1
|
Heikkilä H, Reunanen V, Hyytiäinen HK, Junnila JJ, Laitinen-Vapaavuori O, Keränen P. Randomized, Blinded, Controlled Clinical Trial of Polylactide-Collagen Scaffold in Treatment of Shoulder Osteochondritis Dissecans in Dogs. Vet Comp Orthop Traumatol 2024; 37:286-296. [PMID: 39048025 PMCID: PMC11555192 DOI: 10.1055/s-0044-1788726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVE The aim of our study was to investigate a degradable polylactide-collagen scaffold (COPLA) in the treatment of shoulder osteochondritis dissecans (OCD) in dogs. STUDY DESIGN The study was a controlled, randomized, blinded clinical trial with a parallel group design with a 1.5-year follow-up. Twenty dogs with uni- or bilateral shoulder OCD (29 shoulders) were randomized to receive a COPLA or arthroscopic debridement only (Control). The outcome of treatment was assessed with gait and stance analysis, passive range of motion measurement, pain and lameness evaluation, Helsinki Chronic Pain Index, and computed tomography (CT). RESULTS Eighteen dogs (25 shoulders) completed the study. The clinical outcome variables improved significantly from baseline in COPLA and Control groups after treatment but no significant differences emerged between groups. Significantly fewer COPLA than Control shoulders had osteoarthritis (OA) in CT at 6 months (p = 0.019) but the difference was not significant at 1.5 years. At 1.5 years, all dogs were sound and pain-free in joint palpation, but OA was diagnosed in 13/18 dogs (18/25 shoulders) with CT. CONCLUSION The results suggest that COPLA scaffold slowed down the development of OA at 6 months but it did not improve the clinical recovery or prevent OA in dogs with shoulder OCD in long-term follow-up at 1.5 years compared with arthroscopic debridement only. Regardless of the treatment method, clinical recovery was good, but OA developed in the majority of dogs.
Collapse
Affiliation(s)
- Helka Heikkilä
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Lahti Veterinary Hospital, IVC Evidensia, Lahti, Finland
| | - Vilma Reunanen
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Heli K. Hyytiäinen
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | | | - Outi Laitinen-Vapaavuori
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Pauli Keränen
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Pereira Vasconcelos D, Leite Pereira C, Couto M, Neto E, Ribeiro B, Albuquerque F, Freitas A, Alves CJ, Klinkenberg G, McDonagh BH, Schmid RB, Seitz AM, de Roy L, Ignatius A, Haaparanta A, Muhonen V, Sarmento B, Lamghari M. Nanoenabled Immunomodulatory Scaffolds for Cartilage Tissue Engineering. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202400627] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Indexed: 01/06/2025]
Abstract
AbstractArticular cartilage regeneration is a challenge in tissue engineering. Although diverse materials have been developed for this purpose, cartilage regeneration remains suboptimal. The integration of nanomaterials into 3D network materials holds great potential in the improvement of key mechanical properties, particularly important for osteochondral replacement scaffolds and even to function as carriers for disease‐modifying drugs or other regulatory signals. In this study, a simple yet effective cell‐free nanoenabled Col‐PLA scaffold specially designed to enhance cartilage regeneration and modulate inflammatory response is proposed, by incorporating poly(lactic‐co‐glycolic acid) (PLGA) ibuprofen nanoparticles (NPs) into a collagen/polylactide (Col‐PLA) matrix. The developed nanoenabled scaffold successfully decreases IL‐1β release and leads to primary human chondrocytes survival, ultimately restoring extracellular matrix (ECM) production under inflammatory conditions. The nanoenabled Col‐PLA scaffolds secretome effectively decreases macrophage invasion in vitro, as well as neutrophil infiltration and inflammatory mediators’, namely the complement component C5/C5a, C‐reactive protein, IL‐1β, MMP9, CCL20, and CXCL1/KC production in vivo in a rodent air‐pouch model. Overall, the established nanoenabled scaffold has the potential to support chondrogenesis as well as modulate inflammatory response, overcoming the limitations of traditional tissue engineering strategies.
