatments have focused on pain relief and OA symptoms. For these reasons, many ongoing studies are currently trying to develop efficient and successful therapies based on its pathology. Animal models that mimic the histopathology and symptoms of OA have a critical role in OA research and make it possible to investigate both secondary osteoarthritic changes due to a precedent event such as traumatic injury and naturally occurring changes for the development of therapeutics which can be tested in preclinical and clinical OA trials. We induced OA in various animal models including rats, rabbits and guinea pigs by chemical, surgical and naturally occurring methods. In particular, the Dunkin-Hartley guinea pig is very attractive as an OA animal model because OA slowly progresses which is similar to human primary OA. Thus, this animal model mimics the pathophysiological process and environment of human primary OA. Besides the spontaneous OA model, anterior cruciate ligament transection (ACLT) with medial meniscectomy and bilateral ovariectomy (OVX) as well as a chemical technique using sodium monoiodoacetate (MIA) were used to induce OA. We found that ACLT in the rat model induced OA changes in the histology and micro-CT image compared to OVX. The osteoarthritic change significantly increased following ACLT surgery in the rabbit model. Furthermore, we identified that OA pathogenic changes occurred in a time-dependent manner in spontaneous Dunkin-Hartley guinea pigs. The MIA injection model is a rapid and minimally invasive method for inducing OA in animal models, whereas the spontaneous OA model has a slow and gradual progression of OA similar to human primary OA. We observed that histological OA change was extraordinarily increased at 9 ½ months in the spontaneous OA model, and thus, the grade was similar with that of the MIA model. Therefore, this study reports on OA pathology using various animal models as well as the spontaneous results naturally occurring in an OA animal model which had developed cartilage lesions and progressive osteoarthritic changes.
Collapse
Affiliation(s)
- Ji Eun Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Korea
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Da-hyun Song
- Department of Physical and Rehabilitation Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Soo Hyun Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Korea
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Department of Biomedical Engineering, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Youngmee Jung
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Department of Biomedical Engineering, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
- * E-mail: (YJ); (SJK)
| | - Sang Jun Kim
- Department of Physical and Rehabilitation Medicine, Samsung Medical Center, Seoul, Republic of Korea
- * E-mail: (YJ); (SJK)
| |
Collapse
|
5
|
IL-10 and TGF-β: Roles in chondroprotective effects of Glucosamine in experimental Osteoarthritis? PATHOPHYSIOLOGY 2017; 24:45-49. [DOI: 10.1016/j.pathophys.2017.02.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 02/04/2017] [Accepted: 02/06/2017] [Indexed: 01/01/2023] Open
|
6
|
Dikina AD, Almeida HV, Cao M, Kelly DJ, Alsberg E. Scaffolds Derived from ECM Produced by Chondrogenically Induced Human MSC Condensates Support Human MSC Chondrogenesis. ACS Biomater Sci Eng 2017; 3:1426-1436. [DOI: 10.1021/acsbiomaterials.6b00654] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Anna D. Dikina
- Department
of Biomedical Engineering, Case Western Reserve University, 10900
Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Henrique V. Almeida
- Trinity
Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin
2, Ireland
- Department
of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Meng Cao
- Department
of Biomedical Engineering, Case Western Reserve University, 10900
Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Daniel J. Kelly
- Trinity
Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin
2, Ireland
- Department
of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, College Green, Dublin 2, Ireland
- Tissue
Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green, Dublin 2, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin & Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Eben Alsberg
- Department
of Biomedical Engineering, Case Western Reserve University, 10900
Euclid Avenue, Cleveland, Ohio 44106, United States
- Orthopaedic
