1
|
Chen X, Zhang Y, Meng H, Chen G, Ma Y, Li J, Liu S, Liang Z, Xie Y, Liu Y, Guo H, Wang Y, Shan Z. Identification of miR-1 and miR-499 in chronic atrial fibrillation by bioinformatics analysis and experimental validation. Front Cardiovasc Med 2024; 11:1400643. [PMID: 39221422 PMCID: PMC11361948 DOI: 10.3389/fcvm.2024.1400643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Background Atrial fibrillation (AF) is one of the most prevalent arrhythmias and is characterized by a high risk of heart failure and embolic stroke, yet its underlying mechanism is unclear. The primary goal of this study was to establish a miRNA-mRNA network and identify the miRNAs associated with chronic AF by bioinformatics and experimental validation. Methods The GSE79768 dataset was collected from the Gene Expression Omnibus(GEO) database to extract data from patients with or without persistent AF. Differentially expressed genes (DEGs) were identified in left atrial appendages (LAAs). The STRING platform was utilized for protein-protein interaction (PPI) network analysis. The target miRNAs for the top 20 hub genes were predicted by using the miRTarBase Web tool. The miRNA-mRNA network was established and visualized using Cytoscape software. The key miRNAs selected for verification in the animal experiment were confirmed by miRwalk Web tool. We used a classic animal model of rapid ventricular pacing for chronic AF. Two groups of animals were included in the experiment, namely, the ventricular pacing group (VP group), where ventricular pacing was maintained at 240-280 bpm for 2 weeks, and the control group was the sham-operated group (SO group). Finally, we performed reverse transcription-quantitative polymerase chain reaction (RT-qPCR) to validate the expression of miR-1 and miR-499 in LAA tissues of the VP group and the SO group. Left atrial fibrosis and apoptosis were evaluated by Masson staining and caspase-3 activity assays, respectively. Results The networks showed 48 miRNAs in LAA tissues. MiR-1 and miR-499 were validated using an animal model of chronic AF. The expression level of miR-1 was increased, and miR-499 was decreased in VP group tissues compared to SO group tissues in LAAs (P < 0.05), which were correlated with left atrial fibrosis and apoptosis in AF. Conclusion This study provides a better understanding of the alterations in miRNA-1 and miR-499 in chronic AF from the perspective of the miRNA-mRNA network and corroborates findings through experimental validation. These findings may offer novel potential therapeutic targets for AF in the future.
Collapse
Affiliation(s)
- Xinpei Chen
- Munich Medical Research School, Ludwig-Maximilians University Munich, Munich, Germany
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
- Department of Cardiac Arrhythmia, Fuwai Yunnan Hospital, Chinese Academy of Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Yu Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Beijing, China
| | - He Meng
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| | - Guiying Chen
- Department of Pneumology, Tianjin Chest Hospital, Tianjin, China
| | - Yongjiang Ma
- Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Jian Li
- Munich Medical Research School, Ludwig-Maximilians University Munich, Munich, Germany
| | - Saizhe Liu
- Munich Medical Research School, Ludwig-Maximilians University Munich, Munich, Germany
| | - Zhuo Liang
- Department of Cardiology, Beijing Anzhen Hospital, Beijing, China
| | - Yinuo Xie
- Munich Medical Research School, Ludwig-Maximilians University Munich, Munich, Germany
| | - Ying Liu
- Department of Cardiology, Beijing Jing Mei Group General Hospital, Beijing, China
| | - Hongyang Guo
- Munich Medical Research School, Ludwig-Maximilians University Munich, Munich, Germany
| | - Yutang Wang
- Department of Geriatric Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Zhaoliang Shan
- Munich Medical Research School, Ludwig-Maximilians University Munich, Munich, Germany
| |
Collapse
|
2
|
Huo X, Wang K, Yao B, Song L, Li Z, He W, Li Y, Ma J, Wang L, Wu Z. Function and regulation of miR-186-5p, miR-125b-5p and miR-1260a in chordoma. BMC Cancer 2023; 23:1152. [PMID: 38012562 PMCID: PMC10680222 DOI: 10.1186/s12885-023-11238-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 07/30/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND The function and regulation of miRNAs in progression of chordoma were unclear. METHODS Five miRNAs were identified by the machine learning method from the miRNA expression array. CCk-8 assay, EDU assay, wound healing migration assay, and trans-well assay were used to reveal the effect of the miRNAs in chordoma cell lines. Moreover, bioinformation analysis and the mRNA expression array between the primary chordomas and recurrent chordomas were used to find the target protein genes of miRNAs. Furthermore, qRT-PCR and luciferase reporter assay were used to verify the result. RESULTS miR-186-5p, miR-30c-5p, miR-151b, and miR-125b-5p could inhibit proliferation, migration, and invasion of chordoma while miR-1260a enhances proliferation, migration, and invasion of chordoma. Recurrent chordoma has a worse disease-free outcome than the primary chordoma patients. AMOT, NPTX1, RYR3, and P2RX5 were the target protein mRNAs of miR-186-5p; NPTX1 was the target protein mRNAs of miR-125b-5p; and AMOT and TNFSF14 were the target protein mRNAs of miR-1260a. CONCLUSIONS miR-186-5p, miR-125b-5p, miR-1260a, and their target protein mRNAs including AMOT, NPTX1, RYR3, P2RX5, TNFSF14 may be the basement of chordoma research.
Collapse
Affiliation(s)
- Xulei Huo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Nansihuanxilu 119, Fengtai District, Beijing, 100070, China
| | - Ke Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Nansihuanxilu 119, Fengtai District, Beijing, 100070, China.
| | - Bohan Yao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Nansihuanxilu 119, Fengtai District, Beijing, 100070, China
| | - Lairong Song
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Nansihuanxilu 119, Fengtai District, Beijing, 100070, China
| | - Zirun Li
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Wenyan He
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yiming Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, TianJin, China
| | - Junpeng Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Nansihuanxilu 119, Fengtai District, Beijing, 100070, China
| | - Liang Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Nansihuanxilu 119, Fengtai District, Beijing, 100070, China
| | - Zhen Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Nansihuanxilu 119, Fengtai District, Beijing, 100070, China.
| |
Collapse
|
3
|
Rubino F, Alvarez-Breckenridge C, Akdemir K, Conley AP, Bishop AJ, Wang WL, Lazar AJ, Rhines LD, DeMonte F, Raza SM. Prognostic molecular biomarkers in chordomas: A systematic review and identification of clinically usable biomarker panels. Front Oncol 2022; 12:997506. [PMID: 36248987 PMCID: PMC9557284 DOI: 10.3389/fonc.2022.997506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction and objective Despite the improvements in management and treatment of chordomas over time, the risk of disease recurrence remains high. Consequently, there is a push to develop effective systemic therapeutics for newly diagnosed and recurrent disease. In order to tailor treatment for individual chordoma patients and develop effective surveillance strategies, suitable clinical biomarkers need to be identified. The objective of this study was to systematically review all prognostic biomarkers for chordomas reported to date in order to classify them according to localization, study design and statistical analysis. Methods Using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we systematically reviewed published studies reporting biomarkers that correlated with clinical outcomes. We included time-to-event studies that evaluated biomarkers in skull base or spine chordomas. To be included in our review, the study must have analyzed the outcomes with univariate and/or multivariate methods (log-rank test or a Cox-regression model). Results We included 68 studies, of which only 5 were prospective studies. Overall, 103 biomarkers were analyzed in 3183 patients. According to FDA classification, 85 were molecular biomarkers (82.5%) mainly located in nucleus and cytoplasm (48% and 27%, respectively). Thirty-four studies analyzed biomarkers with Cox-regression model. Within these studies, 32 biomarkers (31%) and 22 biomarkers (21%) were independent prognostic factors for PFS and OS, respectively. Conclusion Our analysis identified a list of 13 biomarkers correlating with tumor control rates and survival. The future point will be gathering all these results to guide the clinical validation for a chordoma biomarker panel. Our identified biomarkers have strengths and weaknesses according to FDA's guidelines, some are affordable, have a low-invasive collection method and can be easily measured in any health care setting (RDW and D-dimer), but others molecular biomarkers need specialized assay techniques (microRNAs, PD-1 pathway markers, CDKs and somatic chromosome deletions were more chordoma-specific). A focused list of biomarkers that correlate with local recurrence, metastatic spread and survival might be a cornerstone to determine the need of adjuvant therapies.
