1
|
Shlykov MA, Giles EM, Kelly MP, Lin SJ, Pham VT, Saccone NL, Yanik EL. Evaluation of Genetic and Nongenetic Risk Factors for Degenerative Cervical Myelopathy. Spine (Phila Pa 1976) 2023; 48:1117-1126. [PMID: 37249397 PMCID: PMC10524420 DOI: 10.1097/brs.0000000000004735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/15/2023] [Indexed: 05/31/2023]
Abstract
STUDY DESIGN Cohort study. OBJECTIVE We aimed to evaluate the associations of genetic and nongenetic factors with degenerative cervical myelopathy (DCM). SUMMARY OF BACKGROUND DATA There is mounting evidence for an inherited predisposition for DCM, but uncertainty remains regarding specific genetic markers involved. Similarly, nongenetic factors are thought to play a role. MATERIALS AND METHODS Using diagnosis codes from hospital records linked to the UK Biobank cohort, patients with cervical spondylosis were identified followed by the identification of a subset with DCM. Nongenetic variables evaluated included age, sex, race, Townsend deprivation index, body mass index, occupational demands, osteoporosis, and smoking. Genome-wide association analyses were conducted using logistic regression adjusted for age, sex, population principal components, and follow-up. RESULTS A total of 851 DCM cases out of 2787 cervical spondylosis patients were identified. Several nongenetic factors were independently associated with DCM including age [odds ratio (OR)=1.11, 95% CI=1.01-1.21, P =0.024], male sex (OR=1.63, 95% CI=1.37-1.93, P <0.001), and relative socioeconomic deprivation (OR=1.03, 95% CI=1.00-1.06, P =0.030). Asian race was associated with lower DCM risk (OR=0.44, 95% CI=0.22-0.85, P =0.014). We did not identify genome-wide significant (≤5×10 -8 ) single-nucleotide polymorphisms (SNPs) associated with DCM. The strongest genome-wide signals were at SNP rs67256809 in the intergenic region of the genes LINC02582 and FBXO15 on chromosome 18 ( P =1.12×10 -7 ) and rs577081672 in the GTPBP1 gene on chromosome 22 ( P =2.9×10 -7 ). No SNPs reported in prior DCM studies were significant after adjusting for replication attempts. CONCLUSIONS Increasing age, male sex, and relative socioeconomic deprivation were identified as independent risk factors for DCM, whereas Asian race was inversely associated. SNPs of potential interest were identified in GTPBP1 and an intergenic region on chromosome 18, but these associations did not reach genome-wide significance. Identification of genetic and nongenetic DCM susceptibility markers may guide understanding of DCM disease processes, inform risk, guide prevention and potentially inform surgical outcomes. LEVEL OF EVIDENCE Prognostic level III.
Collapse
Affiliation(s)
| | | | | | - Shiow J Lin
- Department of Genetics, Washington University School of Medicine, St. Louis, MO
| | | | - Nancy L Saccone
- Department of Genetics, Washington University School of Medicine, St. Louis, MO
| | | |
Collapse
|
2
|
Wu Y, Bai M, Yu Y, Wang Y, Zhang Y. Association of LINC-PINT polymorphisms with lumbar disc herniation risk among Chinese Han population: a case control study. J Orthop Surg Res 2023; 18:585. [PMID: 37553573 PMCID: PMC10410956 DOI: 10.1186/s13018-023-04052-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/27/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Lumbar disc herniation (LDH) is a complex spinal disease, with multiple genetic polymorphisms being related to its risk. Nevertheless, the role of LINC-PINT polymorphisms in LDH risk has remained unknown. Therefore, this study aimed to investigate the association between LINC-PINT polymorphisms and LDH risk. METHODS DNA was extracted from 504 LDH patients and 500 healthy controls. Three single nucleotide polymorphisms (SNPs) in LINC-PINT were selected and genotyped using Agena MassARRAY. We used logistic regression analysis to calculate odds ratios (ORs) and 95% confidence intervals (95% CIs) under multiple genetic models to evaluate the association between LINC-PINT polymorphisms and LDH risk. Haploview 4.2 and SNPStats software were used to evaluate the linkage strength of SNPs and the correlation between haplotypes and LDH risk. The impact of SNP-SNP interactions on LDH risk was analyzed using multi-factor dimensionality reduction (MDR). RESULTS Results showed that rs157916 (G vs. A: OR = 1.23, FDR-p = 0.029) and rs7801029 (G vs. C: OR = 1.39, FDR-p = 0.006; GG vs. CC: OR = 2.34, FDR-p = 0.038; recessive: OR = 2.13, FDR-p = 0.045; additive: OR = 1.39, FDR-p = 0.030) were associated with an increased risk of LDH. Furthermore, LINC-PINT rs157916 and rs780129 were found to be significantly associated with LDH risk in males. The "GGG" haplotype was associated with increased LDH risk (OR = 1.41, FDR-p = 0.006). MDR analysis indicated that the interaction between rs7801029 and rs16873842 was associated with an increased risk of LDH (OR = 1.47, p = 0.004). Additionally, there were significant differences in C-reactive protein levels among different genotypes of rs157916 and rs780129 (p < 0.05). CONCLUSION This study suggests that LINC-PINT gene polymorphisms (rs157916 and rs7801029) are considered risk factors for LDH in the Chinese Han population and provide a scientific basis for early screening, prevention, and diagnosis of LDH.
Collapse
Affiliation(s)
- Yimin Wu
- Development of spinal surgery, the Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010110, Inner Mongolia, China
| | - Ming Bai
- Development of spinal surgery, the Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010110, Inner Mongolia, China
| | - Yingnan Yu
- Development of spinal surgery, the Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010110, Inner Mongolia, China
| | - Yupeng Wang
- Development of spinal surgery, the Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010110, Inner Mongolia, China
| | - Yuan Zhang
- School of Health Management, Inner Mongolia Medical University, Hohhot, 010110, Inner Mongolia, China.
| |
Collapse
|
3
|
Samanta A, Lufkin T, Kraus P. Intervertebral disc degeneration-Current therapeutic options and challenges. Front Public Health 2023; 11:1156749. [PMID: 37483952 PMCID: PMC10359191 DOI: 10.3389/fpubh.2023.1156749] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023] Open
Abstract
Degeneration of the intervertebral disc (IVD) is a normal part of aging. Due to the spine's declining function and the development of pain, it may affect one's physical health, mental health, and socioeconomic status. Most of the intervertebral disc degeneration (IVDD) therapies today focus on the symptoms of low back pain rather than the underlying etiology or mechanical function of the disc. The deteriorated disc is typically not restored by conservative or surgical therapies that largely focus on correcting symptoms and structural abnormalities. To enhance the clinical outcome and the quality of life of a patient, several therapeutic modalities have been created. In this review, we discuss genetic and environmental causes of IVDD and describe promising modern endogenous and exogenous therapeutic approaches including their applicability and relevance to the degeneration process.