Surgery, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
- The
National Center for Regenerative Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| |
Collapse
|
7
|
Raines AL, Shih MS, Chua L, Su CW, Tseng SCG, O'Connell J. Efficacy of Particulate Amniotic Membrane and Umbilical Cord Tissues in Attenuating Cartilage Destruction in an Osteoarthritis Model. Tissue Eng Part A 2016; 23:12-19. [PMID: 27707109 DOI: 10.1089/ten.tea.2016.0088] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Osteoarthritis (OA) is a progressive degenerative joint disease, and to date, no disease-modifying OA drug exists. Amniotic membrane and umbilical cord products have been used clinically in several diseases due to their anti-inflammatory and antiscarring properties. In the present study, we sought to evaluate whether a particulate amniotic membrane and umbilical cord (AM/UC) matrix could aid in attenuating disease progression. Lewis rats underwent medial meniscus transection (MMT) to induce OA. Two weeks after surgery, animals received intra-articular injections (50 μL) of either 50 or 100 μg/μL particulate AM/UC or saline control and were subsequently euthanized 1 or 4 weeks later. Cartilage degeneration was assessed using both histological scoring methods and equilibrium partitioning of an ionic contrast agent-microcomputed tomography (EPIC-μCT). EPIC-μCT analysis demonstrated that overall cartilage destruction was attenuated, with a significant increase in both cartilage thickness and volume as well as a significant decrease in total lesion area in animals injected with either dose of particulate AM/UC at 1 week, but only a high dose at 4 weeks postinjection. Osteoarthritis Research Society International (OARSI) histology scores of tibial sections corroborated EPIC-μCT results. Overall joint destruction was attenuated in animals injected with either dose of AM/UC tissue compared with saline-injected control animals at 1 week postinjection. Only high-dose AM/UC-injected animals continued to show less overall joint destruction by 4 weeks postinjection. Intra-articular injection of particulate AM/UC tissue attenuates cartilage degradation in a rat MMT model of OA, suggesting that it may be able to slow joint destruction in patients with OA.
Collapse
|
8
|
Kamel R, Salama AH, Mahmoud AA. Development and optimization of self-assembling nanosystem for intra-articular delivery of indomethacin. Int J Pharm 2016; 515:657-668. [PMID: 27989826 DOI: 10.1016/j.ijpharm.2016.10.063] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 10/25/2016] [Accepted: 10/27/2016] [Indexed: 10/20/2022]
Abstract
Osteoarthritis is a propagated debilitating condition affecting patients' quality of life. Intra-articular injection approach was investigated as a localized treatment strategy providing: site-specific delivery, decreased side effects and, increased patient compliance. A 32 full factorial experimental design was employed to prepare the indomethacin-loaded self-assembling nanosystems (SANS). The surfactant (Poloxamer 407/Tetronic 90R4) ratio and the poly(lactic-co-glycolic acid) (PLGA) concentration significantly affected encapsulation efficiency and drug release (p<0.05). The optimized formula was subjected to modification by addition of different proteoglycans, as a compensatory treatment, to improve its pharmacological properties. The modified SANS, containing glucosamine (150mg), was selected for in-vivo studies as it had a sustained drug release profile and a small particle size (173.90nm). The effect of the optimized SANS, with or without PLGA, was compared with the modified formula containing glucosamine and, with the drug suspension on the arthritic knee joints of rats. It was found that the formulation containing PLGA and glucosamine showed significantly higher reduction in both, knee diameter and TNF-α levels, compared to other groups. Furthermore, all SANS showed histological improvement in the cellularity of the synovial membranes and joints. Our results indicate that SANS containing PLGA and glucosamine is capable of treating arthritic joints.
Collapse
Affiliation(s)
- Rabab Kamel
- Department of Pharmaceutical Technology, National Research Center, Dokki, Cairo, Egypt
| | - Alaa H Salama
- Department of Pharmaceutical Technology, National Research Center, Dokki, Cairo, Egypt
| | - Azza A Mahmoud
- Department of Pharmaceutical Technology, National Research Center, Dokki, Cairo, Egypt; Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt, Cairo, Egypt.