Collapse
Affiliation(s)
- Franco Rubino
- Department of Neurosurgery, Division of surgery, The University of Texas MD Anderson Cancer Center, University of Texas, Houston, TX, United States
| | - Christopher Alvarez-Breckenridge
- Department of Neurosurgery, Division of surgery, The University of Texas MD Anderson Cancer Center, University of Texas, Houston, TX, United States
| | - Kadir Akdemir
- Department of Neurosurgery, Division of surgery, The University of Texas MD Anderson Cancer Center, University of Texas, Houston, TX, United States
| | - Anthony P. Conley
- Department of Sarcoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, University of Texas, Houston, TX, United States
| | - Andrew J. Bishop
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, University of Texas, Houston, TX, United States
| | - Wei-Lien Wang
- Department of Pathology, Division of Pathology-Lab Medicine Division, The University of Texas MD Anderson Cancer Center, University of Texas, Houston, TX, United States
| | - Alexander J. Lazar
- Department of Pathology, Division of Pathology-Lab Medicine Division, The University of Texas MD Anderson Cancer Center, University of Texas, Houston, TX, United States
| | - Laurence D. Rhines
- Department of Neurosurgery, Division of surgery, The University of Texas MD Anderson Cancer Center, University of Texas, Houston, TX, United States
| | - Franco DeMonte
- Department of Neurosurgery, Division of surgery, The University of Texas MD Anderson Cancer Center, University of Texas, Houston, TX, United States
| | - Shaan M. Raza
- Department of Neurosurgery, Division of surgery, The University of Texas MD Anderson Cancer Center, University of Texas, Houston, TX, United States
| |
Collapse
|
4
|
Bozsodi A, Scholtz B, Papp G, Sapi Z, Biczo A, Varga PP, Lazary A. Potential molecular mechanism in self-renewal is associated with miRNA dysregulation in sacral chordoma - A next-generation RNA sequencing study. Heliyon 2022; 8:e10227. [PMID: 36033338 PMCID: PMC9404356 DOI: 10.1016/j.heliyon.2022.e10227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/24/2022] [Accepted: 08/04/2022] [Indexed: 12/04/2022] Open
Abstract
Background Chordoma, the most frequent malignant primary spinal neoplasm, characterized by a high rate of recurrence, is an orphan disease where the clarification of the molecular oncogenesis would be crucial to developing new, effective therapies. Dysregulated expression of non-coding RNAs, especially microRNAs (miRNA) has a significant role in cancer development. Methods Next-generation RNA sequencing (NGS) was used for the combinatorial analysis of mRNA-miRNA gene expression profiles in sacral chordoma and nucleus pulposus samples. Advanced bioinformatics workflow was applied to the data to predict miRNA-mRNA regulatory networks with altered activity in chordoma. Results A large set of significantly dysregulated miRNAs in chordoma and their differentially expressed target genes have been identified. Several molecular pathways related to tumorigenesis and the modulation of the immune system are predicted to be dysregulated due to aberrant miRNA expression in chordoma. We identified a gene set including key regulators of the Hippo pathway, which is targeted by differently expressed miRNAs, and validated their altered expression by RT-qPCR. These newly identified miRNA/RNA interactions are predicted to have a role in the self-renewal process of chordoma stem cells, which might sustain the high rate of recurrence for this tumor. Conclusions Our results can significantly contribute to the designation of possible targets for the development of anti-chordoma therapies.
Collapse
Affiliation(s)
- Arpad Bozsodi
- National Center for Spinal Disorders, Buda Health Center, Királyhágó u. 1-3, Budapest, H-1126, Hungary
- School of PhD Studies, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary
| | - Beata Scholtz
- Genomic Medicine and Bioinformatic Core Facility, Dept. of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary
| | - Gergo Papp
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary
| | - Zoltan Sapi
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary
| | - Adam Biczo
- National Center for Spinal Disorders, Buda Health Center, Királyhágó u. 1-3, Budapest, H-1126, Hungary
| | - Peter Pal Varga
- National Center for Spinal Disorders, Buda Health Center, Királyhágó u. 1-3, Budapest, H-1126, Hungary
| | - Aron Lazary
- National Center for Spinal Disorders, Buda Health Center, Királyhágó u. 1-3, Budapest, H-1126, Hungary
- Department of Spine Surgery, Department of Orthopaedics, Semmelweis University, Királyhágó u. 1-3, Budapest, H-1126, Hungary
- Corresponding author.
| |
Collapse
|
5
|
Tu K, Lee S, Roy S, Sawant A, Shukla H. Dysregulated Epigenetics of Chordoma: Prognostic Markers and Therapeutic Targets. Curr Cancer Drug Targets 2022; 22:678-690. [PMID: 35440334 DOI: 10.2174/1568009622666220419122716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 11/22/2022]
Abstract
Chordoma is a rare, slow-growing sarcoma that is locally aggressive, and typically resistant to conventional chemo- and radiotherapies. Despite its low incidence, chordoma remains a clinical challenge because therapeutic options for chordoma are limited, and little is known about the molecular mechanisms involved in resistance to therapies. Furthermore, there are currently no established predictive or prognostic biomarkers to follow disease progression or treatment. Whole-genome sequencing of chordoma tissues has demonstrated a low-frequency mutation rate compared to other cancers. This has generated interest in the role of epigenetic events in chordoma pathogenesis. In this review, we discuss the current understanding of the epigenetic drivers of chordoma and their potential applications in prognosis and the development of new therapies.
Collapse
Affiliation(s)
- Kevin Tu
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland school of Medicine, Baltimore, MD, USA.,Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, College Park, MD, USA
| | - Sang Lee
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Sanjit Roy
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland school of Medicine, Baltimore, MD, USA
| | - Amit Sawant
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland school of Medicine, Baltimore, MD, USA
| | - Hem Shukla
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland school of Medicine, Baltimore, MD, USA
| |
Collapse
|
6
|
Dong W, Li J, Dong X, Shi W, Zhang Y, Liu Y. MiR-17 and miR-93 Promote Tumor Progression by Targeting p21 in Patients with Chordoma. Onco Targets Ther 2021; 14:3109-3118. [PMID: 34054299 PMCID: PMC8153071 DOI: 10.2147/ott.s307138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022] Open
Abstract
Objective MicroRNAs have been implicated in the progression of various cancers. However, the role of microRNAs in chordoma remains to be further elucidated. Here, we purposed to character the role of two microRNAs, miR-17 and miR-93, and their potential mechanisms in chordoma. Methods The expression and prognostic value of miR-17 and miR-93 were assessed by the quantitative real-time polymerase chain reaction, Kaplan-Meier survival curve, and Cox regression analysis. The effects of miR-17/93 mimics on chordoma cell proliferation, colony formation, and invasion were analyzed by CCK-8 assay, colony formation assay, and transwell assay. The downstream target of miR-17/93 was further explored via luciferase reporter assay. Results High expression of miR-17/93 was identified in chordoma tissues, and was associated with poor prognosis. Overexpression of miR-17/93 contributed to cell proliferation, colony formation, and invasion. Mechanistically, we demonstrated that miR-17/93 directly targeted p21 and decreased the expression of p21. Besides, the rescue assay further confirmed the essential role of the miR-17/93-p21 axis in chordoma. Conclusion Our results revealed the potential oncogenic effect of the miR-17/93 on chordoma progression, and suggested that the miR-17/93-p21 axis served as a promising therapeutic target in chordoma.