Collapse
Affiliation(s)
| | | | - Petra Kraus
- Department of Biology, Clarkson University, Potsdam, NY, United States
| |
Collapse
|
4
|
Han P, Jiang F, Zhang L. The role of ADAMTS6 and ADAMTS17 polymorphisms in susceptibility to lumbar disc herniation in Chinese Han population. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2023; 32:1106-1114. [PMID: 36810712 DOI: 10.1007/s00586-023-07586-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/08/2023] [Accepted: 02/05/2023] [Indexed: 02/24/2023]
Abstract
PURPOSE LDH caused by lumbar disc degeneration is associated with genetic factors. However, the role of ADAMTS6 and ADAMTS17 genes in LDH risk is still unknown. METHODS To investigate the interaction between ADAMTS6 and ADAMTS17 variants in the susceptibility of LDH, five SNPs were genotyped in 509 patients and 510 healthy individuals. The experiment used logistic regression to calculate odds ratio (OR) and 95% confidence interval (CI). Multi-factor dimensionality reduction (MDR) was chosen to evaluate impact of interaction of SNP-SNP on susceptibility to LDH. RESULTS ADAMTS17-rs4533267 is significantly associated with reducing risk of LDH (OR = 0.72, 95% CI = 0.57-0.90, p = 0.005). Stratified analysis indicates that ADAMTS17-rs4533267 is significantly associated with the reducing risk of LDH among participants aged ≤ 48 years old. In addition, we observed that ADAMTS6-rs2307121 was associated with increasing risk of LDH in females. MDR analysis shows that single-locus model composed by ADAMTS17-rs4533267 can be chosen as the best model for predicting susceptibility to LDH (CVC = 10/10, test accuracy = 0.543). CONCLUSION ADAMTS6-rs2307121 and ADAMTS17-rs4533267 are potentially associated with LDH susceptibility. In particular, ADAMTS17-rs4533267 has a strong association with reducing risk of LDH.
Collapse
Affiliation(s)
- Pengbo Han
- Traditional Chinese Medicine Department, The Second Affiliated Hospital of Xi'an Medical College, Xi'an, 710000, Shaanxi, China
| | - Feng Jiang
- Orthopaedics, The Third Affiliated Hospital of Xi'an Medical College, Xi'an, 710000, Shaanxi, China
| | - Lin Zhang
- Orthopaedics, The Second Affiliated Hospital of Xi'an Medical College, 167 Fangdong Street, Textile City, Baqiao District, Xi'an, 710000, Shaanxi, China.
| |
Collapse
|
5
|
Macrophages and Intervertebral Disc Degeneration. Int J Mol Sci 2023; 24:ijms24021367. [PMID: 36674887 PMCID: PMC9863885 DOI: 10.3390/ijms24021367] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/14/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
The intervertebral disc (IVD) aids in motion and acts to absorb energy transmitted to the spine. With little inherent regenerative capacity, degeneration of the intervertebral disc results in intervertebral disc disease, which contributes to low back pain and significant disability in many individuals. Increasing evidence suggests that IVD degeneration is a disease of the whole joint that is associated with significant inflammation. Moreover, studies show elevated macrophage accumulation within the IVD with increasing levels of disease severity; however, we still need to understand the roles, be they causative or consequential, of macrophages during the degenerative process. In this narrative review, we discuss hallmarks of IVD degeneration, showcase evidence of macrophage involvement during disc degeneration, and explore burgeoning research aimed at understanding the molecular pathways regulating macrophage functions during intervertebral disc degeneration.
Collapse
|
6
|
Bahar ME, Hwang JS, Ahmed M, Lai TH, Pham TM, Elashkar O, Akter KM, Kim DH, Yang J, Kim DR. Targeting Autophagy for Developing New Therapeutic Strategy in Intervertebral Disc Degeneration. Antioxidants (Basel) 2022; 11:antiox11081571. [PMID: 36009290 PMCID: PMC9405341 DOI: 10.3390/antiox11081571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 12/25/2022] Open
Abstract
Intervertebral disc degeneration (IVDD) is a prevalent cause of low back pain. IVDD is characterized by abnormal expression of extracellular matrix components such as collagen and aggrecan. In addition, it results in dysfunctional growth, senescence, and death of intervertebral cells. The biological pathways involved in the development and progression of IVDD are not fully understood. Therefore, a better understanding of the molecular mechanisms underlying IVDD could aid in the development of strategies for prevention and treatment. Autophagy is a cellular process that removes damaged proteins and dysfunctional organelles, and its dysfunction is linked to a variety of diseases, including IVDD and osteoarthritis. In this review, we describe recent research findings on the role of autophagy in IVDD pathogenesis and highlight autophagy-targeting molecules which can be exploited to treat IVDD. Many studies exhibit that autophagy protects against and postpones disc degeneration. Further research is needed to determine whether autophagy is required for cell integrity in intervertebral discs and to establish autophagy as a viable therapeutic target for IVDD.
Collapse
Affiliation(s)
- Md Entaz Bahar
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Jin Seok Hwang
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Mahmoud Ahmed
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Trang Huyen Lai
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Trang Minh Pham
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Omar Elashkar
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Kazi-Marjahan Akter
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, GyeongNam, Korea
| | - Dong-Hee Kim
- Department of Orthopaedic Surgery, Institute of Health Sciences, Gyeongsang National University Hospital and Gyeongsang National University College of Medicine, Jinju 52727, GyeongNam, Korea
| | - Jinsung Yang
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Deok Ryong Kim
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
- Correspondence: ; Tel.: +82-55-772-8054
| |
Collapse
|
7
|
McDonnell JM, Rigney B, Storme J, Ahern DP, Cunniffe G, Butler JS. Pharmacogenetic profiling and individualised therapy in the treatment of degenerative spinal conditions. Ir J Med Sci 2022:10.1007/s11845-022-03112-9. [PMID: 35962253 DOI: 10.1007/s11845-022-03112-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/20/2022] [Indexed: 10/15/2022]
Abstract
Patients presenting with degenerative spinal changes are often poor surgical candidates due to associated co-morbidities, frailty, or sarcopenia. Additionally, surgeries of a degenerative spine can prove difficult due to the distortion of normal surgical anatomy. Therefore, many patients are managed conservatively with a variety of modalities, including over-the-counter and prescription medications. Nevertheless, several patients do not experience adequate relief from pain with analgesic medications, precipitating multiple hospital visits, and usage of resources. As a result, back pain is regarded as a major economic burden, with total costs of associated treatment exceeding $100 billion annually. Pharmacogenetics is a relatively novel method of evaluating an individual's response to analgesic medications, through analysis of germline polymorphisms. It entails obtaining a genetic sample, often via buccal swab or peripheral blood sample, and genetic analysis achieved through either polymerase chain reaction +/- Sanger sequencing, microassays, restriction length fragment polymorphism analysis, or genetic library preparation and next generation sequencing. The potential efficacy of pharmacogenetic analysis has been highlighted across several specialities to date. However, a paucity of evidence exists regarding spine surgery populations. Nevertheless, regular prospective pharmacogenetic analysis may ultimately prove beneficial when concerning degenerative spinal cohorts due to aforementioned surgical and economic considerations. The purpose of this narrative review is to outline how metaboliser profile variants affect the pharmacokinetics of specific analgesia used to treat back pain, and to discuss the current potential and limitations of employing regular pharmacogenetic analysis for spine surgery populations with degenerative conditions.