| |
Collapse
|
9
|
Proffen B, Sieker J, Murray M, Akelman M, Chin K, Perrone G, Patel T, Fleming B. Extracellular matrix-blood composite injection reduces post-traumatic osteoarthritis after anterior cruciate ligament injury in the rat. J Orthop Res 2016; 34:995-1003. [PMID: 26629963 PMCID: PMC4882220 DOI: 10.1002/jor.23117] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 11/25/2015] [Indexed: 02/04/2023]
Abstract
The objective of this study was to determine if an injection of a novel extracellular matrix scaffold and blood composite (EMBC) after anterior cruciate ligament (ACL) injury would have a mitigating effect on post-traumatic osteoarthritis (PTOA) development in rat knees. Lewis rats underwent unilateral ACL transection and were divided into three groups as follows: (1) no further treatment (ACLT; n = 10); (2) an intra-articular injection of EMBC on day 0 (INJ0; n = 11); and (3) an intra-articular injection of EMBC on day 14 (INJ14; n = 11). Ten additional animals received capsulotomy only (n = 10, SHAM group). The OARSI histology scoring of the tibial cartilage and micro-CT of the tibial epiphysis were performed after 35 days. The ratio of intact/treated hind limb forces during gait was determined using a variable resistor walkway. The OARSI cartilage degradation sum score and total degeneration width were significantly greater in the ACLT group when compared to the INJ0 (p = 0.031, and p = 0.005) and INJ14 (p = 0.022 and p = 0.04) group. Weight bearing on the operated limb only decreased significantly in the ACLT group (p = 0.048). In the rat ACL transection model, early or delayed injection of EMBC ameliorated the significant decrease in weight bearing and cartilage degradation seen in knees subjected to ACL transection without injection. The results indicate that the injection of EMBC may slow the process of PTOA following ACL injury and may provide a promising treatment for PTOA. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:995-1003, 2016.
Collapse
Affiliation(s)
- B.L. Proffen
- Department of Orthopaedic Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA,Address correspondence and reprint requests to: B.L. Proffen, Department of Orthopaedic Surgery, Children’s Hospital Boston, Enders 270.4, 300 Longwood Avenue, Boston, MA 02115. USA, Tel: 1-617-919-2540; Fax: 1-617-730-0789
| | - J.T. Sieker
- Department of Orthopaedic Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | - M.M. Murray
- Department of Orthopaedic Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | - M.R. Akelman
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence RI
| | - K.E. Chin
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence RI
| | - G.S. Perrone
- Department of Orthopaedic Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | - T.K. Patel
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence RI
| | - B.C. Fleming
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence RI
| |
Collapse
|
10
|
Kim C, Jeon OH, Kim DH, Chae JJ, Shores L, Bernstein N, Bhattacharya R, Coburn JM, Yarema KJ, Elisseeff JH. Local delivery of a carbohydrate analog for reducing arthritic inflammation and rebuilding cartilage. Biomaterials 2015; 83:93-101. [PMID: 26773662 DOI: 10.1016/j.biomaterials.2015.12.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/15/2015] [Accepted: 12/28/2015] [Indexed: 11/28/2022]
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by articular cartilage degradation. Because OA has a multifactorial nature and complex interrelationship of the individual elements of a whole joint, there is a need for comprehensive therapeutic approaches for cartilage tissue engineering, which simultaneously address multiple aspects of disease etiology. In this work, we investigated a multifunctional carbohydrate-based drug candidate, tri-butanoylated N-acetyl-D-galactosamine analog (3,4,6-O-Bu3GalNAc) that induced cartilage tissue production by human mesenchymal stem cells (hMSCs) and human OA chondrocytes by modulating Wnt/β-catenin signaling activity. The dual effects promoted chondrogenesis of human MSC and reduced inflammation of human OA chondrocytes in in vitro cultures. Translating these findings in vivo, we evaluated therapeutic effect of 3,4,6-O-Bu3GalNAc on the rat model of posttraumatic OA when delivered via local intra-articular sustained-release delivery using microparticles and found this method to be efficacious in preventing OA progression. These results show that 3,4,6-O-Bu3GalNAc, a disease modifying OA drug candidate, has promising therapeutic potential for articular cartilage repair.
