1
|
van Haaren MJH, Steller LB, Vastert SJ, Calis JJA, van Loosdregt J. Get Spliced: Uniting Alternative Splicing and Arthritis. Int J Mol Sci 2024; 25:8123. [PMID: 39125692 PMCID: PMC11311815 DOI: 10.3390/ijms25158123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Immune responses demand the rapid and precise regulation of gene protein expression. Splicing is a crucial step in this process; ~95% of protein-coding gene transcripts are spliced during mRNA maturation. Alternative splicing allows for distinct functional regulation, as it can affect transcript degradation and can lead to alternative functional protein isoforms. There is increasing evidence that splicing can directly regulate immune responses. For several genes, immune cells display dramatic changes in isoform-level transcript expression patterns upon activation. Recent advances in long-read RNA sequencing assays have enabled an unbiased and complete description of transcript isoform expression patterns. With an increasing amount of cell types and conditions that have been analyzed with such assays, thousands of novel transcript isoforms have been identified. Alternative splicing has been associated with autoimmune diseases, including arthritis. Here, GWASs revealed that SNPs associated with arthritis are enriched in splice sites. In this review, we will discuss how alternative splicing is involved in immune responses and how the dysregulation of alternative splicing can contribute to arthritis pathogenesis. In addition, we will discuss the therapeutic potential of modulating alternative splicing, which includes examples of spliceform-based biomarkers for disease severity or disease subtype, splicing manipulation using antisense oligonucleotides, and the targeting of specific immune-related spliceforms using antibodies.
Collapse
Affiliation(s)
- Maurice J. H. van Haaren
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Levina Bertina Steller
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Sebastiaan J. Vastert
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Division of Pediatric Rheumatology and Immunology, Wilhelmina Children’s Hospital, 3584 CX Utrecht, The Netherlands
| | - Jorg J. A. Calis
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Jorg van Loosdregt
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
2
|
van Hoolwerff M, Tuerlings M, Wijnen IJL, Suchiman HED, Cats D, Mei H, Nelissen RGHH, van der Linden-van der Zwaag HMJ, Ramos YFM, Coutinho de Almeida R, Meulenbelt I. Identification and functional characterization of imbalanced osteoarthritis-associated fibronectin splice variants. Rheumatology (Oxford) 2023; 62:894-904. [PMID: 35532170 PMCID: PMC9891405 DOI: 10.1093/rheumatology/keac272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/31/2022] [Accepted: 04/24/2022] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVE To identify FN1 transcripts associated with OA pathophysiology and investigate the downstream effects of modulating FN1 expression and relative transcript ratio. METHODS FN1 transcriptomic data was obtained from our previously assessed RNA-seq dataset of lesioned and preserved OA cartilage samples from the Research osteoArthritis Articular Cartilage (RAAK) study. Differential transcript expression analysis was performed on all 27 FN1 transcripts annotated in the Ensembl database. Human primary chondrocytes were transduced with lentiviral particles containing short hairpin RNA (shRNA) targeting full-length FN1 transcripts or non-targeting shRNA. Subsequently, matrix deposition was induced in our 3D in vitro neo-cartilage model. Effects of changes in the FN1 transcript ratio on sulphated glycosaminoglycan (sGAG) deposition were investigated by Alcian blue staining and dimethylmethylene blue assay. Moreover, gene expression levels of 17 cartilage-relevant markers were determined by reverse transcription quantitative polymerase chain reaction. RESULTS We identified 16 FN1 transcripts differentially expressed between lesioned and preserved cartilage. FN1-208, encoding migration-stimulating factor, was the most significantly differentially expressed protein coding transcript. Downregulation of full-length FN1 and a concomitant increased FN1-208 ratio resulted in decreased sGAG deposition as well as decreased ACAN and COL2A1 and increased ADAMTS-5, ITGB1 and ITGB5 gene expression levels. CONCLUSION We show that full-length FN1 downregulation and concomitant relative FN1-208 upregulation was unbeneficial for deposition of cartilage matrix, likely due to decreased availability of the classical RGD (Arg-Gly-Asp) integrin-binding site of fibronectin.