Collapse
Affiliation(s)
- Jake M McDonnell
- National Spinal Injuries Unit, Mater Misericordiae University Hospital, Eccles St., Dublin, D07 R2WY, Ireland.
| | - Brian Rigney
- National Spinal Injuries Unit, Mater Misericordiae University Hospital, Eccles St., Dublin, D07 R2WY, Ireland
| | - James Storme
- National Spinal Injuries Unit, Mater Misericordiae University Hospital, Eccles St., Dublin, D07 R2WY, Ireland
| | - Daniel P Ahern
- National Spinal Injuries Unit, Mater Misericordiae University Hospital, Eccles St., Dublin, D07 R2WY, Ireland.,School of Medicine, Trinity College, Dublin, Ireland
| | - Gráinne Cunniffe
- National Spinal Injuries Unit, Mater Misericordiae University Hospital, Eccles St., Dublin, D07 R2WY, Ireland
| | - Joseph S Butler
- National Spinal Injuries Unit, Mater Misericordiae University Hospital, Eccles St., Dublin, D07 R2WY, Ireland.,School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
8
|
Bermudez-Lekerika P, Crump KB, Tseranidou S, Nüesch A, Kanelis E, Alminnawi A, Baumgartner L, Muñoz-Moya E, Compte R, Gualdi F, Alexopoulos LG, Geris L, Wuertz-Kozak K, Le Maitre CL, Noailly J, Gantenbein B. Immuno-Modulatory Effects of Intervertebral Disc Cells. Front Cell Dev Biol 2022; 10:924692. [PMID: 35846355 PMCID: PMC9277224 DOI: 10.3389/fcell.2022.924692] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/20/2022] [Indexed: 11/29/2022] Open
Abstract
Low back pain is a highly prevalent, chronic, and costly medical condition predominantly triggered by intervertebral disc degeneration (IDD). IDD is often caused by structural and biochemical changes in intervertebral discs (IVD) that prompt a pathologic shift from an anabolic to catabolic state, affecting extracellular matrix (ECM) production, enzyme generation, cytokine and chemokine production, neurotrophic and angiogenic factor production. The IVD is an immune-privileged organ. However, during degeneration immune cells and inflammatory factors can infiltrate through defects in the cartilage endplate and annulus fibrosus fissures, further accelerating the catabolic environment. Remarkably, though, catabolic ECM disruption also occurs in the absence of immune cell infiltration, largely due to native disc cell production of catabolic enzymes and cytokines. An unbalanced metabolism could be induced by many different factors, including a harsh microenvironment, biomechanical cues, genetics, and infection. The complex, multifactorial nature of IDD brings the challenge of identifying key factors which initiate the degenerative cascade, eventually leading to back pain. These factors are often investigated through methods including animal models, 3D cell culture, bioreactors, and computational models. However, the crosstalk between the IVD, immune system, and shifted metabolism is frequently misconstrued, often with the assumption that the presence of cytokines and chemokines is synonymous to inflammation or an immune response, which is not true for the intact disc. Therefore, this review will tackle immunomodulatory and IVD cell roles in IDD, clarifying the differences between cellular involvements and implications for therapeutic development and assessing models used to explore inflammatory or catabolic IVD environments.
Collapse
Affiliation(s)
- Paola Bermudez-Lekerika
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone and Joint Program, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, Bern, Switzerland.,Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, Medical Faculty, University of Bern, Bern, Switzerland
| | - Katherine B Crump
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone and Joint Program, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, Bern, Switzerland.,Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, Medical Faculty, University of Bern, Bern, Switzerland
| | | | - Andrea Nüesch
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | - Exarchos Kanelis
- ProtATonce Ltd., Athens, Greece.,School of Mechanical Engineering, National Technical University of Athens, Zografou, Greece
| | - Ahmad Alminnawi
- GIGA In Silico Medicine, University of Liège, Liège, Belgium.,Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | | | | | - Roger Compte
- Twin Research and Genetic Epidemiology, St Thomas' Hospital, King's College London, London, United Kingdom
| | - Francesco Gualdi
- Institut Hospital Del Mar D'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Leonidas G Alexopoulos
- ProtATonce Ltd., Athens, Greece.,School of Mechanical Engineering, National Technical University of Athens, Zografou, Greece
| | - Liesbet Geris
- GIGA In Silico Medicine, University of Liège, Liège, Belgium.,Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium.,Biomechanics Research Unit, KU Leuven, Leuven, Belgium
| | - Karin Wuertz-Kozak
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, United States.,Spine Center, Schön Klinik München Harlaching Academic Teaching Hospital and Spine Research Institute of the Paracelsus Private Medical University Salzburg (Austria), Munich, Germany
| | - Christine L Le Maitre
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | | | - Benjamin Gantenbein
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone and Joint Program, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, Bern, Switzerland.,Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, Medical Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
9
|
Sedky NK, Arafa RK. Undergraduate laboratory series that employs a complete polymerase chain reaction-restriction fragment length polymorphism experiment for determination of a single nucleotide polymorphism in CYP2R1 gene. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 50:193-200. [PMID: 35084793 DOI: 10.1002/bmb.21604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Nowadays, novel Biochemistry lab techniques are being introduced at a very fast pace in scientific research. This requires development of new labs for undergraduate Biochemistry courses to equip the students with up-to-date techniques. However, the time limit of Biochemistry labs for undergraduate students represents a major obstacle. This article presents a clear set of laboratory exercises designed to introduce students to the use of polymerase chain reaction-restriction-fragment length polymorphism (PCR-RFLP) as a means of detection of genetic variants. Three consecutive lab experiments have been designed for the undergraduate students to serve this purpose. The first session was performed in a computer lab (dry lab) where students were taught how to obtain a specific gene sequence, identify an exact single nucleotide polymorphism location, choose the target sequence for amplification, design specific primers for this particular sequence and choose the most suitable restriction enzyme from web tools. The second and third lab sessions were performed as wet labs where in the second lab session, students optimized PCR conditions and performed a successful PCR. The PCR products were kept for use in the third lab session where they utilized the selected restriction enzyme and carried out gel electrophoresis to determine the exact genotype.
Collapse
Affiliation(s)
- Nada K Sedky
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Cairo, Egypt
- Drug Design and Discovery Laboratory, University of Science and Technology, Zewail City of Science and Technology, Cairo, Egypt
| | - Reem K Arafa
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Cairo, Egypt
- Drug Design and Discovery Laboratory, University of Science and Technology, Zewail City of Science and Technology, Cairo, Egypt
| |
Collapse
|
10
|
Wang X, Tang W, Su Q, Yao J, Huang X, Long Q, Wu X, Xia Q, Long X. Single-nucleotide polymorphisms in the coding region of a disintegrin and metalloproteinase with thrombospondin motifs 4 and hepatocellular carcinoma: A retrospective case-control study. Cancer Med 2019; 8:7869-7880. [PMID: 31663692 PMCID: PMC6912020 DOI: 10.1002/cam4.2646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 09/22/2019] [Accepted: 10/10/2019] [Indexed: 02/06/2023] Open
Abstract
Previous studies have shown that single-nucleotide polymorphisms (SNPs) of a disintegrin and metalloproteinase with thrombospondin type 1 motif 4 (ADAMTS4) may involve in the pathogenesis of some diseases. However, it is not clear whether they are associated with hepatocellular carcinoma (HCC). A hospital-based case-control study, including 862 cases with HCC and 1120 controls, was conducted to assess the effects of 258 SNPs in the coding regions of ADAMTS4 on HCC risk and prognosis. We found that six SNPs in ADAMTS4 were differential distribution between cases and controls via the primary screening analyses; however, only rs538321148 and rs1014509103 polymorphisms were further identified to modify the risk of HCC (odds ratio: 2.73 and 2.95; 95% confidence interval, 2.28-3.29 and 2.43-3.58; P-value, 5.73 × 10-27 and 1.36 × 10-27 , respectively). Significant interaction between these two SNPs and two known causes of hepatitis B virus and aflatoxin B1 were also observed. Furthermore, rs538321148 and rs1014509103 polymorphisms were associated not only with clinicopathological features of tumor such as tumor stage and grade, microvessel density, and vessel metastasis, but with poor overall survival. Additionally, these SNPs significantly downregulated ADATMS4 expression in tumor tissues. These data suggest that SNPs in the coding region of ADAMTS4, such as rs538321148 and rs1014509103, may be potential biomarkers for predicting HCC risk and prognosis.