Collapse
Affiliation(s)
- Daniela Pereira Vasconcelos
- i3S ‐ Instituto de Inovação e Investigação em Saúde INEB ‐ Instituto Nacional de Engenharia Biomédica Universidade do Porto Rua Alfredo Allen, 208 Porto 4200‐135 Portugal
| | - Catarina Leite Pereira
- i3S ‐ Instituto de Inovação e Investigação em Saúde INEB ‐ Instituto Nacional de Engenharia Biomédica Universidade do Porto Rua Alfredo Allen, 208 Porto 4200‐135 Portugal
| | - Marina Couto
- i3S ‐ Instituto de Inovação e Investigação em Saúde INEB ‐ Instituto Nacional de Engenharia Biomédica Universidade do Porto Rua Alfredo Allen, 208 Porto 4200‐135 Portugal
| | - Estrela Neto
- i3S ‐ Instituto de Inovação e Investigação em Saúde INEB ‐ Instituto Nacional de Engenharia Biomédica Universidade do Porto Rua Alfredo Allen, 208 Porto 4200‐135 Portugal
| | - Beatriz Ribeiro
- i3S ‐ Instituto de Inovação e Investigação em Saúde INEB ‐ Instituto Nacional de Engenharia Biomédica Universidade do Porto Rua Alfredo Allen, 208 Porto 4200‐135 Portugal
| | - Filipe Albuquerque
- i3S ‐ Instituto de Inovação e Investigação em Saúde INEB ‐ Instituto Nacional de Engenharia Biomédica Universidade do Porto Rua Alfredo Allen, 208 Porto 4200‐135 Portugal
- School of Medicine and Biomedical Sciences (ICBAS‐UP) Faculdade de Engenharia (FEUP) Universidade do Porto Porto 4050‐313 Portugal
| | - Alexandra Freitas
- i3S ‐ Instituto de Inovação e Investigação em Saúde INEB ‐ Instituto Nacional de Engenharia Biomédica Universidade do Porto Rua Alfredo Allen, 208 Porto 4200‐135 Portugal
- School of Medicine and Biomedical Sciences (ICBAS‐UP) Faculdade de Engenharia (FEUP) Universidade do Porto Porto 4050‐313 Portugal
| | - Cecília J. Alves
- i3S ‐ Instituto de Inovação e Investigação em Saúde INEB ‐ Instituto Nacional de Engenharia Biomédica Universidade do Porto Rua Alfredo Allen, 208 Porto 4200‐135 Portugal
| | - Geir Klinkenberg
- SINTEF Industry Department of Biotechnology and Nanomedicine Trondheim 7034 Norway
| | | | | | - Andreas M. Seitz
- Institute of Orthopedic Research and Biomechanics Center for Trauma Research Ulm University Medical Center Ulm 89081 Ulm Germany
| | - Luisa de Roy
- Institute of Orthopedic Research and Biomechanics Center for Trauma Research Ulm University Medical Center Ulm 89081 Ulm Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics Center for Trauma Research Ulm University Medical Center Ulm 89081 Ulm Germany
| | | | - Virpi Muhonen
- Askel Healthcare Ltd Siltasaarenkatu 8‐10 Helsinki 00530 Finland
| | - Bruno Sarmento
- i3S ‐ Instituto de Inovação e Investigação em Saúde INEB ‐ Instituto Nacional de Engenharia Biomédica Universidade do Porto Rua Alfredo Allen, 208 Porto 4200‐135 Portugal
- Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde Gandra 4585‐116 Portugal
| | - Meriem Lamghari
- i3S ‐ Instituto de Inovação e Investigação em Saúde INEB ‐ Instituto Nacional de Engenharia Biomédica Universidade do Porto Rua Alfredo Allen, 208 Porto 4200‐135 Portugal
| |
Collapse
|
3
|
Guo X, Ma Y, Min Y, Sun J, Shi X, Gao G, Sun L, Wang J. Progress and prospect of technical and regulatory challenges on tissue-engineered cartilage as therapeutic combination product. Bioact Mater 2023; 20:501-518. [PMID: 35846847 PMCID: PMC9253051 DOI: 10.1016/j.bioactmat.2022.06.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/19/2022] [Accepted: 06/19/2022] [Indexed: 12/18/2022] Open
Abstract
Hyaline cartilage plays a critical role in maintaining joint function and pain. However, the lack of blood supply, nerves, and lymphatic vessels greatly limited the self-repair and regeneration of damaged cartilage, giving rise to various tricky issues in medicine. In the past 30 years, numerous treatment techniques and commercial products have been developed and practiced in the clinic for promoting defected cartilage repair and regeneration. Here, the current therapies and their relevant advantages and disadvantages will be summarized, particularly the tissue engineering strategies. Furthermore, the fabrication of tissue-engineered cartilage under research or in the clinic was discussed based on the traid of tissue engineering, that is the materials, seed cells, and bioactive factors. Finally, the commercialized cartilage repair products were listed and the regulatory issues and challenges of tissue-engineered cartilage repair products and clinical application would be reviewed. Tissue engineered cartilage, a promising strategy for articular cartilage repair. Nearly 20 engineered cartilage repair products in clinic based on clinical techniques. Combination product, the classification of tissue-engineered cartilage. Key regulatory compliance issues for combination products.