Collapse
Affiliation(s)
| | - Margo Tuerlings
- Department of Biomedical Data Sciences, Section Molecular Epidemiology
| | - Imke J L Wijnen
- Department of Biomedical Data Sciences, Section Molecular Epidemiology
| | - H Eka D Suchiman
- Department of Biomedical Data Sciences, Section Molecular Epidemiology
| | | | | | - Rob G H H Nelissen
- Department of Orthopaedics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Yolande F M Ramos
- Department of Biomedical Data Sciences, Section Molecular Epidemiology
| | | | - Ingrid Meulenbelt
- Department of Biomedical Data Sciences, Section Molecular Epidemiology
| |
Collapse
|
3
|
Gerwin N, Scotti C, Halleux C, Fornaro M, Elliott J, Zhang Y, Johnson K, Shi J, Walter S, Li Y, Jacobi C, Laplanche N, Belaud M, Paul J, Glowacki G, Peters T, Wharton KA, Vostiar I, Polus F, Kramer I, Guth S, Seroutou A, Choudhury S, Laurent D, Gimbel J, Goldhahn J, Schieker M, Brachat S, Roubenoff R, Kneissel M. Angiopoietin-like 3-derivative LNA043 for cartilage regeneration in osteoarthritis: a randomized phase 1 trial. Nat Med 2022; 28:2633-2645. [PMID: 36456835 PMCID: PMC9800282 DOI: 10.1038/s41591-022-02059-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 09/28/2022] [Indexed: 12/02/2022]
Abstract
Osteoarthritis (OA) is a common, debilitating, chronic disease with no disease-modifying drug approved to date. We discovered LNA043-a derivative of angiopoietin-like 3 (ANGPTL3)-as a potent chondrogenesis inducer using a phenotypic screen with human mesenchymal stem cells. We show that LNA043 promotes chondrogenesis and cartilage matrix synthesis in vitro and regenerates hyaline articular cartilage in preclinical OA and cartilage injury models in vivo. LNA043 exerts at least part of these effects through binding to the fibronectin receptor, integrin α5β1 on mesenchymal stem cells and chondrocytes. In a first-in-human (phase 1), randomized, double-blinded, placebo-controlled, single ascending dose, single-center trial ( NCT02491281 ; sponsored by Novartis Pharmaceuticals), 28 patients with knee OA were injected intra-articularly with LNA043 or placebo (3:1 ratio) either 2 h, 7 d or 21 d before total knee replacement. LNA043 met its primary safety endpoint and showed short serum pharmacokinetics, cartilage penetration and a lack of immunogenicity (secondary endpoints). Post-hoc transcriptomics profiling of cartilage revealed that a single LNA043 injection reverses the OA transcriptome signature over at least 21 d, inducing the expression of hyaline cartilage matrix components and anabolic signaling pathways, while suppressing mediators of OA progression. LNA043 is a novel disease-modifying OA drug candidate that is currently in a phase 2b trial ( NCT04864392 ) in patients with knee OA.
Collapse
Affiliation(s)
- Nicole Gerwin
- Novartis Institutes for BioMedical Research, Basel, Switzerland.