Collapse
Affiliation(s)
- Chaekyu Kim
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Ok Hee Jeon
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Do Hun Kim
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - J Jeremy Chae
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Lucas Shores
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Nicholas Bernstein
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Rahul Bhattacharya
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Jeannine M Coburn
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Kevin J Yarema
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Jennifer H Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21231, USA.
| |
Collapse
|
11
|
Wang CY, Tsai PH, Siow TY, Lee HS, Chang YC, Hsu YC, Chiang SW, Lin MH, Chung HW, Huang GS. Change in T2* relaxation time of Hoffa fat pad correlates with histologic change in a rat anterior cruciate ligament transection model. J Orthop Res 2015; 33:1348-55. [PMID: 25940708 DOI: 10.1002/jor.22914] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/27/2015] [Indexed: 02/04/2023]
Abstract
The Hoffa fat pad (infrapatellar fat pad) is a source of post-traumatic anterior knee pain, and Hoffa disease is a syndrome leading to chronic inflammation of the fat pad. Herein, change in T2* relaxation time of the fat pad was measured in a rodent anterior cruciate ligament transection (ACLX) model in order to (i) examine the causal relationship of anterior cruciate ligament (ACL) deficiency and Hoffa disease and (ii) demonstrate the feasibility of using T2* as an imaging biomarker to monitor disease progression. Three groups of male Sprague Dawley rats (n = 6 each group), received either (i) no intervention; (ii) sham surgery at the right knee; or (iii) right ACLX. T2* relaxation time was measured and histology was examined in the Hoffa fat pad after surgery. At 13 and 18 weeks after surgery, T2* values were significantly higher in the right fat pad than the left (p < 0.001) and significantly higher in the ACLX group than the control and sham groups (p < 0.001). Histology showed fibrosis and degeneration of adipocytes in the right knees of the ACLX group. We conclude that ACL deficiency and Hoffa disease are causally related and that MRI T2* value can serve as an imaging biomarker of Hoffa disease progression.
Collapse
Affiliation(s)
- Chao-Ying Wang
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department and Graduate Institute of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Ping-Huei Tsai
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Medical Imaging and Imaging Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Tiing Yee Siow
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Institute of Biomedical Sciences, Academic Sinica, Taipei, Taiwan
| | - Herng-Sheng Lee
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yue-Cune Chang
- Department of Mathematics, Tamkang University, Taipei, Taiwan
| | - Yi-Chih Hsu
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Wei Chiang
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Ming-Huang Lin
- Institute of Biomedical Sciences, Academic Sinica, Taipei, Taiwan
| | - Hsiao-Wen Chung
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Guo-Shu Huang
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
12
|
Abstract
Osteoarthritis (OA) is unquestionably one of the most important chronic health issues in humans, affecting millions of individuals and costing billions of dollars annually. Despite widespread awareness of this disease and its devastating impact, the pathogenesis of early OA is not completely understood, hampering the development of effective tools for early diagnosis and disease-modifying therapeutics. Most human tissue available for study is obtained at the time of joint replacement, when OA lesions are end stage and little can be concluded about the factors that played a role in disease development. To overcome this limitation, over the past 50 years, numerous induced and spontaneous animal models have been utilized to study disease onset and progression, as well as to test novel therapeutic interventions. Reflecting the heterogeneity of OA itself, no single "gold standard" animal model for OA exists; thus, a challenge for researchers lies in selecting the most appropriate model to answer a particular scientific question of interest. This review provides general considerations for model selection, as well as important features of species such as mouse, rat, guinea pig, sheep, goat, and horse, which researchers should be mindful of when choosing the "best" animal model for their intended purpose. Special consideration is given to key variations in pathology among species as well as recommended guidelines for reporting the histologic features of each model.
Collapse
Affiliation(s)
- A M McCoy
- Department of Veterinary Clinical Medicine, University of Illinois, Urbana, IL, USA
| |
Collapse
|
13
|
Urello MA, Kiick KL, Sullivan MO. A CMP-based method for tunable, cell-mediated gene delivery from collagen scaffolds. J Mater Chem B 2014; 2:8174-8185. [DOI: 10.1039/c4tb01435a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Collagen mimetic peptides (CMP)s were used to tailor release vs. retention of DNA polyplexes from collagen while preserving polyplex activity.
Collapse
Affiliation(s)
- M. A. Urello
- The Department of Chemical and Biomolecular Engineering
- The University of Delaware
- Newark, USA
| | - K. L. Kiick
- The Department of Materials Science and Engineering
- The University of Delaware
- Newark, USA
| | - M. O. Sullivan
- The Department of Chemical and Biomolecular Engineering
- The University of Delaware
- Newark, USA
| |
Collapse
|