Collapse
Affiliation(s)
- Xing‐Zhizi Wang
- Department of PathologyThe Affiliated Hospital of Youjiang Medical University for NationalitiesBaiseP.R. China
| | - Wei‐Zhong Tang
- Department of Gastrointestinal SurgeryThe Affiliated Tumor HospitalGuangxi Medical UniversityNanningP.R. China
| | - Qun‐Ying Su
- Department of PathologyThe Affiliated Hospital of Youjiang Medical University for NationalitiesBaiseP.R. China
| | - Jin‐Guang Yao
- Department of PathologyThe Affiliated Hospital of Youjiang Medical University for NationalitiesBaiseP.R. China
| | - Xiao‐Ying Huang
- Department of PathologyThe Affiliated Hospital of Youjiang Medical University for NationalitiesBaiseP.R. China
| | - Qin‐Qin Long
- Department of PathologyThe Affiliated Hospital of Youjiang Medical University for NationalitiesBaiseP.R. China
| | - Xue‐Min Wu
- Department of PathologyThe Affiliated Hospital of Youjiang Medical University for NationalitiesBaiseP.R. China
| | - Qiang Xia
- Department of Liver SurgerySchool of MedicineRen Ji HospitalShanghai Jiao Tong UniversityShanghaiP.R. China
| | - Xi‐Dai Long
- Department of PathologyThe Affiliated Hospital of Youjiang Medical University for NationalitiesBaiseP.R. China
- Department of Liver SurgerySchool of MedicineRen Ji HospitalShanghai Jiao Tong UniversityShanghaiP.R. China
| |
Collapse
|
11
|
Yang X, Li F, Xin D, Huang Z, Xue J, Wang B, Da Y, Xing W, Zhu Y. Investigation of the STOX1 polymorphism on lumbar disc herniation. Mol Genet Genomic Med 2019; 8:e1038. [PMID: 31724315 PMCID: PMC6978251 DOI: 10.1002/mgg3.1038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 09/20/2019] [Accepted: 10/16/2019] [Indexed: 01/17/2023] Open
Abstract
Background Lumbar disc herniation (LDH) is a common musculoskeletal disorder affliction and associated with several genes polymorphism. Storkhead box 1 (STOX1) gene is a transcriptional factor related with several signaling pathways including inflammatory pathway. However, little is known about single‐nucleotide polymorphisms (SNPs) of STOX1 associated with LDH risk. Methods We conducted a case–control study among 508 LDH cases and well‐matched 508 controls, and six candidate SNPs in STOX1 were genotyped by Agena MassARRAY. Chi‐squared test, genetic model, and haploview analysis were used to evaluate associations. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated by unconditional logistic regression. Results In the allelic model analysis, we found the minor allele “T” of rs7903209 and “A” of rs4472827 were associated with an increased risk of LDH (p = .029, p = .016). Furthermore, in the genotype model analysis, rs7903209 polymorphism was associated with the increased susceptibility of LDH based on dominant (p = .033) and additive model (p = .024); and rs4472827 variant was found to play a harmful role in the LDH risk based on genotype (p = .014), dominant (p = .012), and additive model (p = .015). In the haplotype analysis, the haplotype “GT” in block (rs10998461 and rs10998468) decreased LDH risk (OR = 0.7, 95% CI = 0.52–0.93, p = .016). Functional assessment indicated that rs7903209 and rs4472827 polymorphisms may influence the expression of STOX1. Conclusion Our results provide evidence for polymorphisms of rs7903209 and rs4472827 in STOX1 associated with LDH risk in Chinese Han population.
Collapse
Affiliation(s)
- Xuejun Yang
- The Second Affiliated Hospital of Inner, Mongolia Medical University, Hohhot, China
| | - Feng Li
- The Second Affiliated Hospital of Inner, Mongolia Medical University, Hohhot, China
| | - Daqi Xin
- The Second Affiliated Hospital of Inner, Mongolia Medical University, Hohhot, China
| | - Zhi Huang
- The Second Affiliated Hospital of Inner, Mongolia Medical University, Hohhot, China
| | - Jianmin Xue
- Inner Mongolia Medical University, Hohhot, China
| | - Bo Wang
- Inner Mongolia Medical University, Hohhot, China
| | - Yifeng Da
- Inner Mongolia Medical University, Hohhot, China
| | - Wenhua Xing
- The Second Affiliated Hospital of Inner, Mongolia Medical University, Hohhot, China
| | - Yong Zhu
- The Second Affiliated Hospital of Inner, Mongolia Medical University, Hohhot, China
| |
Collapse
|
12
|
Ji D, Xing W, Li F, Huang Z, Zheng W, Hu B, Niu F, Zhu Y, Yang X. Correlation of EYS polymorphisms with lumbar disc herniation risk among Han Chinese population. Mol Genet Genomic Med 2019; 7:e890. [PMID: 31359629 PMCID: PMC6732306 DOI: 10.1002/mgg3.890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/05/2019] [Accepted: 07/08/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Lumbar disc herniation (LDH) is a common spinal disease in clinical practice. Once lumbar disc herniation occurs, it seriously reduces patient's quality of life. The EYS (eyes shut homolog) was discovered in recent years and it may be related to lumbar disc herniation. So we conducted a case-control study to explore the relationship between EYS polymorphism and lumbar disc herniation risk. METHODS We selected 5 single-nucleotide polymorphisms (SNPs) of EYS gene in a case-control study with 508 cases and 508 healthy controls to evaluate the relatedness by using genetic model, haplotype, and stratification analysis. RESULTS We found that the minor alleles of rs62413038 (OR = 1.21, 95%CI: 1.01-1.43, p = .036) and rs9450607 (OR = 1.26, 95% CI: 1.05-1.53, p = .016) were associated with an increased risk of lumbar disc herniation in the allelic model analysis. In the genotypic model analysis, rs62413038 displayed a significantly increased risk of lumbar disc herniation in log-additive models (OR = 1.20, 95% CI: 1.01-1.43, p = .039). While the rs9450607 was also obviously associated with an increased lumbar disc herniation risk in recessive (OR = 1.98, 95% CI: 1.24-3.13, p = .004) and log-additive models (OR = 1.27, 95% CI: 1.05-1.55, p = .014). In addition, in the haplotype analyses of the SNPs, we found that the "CGGA" haplotype of rs1482456, rs9342097, rs9450607, and rs7757884 was associated with lumbar disc herniation. (OR = 0.52, 95% CI: 0.30-0.89, p = .017). CONCLUSION These results suggest that EYS polymorphism may be associated with lumbar disc herniation among Han Chinese population. It also opens up a new exploration direction for the etiology of lumbar disc herniation.