| | | | | | - Mara Fornaro
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Jimmy Elliott
- Novartis Institutes for BioMedical Research, San Diego, CA, USA
| | - Yunyu Zhang
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | | | - Jian Shi
- Novartis Institutes for BioMedical Research, San Diego, CA, USA
| | - Sandra Walter
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Yufei Li
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Carsten Jacobi
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Nelly Laplanche
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Magali Belaud
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | | | - Thomas Peters
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Igor Vostiar
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Florine Polus
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Ina Kramer
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Sabine Guth
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | | | - Didier Laurent
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Jörg Goldhahn
- Institute for Translational Medicine, ETH Zürich, Zürich, Switzerland
| | | | - Sophie Brachat
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | | |
Collapse
|
4
|
Monibi FA, Pannellini T, Croen B, Otero M, Warren R, Rodeo SA. Targeted transcriptomic analyses of RNA isolated from formalin-fixed and paraffin-embedded human menisci. J Orthop Res 2022; 40:1104-1112. [PMID: 34370349 PMCID: PMC8825887 DOI: 10.1002/jor.25153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/14/2021] [Accepted: 08/03/2021] [Indexed: 02/04/2023]
Abstract
Formalin-fixed and paraffin-embedded (FFPE) biospecimens are a valuable and widely-available resource for diagnostic and research applications. With biobanks of tissue samples available in many institutions, FFPE tissues could prove to be a valuable resource for translational orthopaedic research. The purpose of this study was to characterize the molecular profiles and degree of histologic degeneration on archival fragments of FFPE human menisci obtained during arthroscopic partial meniscectomy. We used FFPE menisci for multiplexed gene expression analysis using the NanoString nCounter® platform, and for histological assessment using a quantitative scoring system. In total, 17 archival specimens were utilized for integrated histologic and molecular analyses. The median patient age was 22 years (range: 14-62). We found that the genes with the highest normalized counts were those typically expressed in meniscal fibrocartilage. Gene expression differences were identified in patient cohorts based on age (≤40 years), including genes associated with the extracellular matrix and tissue repair. The majority of samples showed mild to moderate histologic degeneration. Based on these data, we conclude that FFPE human menisci can be effectively utilized for molecular evaluation following a storage time as long as 11 years. Statement of Clinical Significance: The integration of histological and transcriptomic analyses described in this study will be useful for future studies investigating the basis for biological classification of meniscus specimens in patients. Further exploration into the genes and pathways uncovered by this study may suggest targets for biomarker discovery and identify patients at greater risk for osteoarthritis once the meniscus is torn.
Collapse
Affiliation(s)
| | | | - Brett Croen
- Hospital for Special Surgery, NY, NY,Drexel University College of Medicine, Philadelphia, PA
| | | | | | | |
Collapse
|
5
|
Fibronectin in development and wound healing. Adv Drug Deliv Rev 2021; 170:353-368. [PMID: 32961203 DOI: 10.1016/j.addr.2020.09.005] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/26/2020] [Accepted: 09/15/2020] [Indexed: 01/15/2023]
Abstract
Fibronectin structure and composition regulate contextual cell signaling. Recent advances have been made in understanding fibronectin and its role in tissue organization and repair. This review outlines fibronectin splice variants and their functions, evaluates potential therapeutic strategies targeting or utilizing fibronectin, and concludes by discussing potential future directions to modulate fibronectin function in development and wound healing.
Collapse
|
6
|
Wang J, Wang Y, Zhang H, Gao W, Lu M, Liu W, Li Y, Yin Z. Forkhead box C1 promotes the pathology of osteoarthritis by upregulating β-catenin in synovial fibroblasts. FEBS J 2019; 287:3065-3087. [PMID: 31837247 DOI: 10.1111/febs.15178] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/17/2019] [Accepted: 12/12/2019] [Indexed: 12/14/2022]
Abstract
Osteoarthritis (OA) is a joint disease characterized by articular cartilage degeneration, and no effective treatment is available. The OA classification has shifted from a cartilage-only disease to a whole-joint disease, and the synovial membrane plays an important role. Therefore, studies are needed to identify additional genes that regulate the pathological changes in the synovial membrane to develop a promising therapeutic strategy for OA. Here, we validated that the expression of forkhead box protein C1 (FoxC1) and β-catenin was upregulated in OA synovial membranes and synovial fibroblasts (SFs). Gain- and loss-of-function studies revealed that FoxC1 overexpression promoted, whilst silencing inhibited OA synovial fibroblast (OASF) proliferation and pro-inflammatory cytokine [interleukin 6 (IL-6), interleukin 8 (IL-8) and tumour necrosis factor-α (TNF-α)] production. FoxC1 overexpression increased β-catenin mRNA, total and nuclear protein expression in OASFs and upregulated a disintegrin and metalloproteinase with thrombospondin motif 5 (ADAMTS-5), fibronectin, matrix metalloproteinase 3 (MMP3) and matrix metalloproteinase 13 (MMP13) mRNA and total protein expression in OASFs. Conversely, FoxC1 knockdown reduced β-catenin mRNA, total and nuclear protein expression in OASFs and reduced ADAMTS-5, fibronectin, MMP3 and MMP13 mRNA and total protein expression in OASFs. β-catenin mediates FoxC1-induced pathological changes (proliferation, catabolic regulation and inflammation) in OASFs. MicroRNA-200a-3p (miR-200a-3p) binds to the 3'-UTR of FoxC1 and mediates FoxC1 expression. Intra-articular FoxC1-specific siRNA transfection hindered OA development in mice. Therefore, our results demonstrate the key role FoxC1 plays in vivo and in vitro in OA synovial pathology, possibly identifying a potential novel therapeutic target for OA.