Collapse
Affiliation(s)
- Wei Dong
- Department of Neurosurgery, Tangshan People's Hospital, Tangshan, Hebei, People's Republic of China
| | - Jingwu Li
- Department of Tumor Surgery, Tangshan People's Hospital, Tangshan, Hebei, People's Republic of China
| | - Xiaoliu Dong
- Department of Neurology, Tangshan People's Hospital, Tangshan, Hebei, People's Republic of China
| | - Wenjian Shi
- Department of Neurosurgery, Tangshan People's Hospital, Tangshan, Hebei, People's Republic of China
| | - Yu Zhang
- Department of Neurological Intensive Care Unit, Tangshan People's Hospital, Tangshan, Hebei, People's Republic of China
| | - Yongliang Liu
- Department of Neurosurgery, Tangshan People's Hospital, Tangshan, Hebei, People's Republic of China
| |
Collapse
|
7
|
Huang W, Yan YG, Wang WJ, Ouyang ZH, Li XL, Zhang TL, Wang XB, Wang B, Lv GH, Li J, Zou MX. Development and Validation of a 6-miRNA Prognostic Signature in Spinal Chordoma. Front Oncol 2020; 10:556902. [PMID: 33194623 PMCID: PMC7656123 DOI: 10.3389/fonc.2020.556902] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Published data have suggested a critical role for microRNA (miRNA) expression in chordoma progression. However, most of these studies focus on single miRNA and no multi-miRNA prognostic signature has been currently established for chordoma. In this study, we sought to develop and validate a 6-miRNA risk score (miRscore) model for survival prediction. METHODS Medline, Embase, and Google scholar searches (from inception to July 20, 2018) were conducted to identify candidate miRNAs with prognostic value as per predefined criteria. Quantitative RT-PCR was used to measure miRNA levels in 114 spinal chordoma (54 in the training and 60 in the validation cohort) and 20 control specimens. Subsequently, the miRscore was built based on miRNAs data. RESULTS Literature searches identified six prognostic miRNAs (miR-574-3p, miR-1237-3p, miR-140-3p, miR-1, miR-155, and miR-1290) with differential expression in tumor tissues. Bioinformatical analysis revealed an important regulatory role for miR-574-3p/EGFR signaling in chordoma and showed that the target genes of these prognostic miRNAs were mainly enriched in transcription regulation, protein binding and cancer-related pathways. In both cohorts, the miRscore was associated with surrounding muscle invasion by tumor and/or other aggressive features. The miRscore model well predicted local recurrence-free survival and overall survival, which remained after adjusting for other relevant covariates. Further time-dependent receiver operating characteristics analysis in the two cohorts found that the miRscore classifier had stronger prognostic power than known clinical predictors and improved the ability of Enneking staging to predict outcomes. Importantly, recursive-partitioning analysis of both samples combined separated patients into four prognostically distinct risk subgroups for recurrence and survival (both P < 0.001). CONCLUSIONS These data suggest the miRscore as a useful prognostic stratification tool in spinal chordoma and may represent an important step toward future personalized treatment of patients.
Collapse
Affiliation(s)
- Wei Huang
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, China
- Health Management Center, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Yi-Guo Yan
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Wen-Jun Wang
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Zhi-Hua Ouyang
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Xue-Lin Li
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Tao-Lan Zhang
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, United States
| | - Xiao-Bin Wang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bing Wang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Guo-Hua Lv
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jing Li
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming-Xiang Zou
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, China
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
8
|
Gill CM, Fowkes M, Shrivastava RK. Emerging Therapeutic Targets in Chordomas: A Review of the Literature in the Genomic Era. Neurosurgery 2020; 86:E118-E123. [PMID: 31504814 DOI: 10.1093/neuros/nyz342] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/13/2019] [Indexed: 12/18/2022] Open
Abstract
Chordomas are rare primary malignant tumors of the bones that occur along the skull base, spine, and sacrum. Long-term survival and neurological outcome continue to be challenging with continued low percentages of long-term survival. Recent studies have used genome, exome, transcriptome, and proteome sequencing to assess the mutational profile of chordomas. Most notably, Brachyury, or T-protein, has been shown to be an early mutational event in chordoma evolution. Clinically actionable mutations, including in the PI3K pathway, were identified. Preliminary evidence suggests that there may be mutational differences associated with primary tumor location. In this study, we review the therapeutic landscape of chordomas and discuss emerging targets in the genomic era.
Collapse
Affiliation(s)
- Corey M Gill
- Department of Neurosurgery, Mount Sinai Medical Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Mary Fowkes
- Department of Pathology, Mount Sinai Medical Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Raj K Shrivastava
- Department of Neurosurgery, Mount Sinai Medical Center, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
9
|
Tuysuz EC, Gulluoglu S, Yaltirik CK, Ozbey U, Kuskucu A, Çoban EA, Sahin F, Türe U, Bayrak OF. Distinctive role of dysregulated miRNAs in chordoma cancer stem-like cell maintenance. Exp Cell Res 2019; 380:9-19. [DOI: 10.1016/j.yexcr.2019.03.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/08/2019] [Accepted: 03/28/2019] [Indexed: 12/16/2022]
|
10
|
Zhou J, Jiang Y, Zhang H, Chen L, Luo P, Li L, Zhao J, Lv F, Zou D, Zhang Y, Jing Z. Clinicopathological implications of TIM3 + tumor-infiltrating lymphocytes and the miR-455-5p/Galectin-9 axis in skull base chordoma patients. Cancer Immunol Immunother 2019; 68:1157-1169. [PMID: 31197461 PMCID: PMC11028388 DOI: 10.1007/s00262-019-02349-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 05/24/2019] [Indexed: 12/14/2022]
Abstract
Chordoma is difficult to eradicate due to high local recurrence rates. The immune microenvironment is closely associated with tumor prognosis; however, its role in skull base chordoma is unknown. The expression of Galectin-9 (Gal9) and tumor-infiltrating lymphocyte (TIL) markers was assessed by immunohistochemistry. Kaplan-Meier and multivariate Cox analyses were used to assessing local recurrence-free survival (LRFS) and overall survival (OS) of patients. MiR-455-5p was identified as a regulator of Gal9 expression. Immunopositivity for Gal9 was associated with tumor invasion (p = 0.019), Karnofsky performance status (KPS) score (p = 0.017), and total TIL count (p < 0.001); downregulation of miR-455-5p was correlated with tumor invasion (p = 0.017) and poor prognosis; and the T-cell immunoglobulin and mucin-domain 3 (TIM3)+ TIL count was associated with chordoma invasion (p = 0.010) and KPS score (p = 0.037). Furthermore, multivariate analysis indicated that only TIM3+ TIL density was an independent prognostic factor for LRFS (p = 0.010) and OS (p = 0.016). These results can be used to predict clinical outcome and provide a basis for immune therapy in skull base chordoma patients.
Collapse
Affiliation(s)
- Jinpeng Zhou
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Yang Jiang
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Heping District, Shenyang, 110001, China
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai, 200080, China
| | - Haiying Zhang
- International Education College, Liaoning University of Traditional Chinese Medicine, No. 79, Chongshan East Road, Huanggu District, Shenyang, 110032, China
| | - Lian Chen
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Peng Luo
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Long Li
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Junshuang Zhao
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Fei Lv
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, No. 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Dan Zou
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, No. 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Ye Zhang
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, No. 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| | - Zhitao Jing
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| |
Collapse
|
11
|
Zenonos GA, Fernandez-Miranda JC, Mukherjee D, Chang YF, Panayidou K, Snyderman CH, Wang EW, Seethala RR, Gardner PA. Prospective validation of a molecular prognostication panel for clival chordoma. J Neurosurg 2019; 130:1528-1537. [PMID: 29905508 DOI: 10.3171/2018.3.jns172321] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 03/12/2018] [Indexed: 02/04/2023]
Abstract
OBJECTIVE There are currently no reliable means to predict the wide variability in behavior of clival chordoma so as to guide clinical decision-making and patient education. Furthermore, there is no method of predicting a tumor's response to radiation therapy. METHODS A molecular prognostication panel, consisting of fluorescence in situ hybridization (FISH) of the chromosomal loci 1p36 and 9p21, as well as immunohistochemistry for Ki-67, was prospectively evaluated in 105 clival chordoma samples from November 2007 to April 2016. The results were correlated with overall progression-free survival after surgery (PFSS), as well as progression-free survival after radiotherapy (PFSR). RESULTS Although Ki-67 and the percentages of tumor cells with 1q25 hyperploidy, 1p36 deletions, and homozygous 9p21 deletions were all found to be predictive of PFSS and PFSR in univariate analyses, only 1p36 deletions and homozygous 9p21 deletions were shown to be independently predictive in a multivariate analysis. Using a prognostication calculator formulated by a separate multivariate Cox model, two 1p36 deletion strata (0%-15% and > 15% deleted tumor cells) and three 9p21 homozygous deletion strata (0%-3%, 4%-24%, and ≥ 25% deleted tumor cells) accounted for a range of cumulative hazard ratios of 1 to 56.1 for PFSS and 1 to 75.6 for PFSR. CONCLUSIONS Homozygous 9p21 deletions and 1p36 deletions are independent prognostic factors in clival chordoma and can account for a wide spectrum of overall PFSS and PFSR. This panel can be used to guide management after resection of clival chordomas.