Collapse
Affiliation(s)
- Xiaolei Guo
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, PR China
- Corresponding author.
| | - Yuan Ma
- State Key Laboratory of Tribology, Tsinghua University, Beijing, PR China
| | - Yue Min
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, PR China
| | - Jiayi Sun
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, PR China
| | - Xinli Shi
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, PR China
- Corresponding author. Center for Medical Device Evaluation, National Medical Products Administration, Beijing, 100081, PR China
| | - Guobiao Gao
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, PR China
| | - Lei Sun
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, PR China
| | - Jiadao Wang
- State Key Laboratory of Tribology, Tsinghua University, Beijing, PR China
- Corresponding author. State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
4
|
Balestri W, Hickman GJ, Morris RH, Hunt JA, Reinwald Y. Triphasic 3D In Vitro Model of Bone-Tendon-Muscle Interfaces to Study Their Regeneration. Cells 2023; 12:313. [PMID: 36672248 PMCID: PMC9856925 DOI: 10.3390/cells12020313] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/02/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
The transition areas between different tissues, known as tissue interfaces, have limited ability to regenerate after damage, which can lead to incomplete healing. Previous studies focussed on single interfaces, most commonly bone-tendon and bone-cartilage interfaces. Herein, we develop a 3D in vitro model to study the regeneration of the bone-tendon-muscle interface. The 3D model was prepared from collagen and agarose, with different concentrations of hydroxyapatite to graduate the tissues from bones to muscles, resulting in a stiffness gradient. This graduated structure was fabricated using indirect 3D printing to provide biologically relevant surface topographies. MG-63, human dermal fibroblasts, and Sket.4U cells were found suitable cell models for bones, tendons, and muscles, respectively. The biphasic and triphasic hydrogels composing the 3D model were shown to be suitable for cell growth. Cells were co-cultured on the 3D model for over 21 days before assessing cell proliferation, metabolic activity, viability, cytotoxicity, tissue-specific markers, and matrix deposition to determine interface formations. The studies were conducted in a newly developed growth chamber that allowed cell communication while the cell culture media was compartmentalised. The 3D model promoted cell viability, tissue-specific marker expression, and new matrix deposition over 21 days, thereby showing promise for the development of new interfaces.