Collapse
Affiliation(s)
- Jun Wang
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, China
| | - Yin Wang
- Department of Plastic Surgery, The Fourth Affiliated Hospital of Anhui Medical University, China
| | - Hui Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, China
| | - Weilu Gao
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, China
| | - Ming Lu
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, China
| | - Wendong Liu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, China
| | - Yetian Li
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, China
| | - Zongsheng Yin
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, China
| |
Collapse
|
7
|
Profile of Matrix-Remodeling Proteinases in Osteoarthritis: Impact of Fibronectin. Cells 2019; 9:cells9010040. [PMID: 31877874 PMCID: PMC7017325 DOI: 10.3390/cells9010040] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022] Open
Abstract
The extracellular matrix (ECM) is a complex and specialized three-dimensional macromolecular network, present in nearly all tissues, that also interacts with cell surface receptors on joint resident cells. Changes in the composition and physical properties of the ECM lead to the development of many diseases, including osteoarthritis (OA). OA is a chronic degenerative rheumatic disease characterized by a progressive loss of synovial joint function as a consequence of the degradation of articular cartilage, also associated with alterations in the synovial membrane and subchondral bone. During OA, ECM-degrading enzymes, including urokinase-type plasminogen activator (uPA), matrix metalloproteinases (MMPs), and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTSs), cleave ECM components, such as fibronectin (Fn), generating fibronectin fragments (Fn-fs) with catabolic properties. In turn, Fn-fs promote activation of these proteinases, establishing a degradative and inflammatory feedback loop. Thus, the aim of this review is to update the contribution of ECM-degrading proteinases to the physiopathology of OA as well as their modulation by Fn-fs.
Collapse
|
8
|
Fibroblast-like synovial cell production of extra domain A fibronectin associates with inflammation in osteoarthritis. BMC Rheumatol 2019; 3:46. [PMID: 31819923 PMCID: PMC6886182 DOI: 10.1186/s41927-019-0093-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022] Open
Abstract
Background The pathophysiology of osteoarthritis (OA) involves wear and tear, and a state of low-grade inflammation. Tissue repair responses include transforming growth factor beta (TGFβ)-induced myofibroblast production of extracellular matrix. Fibronectins are an essential part of the extracellular matrix, and injection of fibronectin fragments into rabbit joints is a previously established animal model of OA. Fibronectin containing the ED-A domain is currently being used as drug delivery target in the development of anti-inflammatory drugs (e.g. Dekavil). Methods In this study, samples of synovial membrane were obtained from patients with knee OA undergoing joint replacement surgery. Immunostaining for ED-A fibronectin and the myofibroblast marker alpha smooth muscle actin (αSMA) was performed on fibroblast-like synovial cells (FLS) and synovial membranes. RAW 264.7 macrophages were incubated with recombinant ED-A fibronectin. Results The staining of ED-A fibronectin in OA FLS was increased by TGFβ but not by TNFα, lipopolysaccharide, or IL-6 (n = 3). ED-A fibronectin co-stained with the myofibroblast marker αSMA in both the OA FLS (n = 3) and in the OA synovial membranes (n = 8). ED-A fibronectin staining was associated with both number of lining layer cells (rho = 0.85 and p = 0.011) and sublining cells (rho = 0.88 and p = 0.007) in the OA synovium (n = 8), and co-distributed with TNFα (n = 5). Recombinant ED-A fibronectin increased the production of TNFα by RAW 264.7 macrophages (n = 3). Conclusions The disease process in OA shares features with the chronic wound healing response. Our findings support utilizing ED-A fibronectin for drug delivery or therapeutic targeting to reduce pro-inflammatory responses in OA.