Collapse
Affiliation(s)
- Georgios A Zenonos
- 1Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh
| | | | - Debraj Mukherjee
- 1Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh
| | - Yue-Fang Chang
- 1Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh
- 2Department of Biostatistics and Epidemiology, University of Pittsburgh
| | - Klea Panayidou
- 3Department of Statistics, Carnegie Mellon University, Pittsburgh
| | - Carl H Snyderman
- 4Department of Otolaryngology, University of Pittsburgh Medical Center, Pittsburgh; and
| | - Eric W Wang
- 4Department of Otolaryngology, University of Pittsburgh Medical Center, Pittsburgh; and
| | - Raja R Seethala
- 5Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Paul A Gardner
- 1Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh
| |
Collapse
|
12
|
Zhao K, Li X, Chen X, Zhu Q, Yin F, Ruan Q, Xia J, Niu Z. RETRACTED: Inhibition of miR-140-3p or miR-155-5p by antagomir treatment sensitize chordoma cells to chemotherapy drug treatment by increasing PTEN expression. Eur J Pharmacol 2019; 854:298-306. [PMID: 30980798 DOI: 10.1016/j.ejphar.2019.03.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/15/2019] [Accepted: 03/22/2019] [Indexed: 10/27/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy).
This article has been retracted at the request of the authors and the Editor-in-Chief as the validity of the data cannot be guaranteed. The journal was initially contacted by the corresponding author to report that, when the authors verified post publication PTEN as their former target of miR-140-3p, they found that treatment with miR-140-3p or miR-155-5p antagomir increased PTEN protein levels in patient-derived chordoma cells without having a significant effect on the malignancy of the tumor cells.
The journal further requested the author to provide more information about their post publication findings with regard to this article. However, the author was not able to fulfil this request.
Collapse
Affiliation(s)
- Kunchi Zhao
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun, 130033, PR China
| | - Xuefeng Li
- Department of Anesthesiology, China-Japan Union Hospital, Jilin University, Changchun, 130033, PR China
| | - Xinxin Chen
- Department of Nursing, Changchun Obstetrics-Gynecology Hospital, Changchun, 130042, PR China
| | - Qingsan Zhu
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun, 130033, PR China.
| | - Fei Yin
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun, 130033, PR China
| | - Qing Ruan
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun, 130033, PR China
| | - Jidong Xia
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun, 130033, PR China
| | - Zefeng Niu
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun, 130033, PR China
| |
Collapse
|
13
|
Cheng Y, Yang M, Peng J. Correlation the between the regulation of miRNA-1 in c-Met-induced EMT and cervical cancer progression. Oncol Lett 2019; 17:3341-3349. [PMID: 30867768 PMCID: PMC6396219 DOI: 10.3892/ol.2019.9971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 10/19/2018] [Indexed: 01/15/2023] Open
Abstract
Cervical cancer is a common malignant tumor of the female reproductive system. Despite advances in cervical cancer therapy, tumor recurrence and metastasis remain the leading cause of mortality for patients with cervical cancer. Therefore, the investigation of tumorigenesis and progression, and the search for novel therapeutic targets, has been the primary focus in cervical cancer research. The aims of the present study were: i) To analyze the alterations in c-Met, E-cadherin and microRNA (miRNA)-1 expression levels in cervical cancer tissues; ii) to assess the correlation between the above genes and the pathological characteristics of the cancer tissues; and iii) to examine the potential mechanism through which miRNA-1 may regulate c-Met-induced epithelial-mesenchymal transition to promote the development of cervical cancer. In cervical cancer tissues, c-Met was more highly expressed, while E-cadherin exhibited lower expression levels compared with the adjacent tissues. The 24-month follow-up reported that a lower c-Met expression level was correlated with higher E-cadherin expression levels and a longer survival rate. The miRNA-1 expression level in cancer tissues was 0.41±0.07 times lower compared with the adjacent tissues (P<0.01). A low miRNA expression level was correlated with a low survival rate of patients. In vitro, miRNA-1 inhibited the proliferation and migration of cervical cancer cell lines by downregulating c-Met mRNA. When miRNA-1 expression was downregulated in cervical cancer tissues, the inhibition of c-Met expression was reversed. The upregulation of c-Met expression levels was able to inhibit E-cadherin expression, which triggered the proliferation, migration and infiltration of cancer cells, and thus reduced patient survival rates.
Collapse
Affiliation(s)
- Yun Cheng
- Department of Histology and Embryology, School of Preclinical and Forensic Medicine, Baotou Medical College, Baotou, Inner Mongolia 014000, P.R. China
| | - Minliang Yang
- Medical Ultrasound Center, Northwest Women's and Children's Hospital, Xian, Shanxi 710000, P.R. China
| | - Jingxian Peng
- Microbiology Laboratory, Baotou Center for Disease Control and Prevention, Baotou, Inner Mongolia 014000, P.R. China
| |
Collapse
|
14
|
Choi PJ, Oskouian RJ, Tubbs RS. The Current Understanding of MicroRNA's Therapeutic, Diagnostic, and Prognostic Role in Chordomas: A Review of the Literature. Cureus 2018; 10:e3772. [PMID: 30820391 PMCID: PMC6389020 DOI: 10.7759/cureus.3772] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Chordomas are primary low-grade bone tumors derived from the embryonic notochord that make up less than 5% of all osseous malignancies and commonly affect the spine at its vertebral body and at its two ends i.e., skull base and the sacrum. Although histologically defined to be low-grade, chordoma is locally destructive, metastatic, and has a serious recurrence rate, which all contribute to the dismal median survival rate of six years. Its locally destructive nature places the adjacent vital neurovascular structures at risk, making an en-bloc resection a challenge. This tumor is also known to show high resistance to currently available chemoradiotherapy, although the benefit of proton beam therapy for skull base chordoma has been demonstrated. There is an additional need to focus our attention on investigating the molecular biology of this chemoradiotherapy-resistant tumor to develop a more targeted therapy, which has additional diagnostic and prognostic values. In this paper, we discuss the therapeutic, diagnostic, and prognostic role of microRNAs (miRNAs) in chordomas.
Collapse
Affiliation(s)
- Paul J Choi
- Surgery, Seattle Science Foundation, Seattle, USA
| | - Rod J Oskouian
- Neurosurgery, Swedish Neuroscience Institute, Seattle, USA
| | - R Shane Tubbs
- Neurosurgery, Seattle Science Foundation, Seattle, USA
| |
Collapse
|
15
|
Li X, Seebacher NA, Hornicek FJ, Xiao T, Duan Z. Application of liquid biopsy in bone and soft tissue sarcomas: Present and future. Cancer Lett 2018; 439:66-77. [PMID: 30223067 DOI: 10.1016/j.canlet.2018.09.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 08/13/2018] [Accepted: 09/06/2018] [Indexed: 02/06/2023]
Abstract
Bone and soft tissue sarcomas account for approximately 1% of adult solid malignancies and 20% of pediatric solid malignancies. Sarcomas are divided into more than 50 subtypes. Each subtype is highly heterogeneous and characterized by significant morphological and phenotypic variability. Currently, sarcoma characterization is based on tissue biopsies. However, primary and invasive tissue biopsies may not accurately reflect the current disease condition following treatment as is may cause marked changes to the tumor cells. Liquid biopsy offers an alternative minimally invasive approach to provide dynamic tumor information, allowing for the application of precision medicine in the treatment of sarcomas. Recently, there have been numerous blood-based tumor components identified by liquid biopsy in sarcomas, including circulating tumor cells, circulating cell-free nucleic acids, tumor-derived exosomes and metabolites in circulation. Here, we summarize the current evolving technologies and then elaborate on emerging novel concepts that may further propel the field of liquid biopsy in sarcomas. We address the applications in the context of our current knowledge about liquid biopsy in sarcomas and highlight the potential of translating these recent advances into the clinic for more effective management strategies for sarcoma patients.
Collapse
Affiliation(s)
- Xiaoyang Li
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, PR China; Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine at University of Los Angeles, Los Angeles, CA, 90095, USA.
| | - Nicole A Seebacher
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine at University of Los Angeles, Los Angeles, CA, 90095, USA.
| | - Francis J Hornicek
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine at University of Los Angeles, Los Angeles, CA, 90095, USA.
| | - Tao Xiao
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, PR China.