Collapse
Affiliation(s)
- Demin Ji
- Inner Mongolia Medical University, Hohhot, China.,The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Wenhua Xing
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Feng Li
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Zhi Huang
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Wenkai Zheng
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Baoyang Hu
- Inner Mongolia Medical University, Hohhot, China.,The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - FangLin Niu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, China
| | - Yong Zhu
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Xuejun Yang
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
13
|
Yang X, Guo X, Huang Z, Da Y, Xing W, Li F, Li M, Sun K, Jia H, Zhu Y. CHRNA5/CHRNA3 gene cluster is a risk factor for lumbar disc herniation: a case-control study. J Orthop Surg Res 2019; 14:243. [PMID: 31362771 PMCID: PMC6668080 DOI: 10.1186/s13018-019-1254-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 07/02/2019] [Indexed: 12/13/2022] Open
Abstract
Background Lumbar disc herniation, a type of chronic low back pain syndrome, is caused by the lumbar intervertebral disk degeneration. Genetic variation in the CHRNA5/CHRNA3 has shown strong associations with smoking-related diseases. This study’s aim is to test whether single-nucleotide polymorphisms in the CHRNA5/CHRNA3 gene are associated with lumbar disc herniation risk. Methods The genotype frequency distributions of the polymorphisms were detected by polymerase chain reaction-restriction fragment length polymorphism in 380 lumbar disc herniation patients (case group) and 400 healthy individuals (control group). Allelic, genotypic, and haplotype analyses were performed. Results We found that the individuals with rs8040868 CT genotype had a 0.46-fold higher risk of lumbar disc herniation than those with rs8040868 TT genotype, in men group (OR = 0.46, 95% CI 0.25–0.84, p = 0.012). Also among women, rs8040868 CT + CC genotype still reduced the risk of lumbar disc herniation under the dominant model (OR = 0.50, 95% CI 0.28–0.89, p = 0.019). Haplotype analysis showed that compared with the CHRNA5 “TACAACCG” wild-type, the “TACACCCG” haplotype was found to be associated with a decreased risk of lumbar disc herniation (LDH) (OR = 0.79, 95% CI 0.63–1.00, p = 0.047), while, in the less than 50-year-old group, CHRNA5 “TACACCCG” increased the risk of LDH (OR = 1.46, 95% CI 1.01–2.13, p = 0.047). Conclusions Our data suggest that gene variance in the CHRNA5/CHRNA3 is associated with risk of lumbar disc herniation in the case-control study.
Collapse
Affiliation(s)
- Xuejun Yang
- Spine (Thoracic and Vertebra) Department, the Second Affiliated Hospital of Inner Mongolia University, #1 Yingfang Road, Hohhot, 010050, Inner Mongolia, China
| | - Xiaodong Guo
- Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, China
| | - Zhi Huang
- Spine (Thoracic and Vertebra) Department, the Second Affiliated Hospital of Inner Mongolia University, #1 Yingfang Road, Hohhot, 010050, Inner Mongolia, China
| | - Yifeng Da
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Wenhua Xing
- Spine (Thoracic and Vertebra) Department, the Second Affiliated Hospital of Inner Mongolia University, #1 Yingfang Road, Hohhot, 010050, Inner Mongolia, China
| | - Feng Li
- Spine (Thoracic and Vertebra) Department, the Second Affiliated Hospital of Inner Mongolia University, #1 Yingfang Road, Hohhot, 010050, Inner Mongolia, China
| | - Manglai Li
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Ke Sun
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Haiyu Jia
- The Affiliated Hospital of Inner Mongolia Medical College, #1 North Tongdao Road, Hohhot, 010020, Inner Mongolia, China.
| | - Yong Zhu
- Spine (Thoracic and Vertebra) Department, the Second Affiliated Hospital of Inner Mongolia University, #1 Yingfang Road, Hohhot, 010050, Inner Mongolia, China.
| |
Collapse
|
14
|
Yang X, Jia H, Xing W, Li F, Li M, Sun K, Zhu Y. Genetic variants in COL11A2 of lumbar disk degeneration among Chinese Han population. Mol Genet Genomic Med 2018; 7:e00524. [PMID: 30548218 PMCID: PMC6393657 DOI: 10.1002/mgg3.524] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/05/2018] [Accepted: 11/05/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Lumbar disk disease (LDD) is a common musculoskeletal disorder. Several predisposing genetic and environmental risk factors have been established for symptomatic LDD. METHODS We conducted a case-control association study to investigate the role of the COL11A2 gene in LDD. Genotyping of 384 Chinese Han LDD patients and 384 Chinese Han controls was made for six single-nucleotide polymorphisms (SNPs) from COL11A2 by Agena Massarray. We evaluated these SNPs association with LDD using the chi-square test and genetic model analysis. RESULTS The strongest associations with LDD were observed for polymorphisms in rs2071025. Carriers of "A" allele had an increased risk of LDD (OR = 1.47, 95% CI = 1.20-1.80, p = 0.0002) as compared with the "G" allele in allele model. We found that rs2071025 were associated with LDD in female and male from the stratification analyses (p < 0.05). Genetic models showed that rs986522(C) significantly increased the risk of LDD in female; however, in males, we did not find significant associations between the rs986522 and LDD risk. CONCLUSION This study showed a genetic association with COL11A2 polymorphism in individuals with LDD. These data may provide novel insights into the pathogenesis of LDD, although further studies with larger numbers of participants worldwide are needed for validation of our conclusions.
Collapse
Affiliation(s)
- Xuejun Yang
- Department of Spine (Thoracic and Vertebra), The Second Affiliated Hospital of Inner Mongolia University, Hohhot, China
| | - Haiyu Jia
- The Affiliated Hospital of Inner Mongolia Medical College, Hohhot, China
| | - Wenhua Xing
- Department of Spine (Thoracic and Vertebra), The Second Affiliated Hospital of Inner Mongolia University, Hohhot, China
| | - Feng Li
- Department of Spine (Thoracic and Vertebra), The Second Affiliated Hospital of Inner Mongolia University, Hohhot, China
| | - Manglai Li
- Inner Mongolia Medical University, Hohhot, China
| | - Ke Sun
- Inner Mongolia Medical University, Hohhot, China
| | - Yong Zhu
- Department of Spine (Thoracic and Vertebra), The Second Affiliated Hospital of Inner Mongolia University, Hohhot, China
| |
Collapse
|
15
|
Association of ADAMTS4 and ADAMTS5 polymorphisms with musculoskeletal degenerative diseases: a systematic review and meta-analysis. Biosci Rep 2018; 38:BSR20181619. [PMID: 30369484 PMCID: PMC6265622 DOI: 10.1042/bsr20181619] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/15/2018] [Accepted: 10/23/2018] [Indexed: 12/11/2022] Open
Abstract
Objective: This meta-analysis and systematic review was performed with the aim of investigating the association between a disintegrin and metalloproteinase with thrombospondin motif (ADAMTS)4, AMDMTS5 polymorphisms and risk of musculoskeletal degenerative diseases. Methods: PubMed, EMBASE, ISI Web of Science, Wanfang and CNKI were searched from their inception until May 2018 to identify eligible studies. Data from individual studies were extracted using a standardized data collection sheet. The estimate of association between ADAMTS4, AMDMTS5 polymorphisms and risk of musculoskeletal degenerative diseases was expressed as odds ratio (OR) along with its related 95% confidence interval (95%CI) under an allelic model of inheritance. Meta-analysis was conducted using RevMan 5.3 software. Subgroup-analyses by ethnicity and type of diseases were performed. Results: Eight studies including ten cohorts were included in this meta-analysis. The meta-analyses results based on seven studies showed that rs226794 in ADAMTS5 gene was not associated with risk of musculoskeletal degenerative diseases (A vs. G: OR 1.07; 95%CI 0.97–1.19; P=0.16). Rs2830585 in ADAMTS5 was significantly associated with musculoskeletal degenerative diseases in only Asians (OR 1.41, 95%CI 1.18–1.68; P=0.0001), but not in Caucasians. Since only two of the collected studies referred to ADAMTS4, we did not perform meta-analysis for these comparisons. Conclusion: Taken together, rs226794 and rs2830585 in ADAMTS5 gene were not associated with musculoskeletal degenerative diseases in overall population, but there seemed to be an ethnicity-dependent effect of rs2830585 in the risk of musculoskeletal degenerative diseases. Insufficient evidence was found to support the association of other single nucleotide polymorphisms and musculoskeletal degenerative diseases.