Collapse
|
9
|
Jailkhani N, Ingram JR, Rashidian M, Rickelt S, Tian C, Mak H, Jiang Z, Ploegh HL, Hynes RO. Noninvasive imaging of tumor progression, metastasis, and fibrosis using a nanobody targeting the extracellular matrix. Proc Natl Acad Sci U S A 2019; 116:14181-14190. [PMID: 31068469 PMCID: PMC6628802 DOI: 10.1073/pnas.1817442116] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Extracellular matrix (ECM) deposition is a hallmark of many diseases, including cancer and fibroses. To exploit the ECM as an imaging and therapeutic target, we developed alpaca-derived libraries of "nanobodies" against disease-associated ECM proteins. We describe here one such nanobody, NJB2, specific for an alternatively spliced domain of fibronectin expressed in disease ECM and neovasculature. We showed by noninvasive in vivo immuno-PET/CT imaging that NJB2 detects primary tumors and metastatic sites with excellent specificity in multiple models of breast cancer, including human and mouse triple-negative breast cancer, and in melanoma. We also imaged mice with pancreatic ductal adenocarcinoma (PDAC) in which NJB2 was able to detect not only PDAC tumors but also early pancreatic lesions called pancreatic intraepithelial neoplasias, which are challenging to detect by any current imaging modalities, with excellent clarity and signal-to-noise ratios that outperformed conventional 2-fluorodeoxyglucose PET/CT imaging. NJB2 also detected pulmonary fibrosis in a bleomycin-induced fibrosis model. We propose NJB2 and similar anti-ECM nanobodies as powerful tools for noninvasive detection of tumors, metastatic lesions, and fibroses. Furthermore, the selective recognition of disease tissues makes NJB2 a promising candidate for nanobody-based therapeutic applications.
Collapse
Affiliation(s)
- Noor Jailkhani
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Jessica R Ingram
- Department of Cancer Immunology and Virology, Dana Farber Cancer Institute, Boston, MA 02115
| | - Mohammad Rashidian
- Program in Molecular and Cellular Medicine, Boston Children's Hospital, Boston, MA 02115
| | - Steffen Rickelt
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Chenxi Tian
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Howard Mak
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Zhigang Jiang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Hidde L Ploegh
- Program in Molecular and Cellular Medicine, Boston Children's Hospital, Boston, MA 02115
| | - Richard O Hynes
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139;
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
10
|
Desando G, Giavaresi G, Cavallo C, Bartolotti I, Sartoni F, Nicoli Aldini N, Martini L, Parrilli A, Mariani E, Fini M, Grigolo B. Autologous Bone Marrow Concentrate in a Sheep Model of Osteoarthritis: New Perspectives for Cartilage and Meniscus Repair. Tissue Eng Part C Methods 2017; 22:608-19. [PMID: 27151837 DOI: 10.1089/ten.tec.2016.0033] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Cell-based therapies are becoming a valuable tool to treat osteoarthritis (OA). This study investigated and compared the regenerative potential of bone marrow concentrate (BMC) and mesenchymal stem cells (MSC), both engineered with Hyaff(®)-11 (HA) for OA treatment in a sheep model. METHODS OA was induced via unilateral medial meniscectomy. Bone marrow was aspirated from the iliac crest, followed by concentration processes or cell isolation and expansion to obtain BMC and MSC, respectively. Treatments consisted of autologous BMC and MSC seeded onto HA. The regenerative potential of bone, cartilage, menisci, and synovia was monitored using macroscopy, histology, immunohistochemistry, and micro-computed tomography at 12 weeks post-op. Data were analyzed using the general linear model with adjusted