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine at University of Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
16
|
Zhang H, Yang K, Ren T, Huang Y, Tang X, Guo W. miR-16-5p inhibits chordoma cell proliferation, invasion and metastasis by targeting Smad3. Cell Death Dis 2018; 9:680. [PMID: 29880900 PMCID: PMC5992191 DOI: 10.1038/s41419-018-0738-z] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/18/2018] [Accepted: 05/22/2018] [Indexed: 12/17/2022]
Abstract
Aberrantly expressed miRNAs play a crucial role in the development of multiple cancer types, including chordoma. However, the detailed molecular mechanisms are unclear and need to be elucidated. In this study, miRNAs were screened by miRNA array analysis and then confirmed by real-time PCR analysis. We found that miR-16-5p was significantly downregulated in chordoma, and overexpression of miR-16-5p suppressed chordoma cell proliferation, invasion and migration in vitro and in vivo and correlated with the upregulated expression of E-cadherin and downregulated expression of N-cadherin and vimentin. Furthermore, Smad3 was identified as a target of miR-16-5p, and Smad3 was highly expressed in chordoma tissues. Further research showed that knockdown of Smad3 had an effect similar to that of overexpression of miR-16-5p in chordoma cells. Our findings demonstrate that miR-16-5p plays a tumor suppressor role in chordoma progression by targeting Smad3, which could provide a promising prognostic and therapeutic strategy for chordoma treatment.
Collapse
Affiliation(s)
- Hongliang Zhang
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, No. 11 Xizhimen South Street, Beijing, 100044, People's Republic of China
| | - Kang Yang
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, No. 11 Xizhimen South Street, Beijing, 100044, People's Republic of China
| | - Tingting Ren
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, No. 11 Xizhimen South Street, Beijing, 100044, People's Republic of China
| | - Yi Huang
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, No. 11 Xizhimen South Street, Beijing, 100044, People's Republic of China
| | - Xiaodong Tang
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, People's Republic of China. .,Beijing Key Laboratory of Musculoskeletal Tumor, No. 11 Xizhimen South Street, Beijing, 100044, People's Republic of China.
| | - Wei Guo
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, People's Republic of China. .,Beijing Key Laboratory of Musculoskeletal Tumor, No. 11 Xizhimen South Street, Beijing, 100044, People's Republic of China.
| |
Collapse
|
17
|
Abstract
RATIONALE Chordomas are malignant neoplasms derived from incomplete regression of notochordal tissue along the craniococcygeal axis.It is rare for Chordoma arising from the lumbar spine and the traditional long-term prognosis is typically poor. PATIENT CONCERNS The persistent pain in the left side of the waist about 2 years. DIAGNOSES Chordoma. INTERVENTIONS The patient was treated with surgical resection of the total tumor, followed by the spinal internal fixation of L1 to L2 with pedicle screws. OUTCOMES After 5 month follow-up,we find the recurrence in the original lesion.At the 15 month follow-up,the patient was dead after a lot of times revisit by various doctor. LESSONS So It is suggest that the diagnosis should be carried out accurately at the early stage, the lesions and source of lesions should be cut away as broadly as possible, also the radiation and chemotherapy should be carried out after the operation as necessary.
Collapse
|
18
|
Chen H, Zhang K, Lu J, Wu G, Yang H, Chen K. Comprehensive analysis of mRNA-lncRNA co-expression profile revealing crucial role of imprinted gene cluster DLK1-MEG3 in chordoma. Oncotarget 2017; 8:112623-112635. [PMID: 29348851 PMCID: PMC5762536 DOI: 10.18632/oncotarget.22616] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 09/03/2017] [Indexed: 12/15/2022] Open
Abstract
Chordoma is a rare bone tumor with high recurrence rate, but the mechanism of its development is unclear. Long non-coding RNAs(lncRNAs) are recently revealed to be regulators in a variety of biological processed by targeting on mRNA transcription. Their expression profile and function in chordoma have not been investigated yet. In this study, we firstly performed the comprehensive analysis of the lncRNA and coding genes expression analysis with three chordoma samples and three fetal nucleus pulposus tissues. lncRNA and gene microarrays were used to determine the differentially expressed lncRNAs and protein coding genes. 2786 lncRNAs and 3286 coding genes were significantly up-regulated in chordoma, while 2042 lncRNAs and 1006 coding genes were down-regulated. Pearson correlation analysis was conducted to correlate differentially expressed lncRNAs with protein coding genes, indicating a comprehensive lncRNA-coding gene co-expression network in chordoma. Cis-correlation analysis showed that various transcripts of MEG3 and MEG8 were paired with the most differentially expressed gene DLK1. As located in the same locus, we further analyzed the miRNA clusters in this region, and identified that 61.22% of these miRNAs were significantly down-regulated, implying the silence of the imprinted gene cluster DLK1-MEG3. Overexpression of MEG3 suppressed the proliferation of chordoma cells. Our study pointed out the potential role of lncRNAs in chordoma, presented the lncRNA-coding genes co-expression profile, and revealed that imprinted gene cluster DLK1-MEG3 contributes to the pathogenesis of chordoma development.
Collapse
Affiliation(s)
- Hao Chen
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Kai Zhang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jian Lu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Guizhong Wu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China.,Institute of Orthopedics, Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Kangwu Chen
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
19
|
Wang Y, Chen K, Chen H, Zhang K, Lu J, Mao H, Yang H. Low expression of miRNA-1290 associated with local invasion and recurrence in sacral chordoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:10934-10940. [PMID: 31966437 PMCID: PMC6965869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 10/24/2017] [Indexed: 06/10/2023]
Abstract
Chordoma is a rare, locally aggressive neoplasm of bone, usually with poor prognosis. The treatment for chordoma has been unsatisfactory for decades. MiRNAs were recently introduced into this field and provided new insights to the pathogenesis and pathophysiology of chordoma. However, molecular basis of chordoma remains ambiguous up to now. This research aims to discover novel miRNA molecules as potential biomarkers and therapeutic targets. We measured the expression of miRNA-1290 in chordoma tissues and fetal nucleus pulposus tissues by quantitative real-time PCR. Further, we analyzed its association with the clinical features as well as the prognosis of patients. The expression of miRNA-1290 in chordoma samples was significantly lower than fetal nucleus pulposus samples (P=0.026). Low expression of miRNA-1290 contributed to tumor invasion into surrounding muscle (P=0.013), while no obvious significance was identified between miRNA-1290 expression and patients' age, gender, tumor location and size (P>0.05). Log-rank test showed that low-level miRNA-1290 expression had a prominent impact on the patients' RFS (P=0.004). Conclusively, miRNA-1290 might be a valuable prognostic biomarker and efficient therapeutic target for sacral chordoma.
Collapse
Affiliation(s)
- Yucheng Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University Suzhou, Jiangsu, P. R. China
| | - Kangwu Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University Suzhou, Jiangsu, P. R. China
| | - Hao Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University Suzhou, Jiangsu, P. R. China
| | - Kai Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University Suzhou, Jiangsu, P. R. China
| | - Jian Lu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University Suzhou, Jiangsu, P. R. China
| | - Haiqing Mao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University Suzhou, Jiangsu, P. R. China
| | - Huilin Yang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University Suzhou, Jiangsu, P. R. China
| |
Collapse
|
20
|
Wang W, Shen F, Wang C, Lu W, Wei J, Shang A, Wang C. MiR-1-3p inhibits the proliferation and invasion of bladder cancer cells by suppressing CCL2 expression. Tumour Biol 2017; 39:1010428317698383. [PMID: 28618950 DOI: 10.1177/1010428317698383] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We attempted to analyze the effects of miR-1-3p and CCL2 on the proliferation, migration, and invasion of bladder cancer cells. A total of 18 pairs of bladder cancer tissues with corresponding adjacent tissues and the 6 cases of normal tissues were collected. The expressions of miR-1-3p and CCL2 in the cancer tissues were evaluated using quantitative real-time polymerase chain reaction and western blot. The relationship between miR-1-3p and CCL2 was assessed using luciferase reporter assay. The UM-UC-3 bladder cancer cells were transfected with CCL2 small interfering RNA and miR-1-3p mimics. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, colony formation assay, wound healing assay, Transwell assay, and the flow cytometry test were used to detect the proliferation, migration, invasion, and apoptosis of bladder cancer cells. Bladder cancer tissues had lower levels of miR-1-3p but higher levels of CCL2 than normal tissues ( p < 0.05). The transfection of miR-1-3p mimics and CCL2 small interfering RNA remarkably suppressed cell proliferation and invasion and promoted apoptosis of cells ( p < 0.05). Results of the luciferase reporter gene assay demonstrated that miR-1-3p targeted CCL2. MiR-1-3p suppresses the proliferation and invasion of urinary bladder cancer cells by targeting CCL2.