Collapse
Affiliation(s)
- Wendy Balestri
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Graham J. Hickman
- Imaging Suite, School of Science & Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Robert H. Morris
- Department of Physics and Mathematics, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - John A. Hunt
- Medical Technologies and Advanced Materials, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
- College of Biomedical Engineering, China Medical University, Taichung 40402, Taiwan
| | - Yvonne Reinwald
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| |
Collapse
|
5
|
Meganathan I, Pachaiyappan M, Aarthy M, Radhakrishnan J, Mukherjee S, Shanmugam G, You J, Ayyadurai N. Recombinant and genetic code expanded collagen-like protein as a tailorable biomaterial. MATERIALS HORIZONS 2022; 9:2698-2721. [PMID: 36189465 DOI: 10.1039/d2mh00652a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Collagen occurs in nature with a dedicated triple helix structure and is the most preferred biomaterial in commercialized medical products. However, concerns on purity, disease transmission, and the reproducibility of animal derived collagen restrict its applications and warrants alternate recombinant sources. The expression of recombinant collagen in different prokaryotic and eukaryotic hosts has been reported with varying degrees of success, however, it is vital to elucidate the structural and biological characteristics of natural collagen. The recombinant production of biologically functional collagen is restricted by its high molecular weight and post-translational modification (PTM), especially the hydroxylation of proline to hydroxyproline. Hydroxyproline plays a key role in the structural stability and higher order self-assembly to form fibrillar matrices. Advancements in synthetic biology and recombinant technology are being explored for improving the yield and biomimicry of recombinant collagen. It emerges as reliable, sustainable source of collagen, promises tailorable properties and thereby custom-made protein biomaterials. Remarkably, the evolutionary existence of collagen-like proteins (CLPs) has been identified in single-cell organisms. Interestingly, CLPs exhibit remarkable ability to form stable triple helical structures similar to animal collagen and have gained increasing attention. Strategies to expand the genetic code of CLPs through the incorporation of unnatural amino acids promise the synthesis of highly tunable next-generation triple helical proteins required for the fabrication of smart biomaterials. The review outlines the importance of collagen, sources and diversification, and animal and recombinant collagen-based biomaterials and highlights the limitations of the existing collagen sources. The emphasis on genetic code expanded tailorable CLPs as the most sought alternate for the production of functional collagen and its advantages as translatable biomaterials has been highlighted.
Collapse
Affiliation(s)
- Ilamaran Meganathan
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - CLRI, Chennai, India.
| | - Mohandass Pachaiyappan
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - CLRI, Chennai, India.
| | - Mayilvahanan Aarthy
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - CLRI, Chennai, India.
| | - Janani Radhakrishnan
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - CLRI, Chennai, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Smriti Mukherjee
- Division of Organic and Bio-organic Chemistry, Council of Scientific and Industrial Research (CSIR) - CLRI, Chennai, India
| | - Ganesh Shanmugam
- Division of Organic and Bio-organic Chemistry, Council of Scientific and Industrial Research (CSIR) - CLRI, Chennai, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Jingjing You
- Save Sight Institute, Sydney Medical School, University of Sydney, Australia
| | - Niraikulam Ayyadurai
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - CLRI, Chennai, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
6
|
Yi J, Liu Q, Zhang Q, Chew TG, Ouyang H. Modular protein engineering-based biomaterials for skeletal tissue engineering. Biomaterials 2022; 282:121414. [DOI: 10.1016/j.biomaterials.2022.121414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/27/2021] [Accepted: 05/19/2021] [Indexed: 12/24/2022]
|
7
|
Puhakka J, Salonius E, Paatela T, Muhonen V, Meller A, Vasara A, Kautiainen H, Kosola J, Kiviranta I. Comparison Between Arthroscopic and Histological International Cartilage Repair Society Scoring Systems in Porcine Cartilage Repair Model. Cartilage 2022; 13:19476035211069246. [PMID: 35098743 PMCID: PMC9137296 DOI: 10.1177/19476035211069246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVE The arthroscopic and histological International Cartilage Repair Society (ICRS) scores are designed to evaluate cartilage repair quality. Arthroscopic ICRS score can give a maximum score of 12 and the histological score can give values between 0% and 100% for each of its 14 subscores. This study compares these methods in an animal cartilage repair model. This study hypothesizes that there is a significant correlation between these methods. DESIGN A chondral defect was made in the medial femoral condyle of 18 pigs. Five weeks later, 9 pigs were treated with a novel recombinant human type III collagen/polylactide scaffold and 9 were left untreated to heal spontaneously. After 4 months, the medial condyles were evaluated with a simulated arthroscopy using the ICRS scoring system followed by a histological ICRS scoring. RESULTS This porcine cartilage repair model produced repaired cartilage tissue ranging from good to poor repair tissue quality. The mean arthroscopic ICRS total score was 6.8 (SD = 2.2). Histological ICRS overall assessment subscore was 38.2 (SD = 31.1) and histological ICRS average points were 60.5 (SD = 19.5). Arthroscopic ICRS compared with histological ICRS average points or its overall assessment subscore showed moderate correlation (r = 0.49 and r = 0.50, respectively). The interrater reliability with the intraclass correlation coefficients for arthroscopic ICRS total scores, histological ICRS overall assessment subscore, and ICRS average points showed moderate to excellent reliability. CONCLUSIONS Arthroscopic and histological ICRS scoring methods for repaired articular cartilage show a moderate correlation in the animal cartilage repair model.