Sidak's multiple comparison and Spearman's tests. RESULTS BMC-HA treatment showed a greater repair ability in inhibiting OA progression compared to MSC-HA, leading to a reduction of inflammation in cartilage, meniscus, and synovium. Indeed, the decrease of inflammation positively contributed to counteract the progression of fibrotic and hypertrophic processes, known to be involved in tissue failure. Moreover, the treatment with BMC-HA showed the best results in allowing meniscus regeneration. Minor healing effects were noticed at bone level for both cell strategies; however, a downregulation of subchondral bone thickness (Cs.Th) was found in both cell treatments compared to the OA group in the femur. CONCLUSION The transplantation of BMC-HA provided the best effects in supporting regenerative processes in cartilage, meniscus, and synovium and at less extent in bone. On the whole, both MSC and BMC combined with HA reduced inflammation and contributed to switch off fibrotic and hypertrophic processes. The observed regenerative potential by BMC-HA on meniscus could open new perspectives, suggesting its use not only for OA care but also for the treatment of meniscal lesions, even if further analyses are necessary to confirm its healing potential at long-term follow-up.
Collapse
Affiliation(s)
- Giovanna Desando
- 1 Laboratory RAMSES, Rizzoli Orthopedic Institute , Bologna, Italy
| | - Gianluca Giavaresi
- 2 Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute , Bologna, Italy .,3 Laboratory BITTA, Rizzoli Orthopedic Institute , Bologna, Italy
| | - Carola Cavallo
- 1 Laboratory RAMSES, Rizzoli Orthopedic Institute , Bologna, Italy
| | - Isabella Bartolotti
- 4 Laboratory of Immunorheumatology and Tissue Regeneration, Rizzoli Orthopedic Institute , Bologna, Italy
| | - Federica Sartoni
- 1 Laboratory RAMSES, Rizzoli Orthopedic Institute , Bologna, Italy
| | - Nicolò Nicoli Aldini
- 2 Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute , Bologna, Italy .,3 Laboratory BITTA, Rizzoli Orthopedic Institute , Bologna, Italy
| | - Lucia Martini
- 2 Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute , Bologna, Italy .,3 Laboratory BITTA, Rizzoli Orthopedic Institute , Bologna, Italy
| | | | - Erminia Mariani
- 4 Laboratory of Immunorheumatology and Tissue Regeneration, Rizzoli Orthopedic Institute , Bologna, Italy .,5 Department of Medical and Surgical Science, University of Bologna , Bologna, Italy
| | - Milena Fini
- 2 Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute , Bologna, Italy .,3 Laboratory BITTA, Rizzoli Orthopedic Institute , Bologna, Italy
| | - Brunella Grigolo
- 1 Laboratory RAMSES, Rizzoli Orthopedic Institute , Bologna, Italy .,4 Laboratory of Immunorheumatology and Tissue Regeneration, Rizzoli Orthopedic Institute , Bologna, Italy
| |
Collapse
|
11
|
Malara A, Gruppi C, Celesti G, Romano B, Laghi L, De Marco L, Muro AF, Balduini A. Brief Report: Alternative Splicing of Extra Domain A (EIIIA) of Fibronectin Plays a Tissue-Specific Role in Hematopoietic Homeostasis. Stem Cells 2016; 34:2263-8. [PMID: 27090359 DOI: 10.1002/stem.2381] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 03/14/2016] [Accepted: 03/19/2016] [Indexed: 12/18/2022]
Abstract
Fibronectin (FN) is a major extracellular matrix protein implicated in cell adhesion and differentiation in the bone marrow (BM) environment. Alternative splicing of FN gene results in the generation of protein variants containing an additional EIIIA domain that sustains cell proliferation or differentiation during physiological or pathological tissue remodeling. To date its expression and role in adult hematopoiesis has not been explored. In our research, we demonstrate that during physiological hematopoiesis a small fraction of BM derived FN contains the EIIIA domain