Collapse
Affiliation(s)
- Weiwei Wang
- 1 Department of Pathology, The First People's Hospital of Yancheng City, Yancheng, China.,2 Department of Pathology, The Sixth People's Hospital of Yancheng City, Yancheng, China
| | - Fujun Shen
- 3 Department of Oncology, Yancheng Hospital Affiliated to Medical College of Southeast University and The Third People's Hospital of Yancheng City, Yancheng, China
| | - Chunlei Wang
- 4 Department of Laboratory Medicine, The Sixth People's Hospital of Yancheng City, Yancheng, China
| | - Wenying Lu
- 4 Department of Laboratory Medicine, The Sixth People's Hospital of Yancheng City, Yancheng, China
| | - Jun Wei
- 5 Clinical Medicine School, Ningxia Medical University, Yinchuan, China
| | - Anquan Shang
- 4 Department of Laboratory Medicine, The Sixth People's Hospital of Yancheng City, Yancheng, China.,5 Clinical Medicine School, Ningxia Medical University, Yinchuan, China
| | - Chunbin Wang
- 3 Department of Oncology, Yancheng Hospital Affiliated to Medical College of Southeast University and The Third People's Hospital of Yancheng City, Yancheng, China
| |
Collapse
|
21
|
Genetic aberrations and molecular biology of skull base chordoma and chondrosarcoma. Brain Tumor Pathol 2017; 34:78-90. [PMID: 28432450 DOI: 10.1007/s10014-017-0283-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/27/2017] [Indexed: 12/20/2022]
Abstract
Chordomas and chondrosarcomas are two major malignant bone neoplasms located at the skull base. These tumors are rarely metastatic, but can be locally invasive and resistant to conventional chemotherapies and radiotherapies. Accordingly, therapeutic approaches for the treatment of these tumors can be difficult. Additionally, their location at the skull base makes them problematic. Although accurate diagnosis of these tumors is important because of their distinct prognoses, distinguishing between these tumor types is difficult due to overlapping radiological and histopathological findings. However, recent accumulation of molecular and genetic studies, including extracranial location analysis, has provided us clues for accurate diagnosis. In this report, we review the genetic aberrations and molecular biology of these two tumor types. Among the abundant genetic features of these tumors, brachyury immunohistochemistry and direct sequencing of IDH1/2 are simple and useful techniques that can be used to distinguish between these tumors. Although it is still unclear why these tumors, which have such distinct genetic backgrounds, show similar histopathological findings, comparison of their genetic backgrounds could provide essential information.
Collapse
|
22
|
Santegoeds R, Yakkioui Y, Jahanshahi A, Raven G, Van Overbeeke J, Herrler A, Temel Y. Notochord isolation using laser capture microdissection. J Chem Neuroanat 2017; 80:37-43. [DOI: 10.1016/j.jchemneu.2016.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/08/2016] [Accepted: 12/19/2016] [Indexed: 01/10/2023]
|
23
|
Zou MX, Lv GH, Wang XB, Li J. Prognostic Biomarkers in Spinal Chordoma: A Systematic Review. J Neuropathol Exp Neurol 2016; 75:1184-1187. [DOI: 10.1093/jnen/nlw094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
24
|
Han C, Shen JK, Hornicek FJ, Kan Q, Duan Z. Regulation of microRNA-1 (miR-1) expression in human cancer. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:227-232. [PMID: 27923712 DOI: 10.1016/j.bbagrm.2016.12.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 11/30/2016] [Accepted: 12/02/2016] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRs) have been found to play important roles in tumorigenesis, apoptosis, metastasis, and drug resistance in cancer. Among a number of miRs, miR-1 was shown to be predominantly downregulated in almost all examined human cancers. As a tumor suppressor miR involved in post-transcriptional regulation of crucial tumor associated gene expression, miR-1 represents a promising target for anticancer therapy. Re-expression of miR-1 can suppress cancer cell proliferation, promote apoptosis, and reverse drug resistance in cancers both in vitro and in vivo. Recently, the regulatory mechanisms of miR-1 expression have been studied in various cancers in different model systems. In this review, we summarize the mechanisms of miR-1 expression through epigenetic, transcriptional, and post-transcriptional regulation. These regulatory mechanisms of miR-1 expression could help us to understand the functions of altered miR-1 expression and provide valuable insights for further investigations into miR-1 based cancer therapy.
Collapse
Affiliation(s)
- Chao Han
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China; Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Jacson K Shen
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Francis J Hornicek
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Quancheng Kan
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China.
| | - Zhenfeng Duan
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China; Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
25
|
Wei W, Zhang Q, Wang Z, Yan B, Feng Y, Li P. miR-219-5p inhibits proliferation and clonogenicity in chordoma cells and is associated with tumor recurrence. Oncol Lett 2016; 12:4568-4576. [PMID: 28105164 PMCID: PMC5228431 DOI: 10.3892/ol.2016.5222] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 09/16/2016] [Indexed: 01/01/2023] Open
Abstract
Chordoma is a rare malignant bone tumor that is usually localized to the skull base, vertebral column and sacrum. The transcription factor brachyury, which is encoded by the T gene, has a critical role in the development and progression of chordoma, although the mechanisms underlying brachyury regulation remain unclear. The aim of the current study was to identify and characterize microRNAs (miRs) that regulate brachyury expression in chordoma. MicroRNAs that target brachyury were predicted using miRanda and TargetScan. Using reverse transcription-quantitative polymerase chain reaction, miR-219-5p was shown to be significantly downregulated in chordoma tissues and the U-CH2 chordoma cell lines. A dual-luciferase reporter assay was used to validate the inhibitory effect of miR-219-5p on brachyury mRNA expression. The expression level of brachyury was downregulated in U-CH2 cells following transfection with miR-219-5p mimics and upregulated following transfection with the miR-219-5p inhibitor. The effects of miR-219-5p on the proliferation and clonogenicity of chordoma cells were assessed using cell counting kit-8, EdU and clone formation assays. These in vitro results indicated that miR-219-5p may have an important role in regulating the cell proliferation and clonogenicity of human chordoma cells, potentially by targeting brachyury. Furthermore, the associations between the expression levels of miR-219-5p and various clinicopathological factors were analyzed, and miR-219-5p expression was shown to correlate with tumor extent and recurrence. These results suggested that miR-219-5p functions as a tumor suppressor in chordoma and, therefore, that miR-219-50 may be a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Wei Wei
- Department of Otolaryngology, Head and Neck Surgery, Skull Base Surgery Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Qiuhang Zhang
- Department of Otolaryngology, Head and Neck Surgery, Skull Base Surgery Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Zhenlin Wang
- Department of Otolaryngology, Head and Neck Surgery, Skull Base Surgery Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Bo Yan
- Department of Otolaryngology, Head and Neck Surgery, Skull Base Surgery Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Yanjun Feng
- Department of Otolaryngology, Head and Neck Surgery, Skull Base Surgery Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Pu Li
- Department of Otolaryngology, Head and Neck Surgery, Skull Base Surgery Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| |
Collapse
|
26
|
Abstract
Chordoma is an extremely rare cancer, with an incidence of about one case per million persons per year in the USA and Europe (about 300 and 450 cases per year, respectively). The estimated median overall survival of patients with chordoma is approximately 6–7 years, yielding a rough estimate of chordoma prevalence at about 2000 in the USA and 3000 in Europe. Primary tumor develops along the axial spine between the clivus and sacrum and develops from the residual embryonic notochord. Brachyury (T), a transcription factor required for normal embryonic development, is expressed in the notochord and overexpressed in almost all cases of chordoma. The primary treatment for chordoma is surgical excision with wide local margins, when possible. Radiotherapy also plays a significant role in the adjuvant setting and when surgery is not possible. Unfortunately, in the advanced and/or metastatic setting, where the role of surgery and/or radiation is less clear, treatment options are very limited. To date, there have been no randomized, controlled trials in chordoma that have resulted in defined agents of clinical benefit for systemic treatment. This review briefly describes the natural history and initial treatment of chordoma and focuses on treatment options for advanced disease and potential avenues of research that may lead to improved treatment options in the future.