Collapse
|
16
|
Chen J, Zhu Q, Liu G, Yang X, Zhao S, Chen W, Wu Z, Wu N, Qiu G. Fat Mass and Obesity-Associated (FTO) Gene Polymorphisms Are Associated with Risk of Intervertebral Disc Degeneration in Chinese Han Population: A Case Control Study. Med Sci Monit 2018; 24:5598-5609. [PMID: 30099472 PMCID: PMC6103244 DOI: 10.12659/msm.911101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The present study aimed to evaluate whether the fat mass and obesity-associated (FTO) gene polymorphisms are associated with risk of intervertebral disc degeneration (IDD) in a largest Chinese Han population. MATERIAL AND METHODS There were 502 IDD patients and 497 healthy controls enrolled in this study. Nineteen single nucleotide polymorphisms (SNPs) in the FTO gene were tested using the Sequenom MassARRAY platform. The Hardy-Weinberg equilibrium test, followed by allelic, genotypic, haplotypic association, and SNP interaction analyses were used for SNP evaluation. The Genotype-Tissue Expression (GTEx) database was used to evaluate expression quantitative trait loci (eQTL) value of polymorphism. Spearman rank correlation and logistic regression analyses were used for assessing the internal relation between genotypic changes and the risk of IDD. RESULTS Seventeen SNPs survived the Hardy-Weinberg equilibrium test. Allelic analysis showed that allele T of SNP rs1121980 was a risk allele. Haplotypic and SNP interaction analyses suggested that 2 haplotypes and 5 SNP combinations were associated with the predisposition of IDD respectively. GTEx database revealed that the SNP rs1121980 might interfere with the expression of the FTO gene in the muscle-skeletal system. Through clinical statistics analysis, the different genotypes of rs1121980 can present different disease severity of IDD. CONCLUSIONS Our study suggests that rs1121980 can become a biomarker for the screening and prognosis of IDD. The 2 haplotype blocks and 5 SNP-SNP combinations that we discovered might be indicative of the onset of IDD. Therefore, our study might serve as evidence for future IDD molecular diagnosis.
Collapse
Affiliation(s)
- Jia Chen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (mainland).,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China (mainland)
| | - Qiankun Zhu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (mainland).,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China (mainland)
| | - Gang Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (mainland).,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China (mainland).,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China (mainland)
| | - Xinzhuang Yang
- Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (mainland)
| | - Sen Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (mainland).,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China (mainland)
| | - Weisheng Chen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (mainland).,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China (mainland)
| | - Zhihong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China (mainland).,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China (mainland).,Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (mainland)
| | - Nan Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (mainland).,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China (mainland).,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China (mainland)
| | - Guixing Qiu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China (mainland).,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China (mainland).,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China (mainland)
| |
Collapse
|
17
|
Munir S, Rade M, Määttä JH, Freidin MB, Williams FMK. Intervertebral Disc Biology: Genetic Basis of Disc Degeneration. CURRENT MOLECULAR BIOLOGY REPORTS 2018; 4:143-150. [PMID: 30464887 PMCID: PMC6223888 DOI: 10.1007/s40610-018-0101-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW This review aims to highlight recent advances in understanding the genetic basis of intervertebral disc degeneration (IDD). RECENT FINDINGS It has been known for some time that IDD is highly heritable. Recent studies, and in particular the availability of agnostic techniques such as genome-wide association studies, have identified new variants in a variety of genes which contribute to the risk of IDD and to back pain. SUMMARY A variety of genetic variants are involved in IDD. Some are shared with variants predisposing to back pain, but few have been identified reliably in either phenotype. Further research is required to explain fully the high heritability and how the genetic variants influence cell biology to lead to IDD.
Collapse
Affiliation(s)
- Sabrina Munir
- Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King’s College London, London, UK
| | - Marinko Rade
- Department of Physical and Rehabilitation Medicine, Kuopio University Hospital, Kuopio, Finland
- Faculty of Medicine, Orthopaedic and Rehabilitation Hospital “Prim. dr.Martin Horvat”, Josip Juraj Strossmayer University of Osijek, Rovinj, Croatia
| | - Juhani H. Määttä
- Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King’s College London, London, UK
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Maxim B. Freidin
- Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King’s College London, London, UK
| | - Frances M. K. Williams
- Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King’s College London, London, UK
| |
Collapse
|
18
|
Liu J, Zhou Y, Liu S, Song X, Yang XZ, Fan Y, Chen W, Akdemir ZC, Yan Z, Zuo Y, Du R, Liu Z, Yuan B, Zhao S, Liu G, Chen Y, Zhao Y, Lin M, Zhu Q, Niu Y, Liu P, Ikegawa S, Song YQ, Posey JE, Qiu G, Zhang F, Wu Z, Lupski JR, Wu N. The coexistence of copy number variations (CNVs) and single nucleotide polymorphisms (SNPs) at a locus can result in distorted calculations of the significance in associating SNPs to disease. Hum Genet 2018; 137:553-567. [PMID: 30019117 DOI: 10.1007/s00439-018-1910-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 07/07/2018] [Indexed: 01/25/2023]
Abstract
With the recent advance in genome-wide association studies (GWAS), disease-associated single nucleotide polymorphisms (SNPs) and copy number variants (CNVs) have been extensively reported. Accordingly, the issue of incorrect identification of recombination events that can induce the distortion of multi-allelic or hemizygous variants has received more attention. However, the potential distorted calculation bias or significance of a detected association in a GWAS due to the coexistence of CNVs and SNPs in the same genomic region may remain under-recognized. Here we performed the association study within a congenital scoliosis (CS) cohort whose genetic etiology was recently elucidated as a compound inheritance model, including mostly one rare variant deletion CNV null allele and one common variant non-coding hypomorphic haplotype of the TBX6 gene. We demonstrated that the existence of a deletion in TBX6 led to an overestimation of the contribution of the SNPs on the hypomorphic allele. Furthermore, we generalized a model to explain the calculation bias, or distorted significance calculation for an association study, that can be 'induced' by CNVs at a locus. Meanwhile, overlapping between the disease-associated SNPs from published GWAS and common CNVs (overlap 10%) and pathogenic/likely pathogenic CNVs (overlap 99.69%) was significantly higher than the random distribution (p < 1 × 10-6 and p = 0.034, respectively), indicating that such co-existence of CNV and SNV alleles might generally influence data interpretation and potential outcomes of a GWAS. We also verified and assessed the influence of colocalizing CNVs to the detection sensitivity of disease-associated SNP variant alleles in another adolescent idiopathic scoliosis (AIS) genome-wide association study. We proposed that detecting co-existent CNVs when evaluating the association signals between SNPs and disease traits could improve genetic model analyses and better integrate GWAS with robust Mendelian principles.