and that mice constitutively including (EIIIA(+/+) ) or excluding (EIIIA(-/-) ) the EIIIA exon present comparable levels of hematopoietic stem cells, myeloid and lymphoid progenitors within BM. Moreover, only minor alterations were detected in blood parameters and in hematopoietic frequencies of BM granulocytes/monocytes and B cells. As opposed to other tissues, unique compensatory mechanisms, such as increased FN accumulation and variable expression of the EIIIA receptors, Toll like receptor-4 and alpha9 integrin subunit, characterized the BM of these mice. Our data demonstrate that FN is a fundamental component of the hematopoietic tissue and that the EIIIA exon may play a key role in modulating hematopiesis in conditions of BM stress or diseases. Stem Cells 2016;34:2263-2268.
Collapse
Affiliation(s)
- Alessandro Malara
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy
| | - Cristian Gruppi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Giuseppe Celesti
- Laboratory of Molecular Gastroenterology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Bina Romano
- Immunohaematology and Transfusion Service, Apheresis and Cell Therapy Unit, IRCCS San Matteo Foundation, Pavia, Italy
| | - Luigi Laghi
- Laboratory of Molecular Gastroenterology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Luigi De Marco
- Department of Laboratory Diagnostics and Cell Therapy, National Cancer Center (IRCCS CRO), Aviano, Italy
| | - Andrés F Muro
- The International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy.,Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| |
Collapse
|
12
|
Detecting new microRNAs in human osteoarthritic chondrocytes identifies miR-3085 as a human, chondrocyte-selective, microRNA. Osteoarthritis Cartilage 2016; 24:534-43. [PMID: 26497608 PMCID: PMC4769094 DOI: 10.1016/j.joca.2015.10.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 10/06/2015] [Accepted: 10/12/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To use deep sequencing to identify novel microRNAs (miRNAs) in human osteoarthritic cartilage which have a functional role in chondrocyte phenotype or function. DESIGN A small RNA library was prepared from human osteoarthritic primary chondrocytes using in-house adaptors and analysed by Illumina sequencing. Novel candidate miRNAs were validated by northern blot and qRT-PCR. Expression was measured in cartilage models. Targets of novel candidates were identified by microarray and computational analysis, validated using 3'-UTR-luciferase reporter plasmids. Protein levels were assessed by western blot and functional analysis by cell adhesion. RESULTS We identified 990 known miRNAs and 1621 potential novel miRNAs in human osteoarthritic chondrocytes, 60 of the latter were expressed in all samples assayed. MicroRNA-140-3p was the most highly expressed microRNA in osteoarthritic cartilage. Sixteen novel candidate miRNAs were analysed further, of which six remained after northern blot analysis. Three novel miRNAs were regulated across models of chondrogenesis, chondrocyte differentiation or cartilage injury. One sequence (novel #11), annotated in rodents as microRNA-3085-3p, was preferentially expressed in cartilage, dependent on chondrocyte differentiation and, in man, is located in an intron of the cartilage-expressed gene CRTAC-1. This microRNA was shown to target the ITGA5 gene directly (which encodes integrin alpha5) and inhibited adhesion to fibronectin (dependent on alpha5beta1 integrin). CONCLUSION Deep sequencing has uncovered many potential microRNA candidates expressed in human cartilage. At least three of these show potential functional interest in cartilage homeostasis and osteoarthritis (OA). Particularly, novel #11 (microRNA-3085-3p) which has been identified for the first time in man.
Collapse
|