Collapse
Affiliation(s)
- Christopher R Heery
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
27
|
Osaka E, Kelly AD, Spentzos D, Choy E, Yang X, Shen JK, Yang P, Mankin HJ, Hornicek FJ, Duan Z. MicroRNA-155 expression is independently predictive of outcome in chordoma. Oncotarget 2016; 6:9125-39. [PMID: 25823817 PMCID: PMC4496207 DOI: 10.18632/oncotarget.3273] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/07/2015] [Indexed: 12/24/2022] Open
Abstract
Background Chordoma pathogenesis remains poorly understood. In this study, we aimed to evaluate the relationships between microRNA-155 (miR-155) expression and the clinicopathological features of chordoma patients, and to evaluate the functional role of miR-155 in chordoma. Methods The miRNA expression profiles were analyzed using miRNA microarray assays. Regulatory activity of miR-155 was assessed using bioinformatic tools. miR-155 expression levels were validated by reverse transcription-polymerase chain reaction. The relationships between miR-155 expression and the clinicopathological features of chordoma patients were analyzed. Proliferative, migratory and invasive activities were assessed by MTT, wound healing, and Matrigel invasion assays, respectively. Results The miRNA microarray assay revealed miR-155 to be highly expressed and biologically active in chordoma. miR-155 expression in chordoma tissues was significantly elevated, and this expression correlated significantly with disease stage (p = 0.036) and the presence of metastasis (p = 0.035). miR-155 expression also correlated significantly with poor outcomes for chordoma patients (hazard ratio, 5.32; p = 0.045). Inhibition of miR-155 expression suppressed proliferation, and the migratory and invasive activities of chordoma cells. Conclusions We have shown miR-155 expression to independently affect prognosis in chordoma. These results collectively indicate that miR-155 expression may serve not only as a prognostic marker, but also as a potential therapeutic target in chordoma.
Collapse
Affiliation(s)
- Eiji Osaka
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Orthopaedic Surgery, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Andrew D Kelly
- Fels Institute for Cancer Research & Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Dimitrios Spentzos
- Division of Hematology/Oncology, Sarcoma Program, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Edwin Choy
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Xiaoqian Yang
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jacson K Shen
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Pei Yang
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Henry J Mankin
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Francis J Hornicek
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
28
|
Sun X, Hornicek F, Schwab JH. Chordoma: an update on the pathophysiology and molecular mechanisms. Curr Rev Musculoskelet Med 2016; 8:344-52. [PMID: 26493697 DOI: 10.1007/s12178-015-9311-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Chordoma is a rare low-grade primary malignant skeletal tumor, which is presumed to derive from notochord remnants. The pathogenesis of chordoma has not been fully elucidated. However, recent advances in the molecular biology studies have identified brachyury underlying the initiation and progression of chordoma cells. More efforts have been made on accumulating evidence of the notochordal origin of chordoma, discovering signaling pathways and identifying crucial targets in chordomagenesis. In this review, we summarize the most recent research findings and focus on the pathophysiology and molecular mechanisms of chordoma.
Collapse
Affiliation(s)
- Xin Sun
- Section of Orthopedic Oncology, Department of Orthopedic Surgery, Harvard Medical School, Massachusetts General Hospital, Yawkey 355 Fruit Street, Boston, MA, 02114, USA
| | - Francis Hornicek
- Section of Orthopedic Oncology, Department of Orthopedic Surgery, Harvard Medical School, Massachusetts General Hospital, Yawkey 355 Fruit Street, Boston, MA, 02114, USA
| | - Joseph H Schwab
- Section of Orthopedic Oncology, Department of Orthopedic Surgery, Harvard Medical School, Massachusetts General Hospital, Yawkey 355 Fruit Street, Boston, MA, 02114, USA.
| |
Collapse
|
29
|
Zou MX, Huang W, Wang XB, Li J, Lv GH, Deng YW. Prognostic factors in spinal chordoma: A systematic review. Clin Neurol Neurosurg 2015; 139:110-8. [PMID: 26432656 DOI: 10.1016/j.clineuro.2015.09.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/10/2015] [Accepted: 09/20/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Discovering reliable prognostic factors for spinal chordoma remains a challenge. We attempted to identify evidence-based prognostic factors in the literature since its inception and to establish pooled relative risks (RR) of such factors. METHODS MEDLINE and Embase search (inception to December 2014). Two reviewers independently selected papers involving spinal chordoma prognostic factors, and studied them for methodological quality and valuable new factors. Subsequently, we attempted to pool the results. RESULTS Of 1465 citations, we studied 65 papers closely, and found several "new" prognostic factors. However, only eight papers were of adequate quality for analysis. Location in the upper cervical spine (pooled RR=5.46, 95% confidence interval [CI]: 2.23-13.34), worse preoperative Frankel score (pooled RR=2.77, 95% CI: 1.73-4.42), intralesional surgery (pooled RR=2.68, 95% CI: 1.66-4.32), greater extent of invasion (pooled RR=5.09, 95% CI: 1.49-17.41), and revision surgery (pooled RR=2.42, 95% CI: 1.34-4.36) appeared to be independent factors for worse outcome. CONCLUSIONS Despite the wealth of literature available, disappointingly few papers are of sufficient quality for drawing valid conclusions related to spinal chordoma prognostic factors. The heterogeneity of the studies renders results pooling almost impossible. More accurate individual prognostication requires methodologically high-quality studies with more uniform study design and data reporting.
Collapse
Affiliation(s)
- Ming-Xiang Zou
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Wei Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Central South University, Changsha, Hunan 410078, China
| | - Xiao-Bin Wang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jing Li
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| | - Guo-Hua Lv
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - You-Wen Deng
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
30
|
Gulluoglu S, Turksoy O, Kuskucu A, Ture U, Bayrak OF. The molecular aspects of chordoma. Neurosurg Rev 2015; 39:185-96; discussion 196. [PMID: 26363792 DOI: 10.1007/s10143-015-0663-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 04/30/2015] [Accepted: 06/27/2015] [Indexed: 12/18/2022]
Abstract
Chordomas are one of the rarest bone tumors, and they originate from remnants of embryonic notochord along the spine, more frequently at the skull base and sacrum. Although they are relatively slow growing and low grade, chordomas are highly recurrent, aggressive, locally invasive, and prone to metastasize to the lungs, bone, and the liver. Chordomas highly and generally show a dual epithelial-mesenchymal differentiation. These tumors resist chemotherapy and radiotherapy; therefore, radical surgery and high-dose radiation are the most used treatments, although there is no standard way to treat the disease. The molecular biology process behind the initiation and progression of a chordoma needs to be revealed for a better understanding of the disease and to develop more effective therapies. Efforts to discover the mysteries of these molecular aspects have delineated several molecular and genetic alterations in this tumor. Here, we review and describe the emerging insights into the molecular landscape of chordomas.
Collapse
Affiliation(s)
- Sukru Gulluoglu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey.,Department of Medical Genetics, Yeditepe University Medical School and Yeditepe University Hospital, Istanbul, Turkey
| | - Ozlem Turksoy
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey
| | - Aysegul Kuskucu
- Department of Medical Genetics, Yeditepe University Medical School and Yeditepe University Hospital, Istanbul, Turkey
| | - Ugur Ture
- Department of Neurosurgery, Yeditepe University Medical School and Yeditepe University Hospital, Istanbul, Turkey
| | - Omer Faruk Bayrak
- Department of Medical Genetics, Yeditepe University Medical School and Yeditepe University Hospital, Istanbul, Turkey.
| |
Collapse
|
31
|
Mitchelson KR, Qin WY. Roles of the canonical myomiRs miR-1, -133 and -206 in cell development and disease. World J Biol Chem 2015; 6:162-208. [PMID: 26322174 PMCID: PMC4549760 DOI: 10.4331/wjbc.v6.i3.162] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 03/13/2015] [Accepted: 05/28/2015] [Indexed: 02/05/2023] Open
Abstract
MicroRNAs are small non-coding RNAs that participate in different biological processes, providing subtle combinational regulation of cellular pathways, often by regulating components of signalling pathways. Aberrant expression of miRNAs is an important factor in the development and progression of disease. The canonical myomiRs (miR-1, -133 and -206) are central to the development and health of mammalian skeletal and cardiac muscles, but new findings show they have regulatory roles in the development of other mammalian non-muscle tissues, including nerve, brain structures, adipose and some specialised immunological cells. Moreover, the deregulation of myomiR expression is associated with a variety of different cancers, where typically they have tumor suppressor functions, although examples of an oncogenic role illustrate their diverse function in different cell environments. This review examines the involvement of the related myomiRs at the crossroads between cell development/tissue regeneration/tissue inflammation responses, and cancer development.