Collapse
Affiliation(s)
- Jiaqi Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yangzhong Zhou
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Department of Internal Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Sen Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xiaofei Song
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xin-Zhuang Yang
- Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yanhui Fan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Weisheng Chen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Zeynep Coban Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Zihui Yan
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yuzhi Zuo
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Renqian Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Zhenlei Liu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Bo Yuan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sen Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Gang Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yixin Chen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yanxue Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Mao Lin
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Qiankun Zhu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yuchen Niu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, 100730, China.,Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Shiro Ikegawa
- Laboratory of Bone and Joint Diseases, Center for Integrative Medical Sciences, RIKEN, Tokyo, 108-8639, Japan
| | - You-Qiang Song
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Guixing Qiu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | | | - Feng Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, 200433, China.,Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Zhihong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, 100730, China.,Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA.,Texas Children's Hospital, Houston, TX, 77030, USA
| | - Nan Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Beijing, 100730, China. .,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China. .,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
19
|
Kawaguchi Y. Genetic background of degenerative disc disease in the lumbar spine. Spine Surg Relat Res 2018; 2:98-112. [PMID: 31440655 PMCID: PMC6698496 DOI: 10.22603/ssrr.2017-0007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 02/28/2017] [Indexed: 02/07/2023] Open
Abstract
This is a review paper on the topic of genetic background of degenerative disc diseases in the lumbar spine. Lumbar disc diseases (LDDs), such as lumbar disc degeneration and lumbar disc herniation, are the main cause of low back pain. There are a lot of studies that tried to identify the causes of LDDs. The causes have been categorized into environmental factors and genetic factors. Recent studies revealed that LDDs are mainly caused by genetic factors. Numerous studies have been carried out using the genetic approach for LDDs. The history of these studies is divided into three periods: (1) era of epidemiological research using familial background and twins, (2) era of genomic research using DNA polymorphisms to identify susceptible genes for LDDs, and (3) era of functional research to determine how the genes cause LDDs. This review article was undertaken to present the history of genetic approach to LDDs and to discuss the current issues and future perspectives.
Collapse
|
20
|
Liu G, Liu S, Lin M, Li X, Chen W, Zuo Y, Liu J, Niu Y, Zhao S, Long B, Wu Z, Wu N, Qiu G. Genetic polymorphisms of GPR126 are functionally associated with PUMC classifications of adolescent idiopathic scoliosis in a Northern Han population. J Cell Mol Med 2018; 22:1964-1971. [PMID: 29363878 PMCID: PMC5824397 DOI: 10.1111/jcmm.13486] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 10/31/2017] [Indexed: 12/15/2022] Open
Abstract
GPR126 has been identified to be associated with AIS (Adolescent Idiopathic Scoliosis) in different populations, but data on the northern Chinese population are unavailable. Additionally, it is important to know the exact clinical phenotypes associated with specific genetic polymorphisms. Fourteen SNP (single nucleotide polymorphism) loci in GPR126 were genotyped in 480 northern Chinese Han AIS patients and 841 controls. These patients were classified into three types based on the PUMC classification system. Luciferase assays were used to investigate their regulation of GPR126 transcription activity. Combined and stratified genotype-phenotype association analyses were conducted. The alleles rs225694, rs7774095 and rs2294773 were significantly associated with AIS (P = 0.021, 0.048 and 0.023, respectively). rs225694 and rs7774095 potentially have regulatory functions for the GRP126 gene. Correlation analysis revealed that allele A of rs225694 was a risk allele only for PUMC type II AIS (P = 0.036) and allele G of rs2294773 was a risk allele only for PUMC type I AIS (P = 0.018). In summary, rs225694, rs7774095 and rs2294773 are significantly associated with disease in northern Chinese Han AIS patients. The SNPs rs225694 and rs2294773 are associated with different AIS PUMC classifications.
Collapse
Affiliation(s)
- Gang Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Sen Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Mao Lin
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Xiaoxin Li
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Weisheng Chen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Yuzhi Zuo
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Jiaqi Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Yuchen Niu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Sen Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Bo Long
- Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zhihong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China
| | - Nan Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China
| | - Guixing Qiu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
21
|
Pruvost M, Lépine M, Leonetti C, Etard O, Naveau M, Agin V, Docagne F, Maubert E, Ali C, Emery E, Vivien D. ADAMTS-4 in oligodendrocytes contributes to myelination with an impact on motor function. Glia 2017; 65:1961-1975. [PMID: 28850711 DOI: 10.1002/glia.23207] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 07/06/2017] [Accepted: 08/02/2017] [Indexed: 12/30/2022]
Abstract
Myelination is a late developmental process regulated by a set of inhibitory and stimulatory factors, including extracellular matrix components. Accordingly, chondroitin sulfate proteoglycans (CSPGs) act as negative regulators of myelination processes. A disintegrin and metalloproteinase with thrombospondin motifs type 4 (ADAMTS-4) is an extracellular protease capable of degrading CSPGs. Although exogenous ADAMTS-4 has been proven to be beneficial in several models of central nervous system (CNS) injuries, the physiological functions of endogenous ADAMTS-4 remain poorly understood. We first used Adamts4/LacZ reporter mice to reveal that ADAMTS-4 is strongly expressed in the CNS, especially in the white matter, with a cellular profile restricted to mature oligodendrocytes. Interestingly, we evidenced an abnormal myelination in Adamts4-/- mice, characterized by a higher diameter of myelinated axons with a shifting g-ratio. Accordingly, lack of ADAMTS-4 is accompanied by motor deficits and disturbed nervous electrical activity. In conclusion, we demonstrate that ADAMTS-4 is a new marker of mature oligodendrocytes contributing to the myelination processes and thus to the control of motor capacities.