Collapse
|
32
|
Yu X, Li Z. Epigenetic deregulations in chordoma. Cell Prolif 2015; 48:497-502. [PMID: 26256106 DOI: 10.1111/cpr.12204] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 06/22/2015] [Indexed: 12/13/2022] Open
Abstract
Chordoma is a rare type of malignant bone tumour arising from remnant notochord and prognosis of patients with it remains poor as its molecular and genetic mechanisms are not well understood. Increasing evidence has demonstrated that epigenetic mechanisms (DNA methylation, histone modification and nucleosome remodelling), play a crucial role in the pathogenesis of many diseases. Aberrant epigenetic patterns are present in patients with chordoma, indicating a potential role for epigenetic mechanisms inthis malignancy. Furthermore, epigenetic alterations may provide novel biomarkers for diagnosis and prognosis as well as therapeutic targets for treatment. In this review, we discuss relevant epigenetic findings associated with chordoma, and their potential application for diagnosis, prognosis and treatment.
Collapse
Affiliation(s)
- Xin Yu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100042, China
| | - Zheng Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100042, China
| |
Collapse
|
33
|
Zou MX, Huang W, Wang XB, Li J, Lv GH, Wang B, Deng YW. Reduced expression of miRNA-1237-3p associated with poor survival of spinal chordoma patients. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2015; 24:1738-46. [DOI: 10.1007/s00586-015-3927-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 04/01/2015] [Accepted: 04/01/2015] [Indexed: 01/23/2023]
|
34
|
Kuang L, Lv G, Wang B, Li L, Dai Y, Li Y. Overexpression of adenosine deaminase acting on RNA 1 in chordoma tissues is associated with chordoma pathogenesis by reducing miR‑125a and miR‑10a expression. Mol Med Rep 2015; 12:93-8. [PMID: 25673044 PMCID: PMC4438963 DOI: 10.3892/mmr.2015.3341] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 01/12/2015] [Indexed: 12/20/2022] Open
Abstract
Chordoma is a rare, slow-growing primary malignant neoplasm of the axial skeleton, which arises from the remnants of the notochord. Emerging evidence suggests that microRNAs (miRs) are dysregulated in chordoma tissues and crucially involved in chordoma pathogenesis. In the present study, the expression of 11 candidate miRs were analyzed in chordoma tissues and miR-10a and miR-125a were found to be significantly downregulated compared with controls. Notably, the expression of the primary transcripts, pri-miR-125a and pri-miR-10a was unaltered, suggesting that disturbed microRNA expression may be induced by altered pri-miRNA processing. Previous studies have indicated that disturbed adenosine deaminase acting on RNA (ADAR) expression is able to alter mRNA and miRNA adenosine to inosine (A-to-I) levels associated with cancer pathogenesis. Therefore, the expression of ADAR1 and ADAR2 was analyzed in chordoma tissues. It was found that ADAR1 was significantly overexpressed, which was accompanied by enhanced pre-miR-10a and pri-miR-125a A-to-I editing. These findings suggest that ADAR2 overexpression causes enhanced pre-miR-10a and pri-miR-125a A-to-I editing, which alters mature miR-10a and miR-125a expression and may contribute to chordoma pathogenesis.
Collapse
Affiliation(s)
- Lei Kuang
- Department of Spinal Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Guohua Lv
- Department of Spinal Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Bing Wang
- Department of Spinal Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Lei Li
- Department of Spinal Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Yuliang Dai
- Department of Spinal Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Yawei Li
- Department of Spinal Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
35
|
Zou MX, Huang W, Wang XB, Lv GH, Li J, Deng YW. Identification of miR-140-3p as a marker associated with poor prognosis in spinal chordoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:4877-4885. [PMID: 25197358 PMCID: PMC4152048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 07/12/2014] [Indexed: 06/03/2023]
Abstract
OBJECTIVE To investigate the expression profile of miR-140-3p in formalin-fixed paraffin-embedded (FFPE) tissues of spinal chordoma, and its correlation with the prognosis of spinal chordoma patients. METHODS Dysregulated miRNAs in FFPE tissues of spinal chordoma were identified by microarray analysis. MiR-140-3p expression in surgically removed spinal chordoma tissues of 42 spinal chordoma patients (27 males and 15 females, aged 29-76 years) and corresponding nucleus pulposus tissues of 14 patients with disc herniation as the healthy control group (8 males and 6 females, aged 24-73 years) was measured by real-time quantitative RT-PCR assay. The association of miR-140-3p expression with clinicopathologic characteristics of spinal chordoma patients was analyzed. Additionally, we investigated the prognostic significance of miR-140-3p with the use of Kaplan-Meier methods and a Cox proportional hazard model. RESULTS The expression of miR-140-3p was significantly higher in chordoma tissues than nucleus pulposus tissues (t = 3.530, P = 0.001). The expression of miR-140-3p positively correlated with surrounding muscle invasion. The Kapan-Meier survival analysis showed that the patients with high miR-140-3p expression had a significantly worse recurrence-free survival than those with a low expression (χ (2) = 31.270, P = 0.000, log-rank test). In addition, univariate and multivariate analyses for recurrence-free survival showed that miR-140-3p expression was an independent prognostic factor for patients with spinal chordoma (HR = 1.361, 95% CI: 1.135-1.633, P = 0.001). CONCLUSION Over-expression of miR-140-3p is correlated with recurrence and tumor invasion, suggesting that miR-140-3p could be a new predictor for recurrence and prognosis in patients with spinal chordoma.
Collapse
Affiliation(s)
- Ming-Xiang Zou
- Department of Spine Surgery, The Second Xiangya Hospital of Central South UniversityNo. 139, Middle of Renmin Road, Changsha 410011, Hunan, China
| | - Wei Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Central South UniversityChangsha 410078, Hunan, China
| | - Xiao-Bin Wang
- Department of Spine Surgery, The Second Xiangya Hospital of Central South UniversityNo. 139, Middle of Renmin Road, Changsha 410011, Hunan, China
| | - Guo-Hua Lv
- Department of Spine Surgery, The Second Xiangya Hospital of Central South UniversityNo. 139, Middle of Renmin Road, Changsha 410011, Hunan, China
| | - Jing Li
- Department of Spine Surgery, The Second Xiangya Hospital of Central South UniversityNo. 139, Middle of Renmin Road, Changsha 410011, Hunan, China
| | - You-Wen Deng
- Department of Spine Surgery, The Second Xiangya Hospital of Central South UniversityNo. 139, Middle of Renmin Road, Changsha 410011, Hunan, China
| |
Collapse
|
36
|
Role of microRNA-1 in human cancer and its therapeutic potentials. BIOMED RESEARCH INTERNATIONAL 2014; 2014:428371. [PMID: 24949449 PMCID: PMC4052501 DOI: 10.1155/2014/428371] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 02/19/2014] [Accepted: 02/23/2014] [Indexed: 02/07/2023]
Abstract
While the mechanisms of human cancer development are not fully understood, evidence of microRNA (miRNA, miR) dysregulation has been reported in many human diseases, including cancer. miRs are small noncoding RNA molecules that regulate posttranscriptional gene expression by binding to complementary sequences in the specific region of gene mRNAs, resulting in downregulation of gene expression. Not only are certain miRs consistently dysregulated across many cancers, but they also play critical roles in many aspects of cell growth, proliferation, metastasis, apoptosis, and drug resistance. Recent studies from our group and others revealed that miR-1 is frequently downregulated in various types of cancer. Through targeting multiple oncogenes and oncogenic pathways, miR-1 has been demonstrated to be a tumor suppressor gene that represses cancer cell proliferation and metastasis and promotes apoptosis by ectopic expression. In this review, we highlight recent findings on the aberrant expression and functional significance of miR-1 in human cancers and emphasize its significant values for therapeutic potentials.
Collapse
|