Collapse
Affiliation(s)
- Mathilde Pruvost
- Normandie University, UNICAEN, INSERM, UMR-S 1237 Physiopathology and imaging of Neurological disorders, Cyceron, Caen 14000, France
| | - Matthieu Lépine
- Normandie University, UNICAEN, INSERM, UMR-S 1237 Physiopathology and imaging of Neurological disorders, Cyceron, Caen 14000, France
| | - Camille Leonetti
- Normandie University, UNICAEN, INSERM, UMR-S 1237 Physiopathology and imaging of Neurological disorders, Cyceron, Caen 14000, France
| | - Olivier Etard
- CHU de Caen, Laboratoire des Explorations Fonctionnelles du Système Nerveux, Avenue de la côte de Nacre, Caen F-14000, France.,Normandie Univ, UNICAEN, ISTS, 14000 Caen, France
| | - Mikaël Naveau
- Normandie University, UNICAEN, INSERM, UMR-S 1237 Physiopathology and imaging of Neurological disorders, Cyceron, Caen 14000, France.,UMS 3408 Support Cyceron, CNR, Universite de Caen Normandie, CHU de Caen, GIP CYCERON, Caen, France
| | - Véronique Agin
- Normandie University, UNICAEN, INSERM, UMR-S 1237 Physiopathology and imaging of Neurological disorders, Cyceron, Caen 14000, France
| | - Fabian Docagne
- Normandie University, UNICAEN, INSERM, UMR-S 1237 Physiopathology and imaging of Neurological disorders, Cyceron, Caen 14000, France
| | - Eric Maubert
- Normandie University, UNICAEN, INSERM, UMR-S 1237 Physiopathology and imaging of Neurological disorders, Cyceron, Caen 14000, France
| | - Carine Ali
- Normandie University, UNICAEN, INSERM, UMR-S 1237 Physiopathology and imaging of Neurological disorders, Cyceron, Caen 14000, France
| | - Evelyne Emery
- Normandie University, UNICAEN, INSERM, UMR-S 1237 Physiopathology and imaging of Neurological disorders, Cyceron, Caen 14000, France.,Department of neurosurgery, CHU de Caen, Avenue de la côte de Nacre, Caen F-14000, France
| | - Denis Vivien
- Normandie University, UNICAEN, INSERM, UMR-S 1237 Physiopathology and imaging of Neurological disorders, Cyceron, Caen 14000, France.,Department of clinical research, CHU de Caen, Avenue de la côte de Nacre, Caen F-14000, France
| |
Collapse
|
22
|
Perera RS, Dissanayake PH, Senarath U, Wijayaratne LS, Karunanayake AL, Dissanayake VHW. Single Nucleotide Variants of Candidate Genes in Aggrecan Metabolic Pathway Are Associated with Lumbar Disc Degeneration and Modic Changes. PLoS One 2017; 12:e0169835. [PMID: 28081267 PMCID: PMC5231268 DOI: 10.1371/journal.pone.0169835] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/22/2016] [Indexed: 12/19/2022] Open
Abstract
Introduction Lumbar disc degeneration (LDD) is genetically determined and severity of LDD is associated with Modic changes. Aggrecan is a major proteoglycan in the intervertebral disc and end plate. Progressive reduction of aggrecan is a main feature of LDD and Modic changes. Objectives The study investigated the associations of single nucleotide variants (SNVs) of candidate genes in the aggrecan metabolic pathway with the severity of LDD and Modic changes. In-silico functional analysis of significant SNVs was also assessed. Methods A descriptive cross sectional study was carried out on 106 patients with chronic mechanical low back pain. T1, T2 sagittal lumbar MRI scans were used to assess the severity of LDD and Modic changes. 62 SNVs in ten candidate genes (ACAN, IL1A, IL1B, IL6, MMP3, ADAMTS4, ADAMTS5, TIMP1, TIMP2 and TIMP3) were genotyped on Sequenom MassARRAY iPLEX platform. Multiple linear regression analysis was carried out using PLINK 1.9 in accordance with additive genetic model. In-silico functional analysis was carried out using Provean, SIFT, PolyPhen and Mutation Taster. Results Mean age was 52.42±9.42 years. 74 (69.8%) were females. The rs2856836, rs1304037, rs17561 and rs1800587 variants of the IL1A gene were associated with the severity of LDD and Modic changes. The rs41270041 variant of the ADAMTS4 gene and the rs226794 variant of the ADAMTS5 gene were associated with severity of LDD while the rs34884997 variant of the ADAMTS4 gene, the rs55933916 variant of the ADAMTS5 gene and the rs9862 variant of the TIMP3 gene were associated with severity of Modic changes. The rs17561 variant of the IL1A gene was predicted as pathogenic by the PolyPhen prediction tool. Conclusions SNVs of candidate genes in ACAN metabolic pathway are associated with severity of LDD and Modic changes in patients with chronic mechanical low back pain. Predictions of in-silico functional analysis of significant SNVs are inconsistent.
Collapse
Affiliation(s)
- Romain Shanil Perera
- Department of Allied Health Sciences, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
- * E-mail:
| | - Poruwalage Harsha Dissanayake
- Department of Anatomy, Faculty of Medical Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - Upul Senarath
- Department of Community Medicine, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | | | | | | |
Collapse
|
23
|
Martirosyan NL, Patel AA, Carotenuto A, Kalani MYS, Belykh E, Walker CT, Preul MC, Theodore N. Genetic Alterations in Intervertebral Disc Disease. Front Surg 2016; 3:59. [PMID: 27917384 PMCID: PMC5116693 DOI: 10.3389/fsurg.2016.00059] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 10/13/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Intervertebral disc degeneration (IVDD) is considered a multifactorial disease that is influenced by both environmental and genetic factors. The last two decades of research strongly demonstrate that genetic factors contribute about 75% of the IVDD etiology. Recent total genome sequencing studies have shed light on the various single-nucleotide polymorphisms (SNPs) that are associated with IVDD. AIM This review presents comprehensive and updated information about the diversity of genetic factors in the inflammatory, degradative, homeostatic, and structural systems involved in the IVDD. An organized collection of information is provided regarding genetic polymorphisms that have been identified to influence the risk of developing IVDD. Understanding the proteins and signaling systems involved in IVDD can lead to improved understanding and targeting of therapeutics. MATERIALS AND METHODS An electronic literature search was performed using the National Library of Medicine for publications using the keywords genetics of IVDD, lumbar disc degeneration, degenerative disc disease, polymorphisms, SNPs, and disc disease. The articles were then screened based on inclusion criteria that included topics that covered the correlation of SNPs with developing IVDD. Sixty-five articles were identified as containing relevant information. Articles were excluded if they investigated lower back pain or just disc herniation without an analysis of disc degeneration. This study focuses on the chronic degeneration of IVDs. RESULTS Various genes were identified to contain SNPs that influenced the risk of developing IVDD. Among these are genes contributing to structural proteins, such as COL1A1, COL9A3, COL9A3, COL11A1, and COL11A2, ACAN, and CHST3. Furthermore, various SNPs found in the vitamin-D receptor gene are also associated with IVDD. SNPs related to inflammatory cytokine imbalance are associated with IVDD, although some effects are limited by sex and certain populations. SNPs in genes that code for extracellular matrix-degrading enzymes, such as MMP-1, MMP-2, MMP-3, MMP-9, MMP-14, ADAMTS-4, and ADAMTS-5 are also associated with IVDD. Apoptosis-mediating genes, such as caspase 9 gene (CASP9), TRAIL, and death receptor 4 (DR4), as well as those for growth factors, such as growth differentiation factor 5 and VEGF, are identified to have polymorphisms that influence the risk of developing IVDD. CONCLUSION Within the last 10 years, countless new SNPs have been identified in genes previously unknown to be associated with IVDD. Furthermore, the last decade has also revealed new SNPs identified in genes already known to be involved with increased risk of developing IVDD. Improved understanding of the numerous genetic variants behind various pathophysiological elements of IVDD could help advance personalized care and pharmacotherapeutic strategies for patients suffering from IVDD in the future.
Collapse
Affiliation(s)
- Nikolay L Martirosyan
- Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA; Division of Neurosurgery, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Arpan A Patel
- College of Medicine - Phoenix, University of Arizona , Phoenix, AZ , USA
| | | | - M Yashar S Kalani
- Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute , Phoenix, AZ , USA
| | - Evgenii Belykh
- Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA; Laboratory of Neurosurgery, Irkutsk Scientific Center of Surgery and Traumatology, Irkutsk, Russia; Irkutsk State Medical University, Irkutsk, Russia
| | - Corey T Walker
- Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute , Phoenix, AZ , USA
| | - Mark C Preul
- Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute , Phoenix, AZ , USA
| | - Nicholas Theodore
- Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute , Phoenix, AZ , USA
| |
Collapse
|