Collapse
Affiliation(s)
- Jani Puhakka
- University of Helsinki, Helsinki, Finland,Jani Puhakka, University of Helsinki, Topeliuksenkatu 5, Helsinki 00260, Finland.
| | | | | | | | | | - Anna Vasara
- Helsinki University Hospital, Helsinki, Finland
| | | | - Jussi Kosola
- Kanta-Hämeen keskussairaala, Hameenlinna, Finland
| | | |
Collapse
|
8
|
Generation of hybrid tissue engineered construct through embedding autologous chondrocyte loaded platelet rich plasma/alginate based hydrogel in porous scaffold for cartilage regeneration. Int J Biol Macromol 2022; 203:389-405. [PMID: 35063489 DOI: 10.1016/j.ijbiomac.2022.01.054] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/08/2022] [Accepted: 01/09/2022] [Indexed: 12/27/2022]
Abstract
Over the past decades, various attempts have been made to develop suitable tissue-engineered constructs to repair or regenerate the damaged or diseased articular cartilage. In the present study, we embedded Platelet rich plasma (PRP)/Sodium Alginate (SA) based hydrogel in porous 3D scaffold of chitosan (CH)/chondroitin sulfate (CS)/silk fibroin (SF) to develop hybrid scaffold for cartilage tissue construct generation with abilities to support shape recovery potential, facilitate uniform cells distribution and mimic gel like cartilage tissue extracellular matrix.The developed hybrid matrix shows suitable pore size (55-261 μm), porosity (77 ± 4.3%) and compressive strength (0.13 ± 0.04 MPa) for cartilage tissue construct generation and its applications. The developed SA/PRP-based cartilage construct exhibits higher metabolic activity, glycosaminoglycan deposition, expression of collagen type II, and aggrecan in comparison to SA based cell-scaffold construct. In-vivo animal study was also performed to investigate the biocompatibility and cartilage tissue regeneration potential of the developed construct. The obtained gross analysis of knee sample, micro-computed tomography, and histological analysis suggest that implanted tissue construct possess the superior potential to regenerate hyaline cartilage defect of thickness around 1.10 ± 0.36 mm and integrate with surrounding tissue at the defect site. Thus, the proposed strategy for the development of cartilage tissue constructs might be beneficial for the repair of full-thickness knee articular cartilage defects.
Collapse
|
9
|
Salonius E, Meller A, Paatela T, Vasara A, Puhakka J, Hannula M, Haaparanta AM, Kiviranta I, Muhonen V. Cartilage Repair Capacity within a Single Full-Thickness Chondral Defect in a Porcine Autologous Matrix-Induced Chondrogenesis Model Is Affected by the Location within the Defect. Cartilage 2021; 13:744S-754S. [PMID: 34308665 PMCID: PMC8804745 DOI: 10.1177/19476035211030988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVE Large articular cartilage defects are a challenge to regenerative surgery. Biomaterial scaffolds might provide valuable support for restoration of articulating surface. The performance of a composite biomaterial scaffold was evaluated in a large porcine cartilage defect. DESIGN Cartilage repair capacity of a biomaterial combining recombinant human type III collagen (rhCo) and poly-(l/d)-lactide (PLA) was tested in a porcine model. A full-thickness chondral defect covering the majority of the weightbearing area was inflicted to the medial femoral condyle of the right knee. Spontaneous cartilage repair and nonoperated healthy animals served as controls. The animals were sacrificed after a 4-month follow-up. The repair tissue was evaluated with the International Cartilage Repair Society (ICRS) macroscopic score, ICRS II histological score, and with micro-computed tomography. Additionally, histopathological evaluation of lymph nodes and synovial samples were done for toxicological analyses. RESULTS The lateral half of the cartilage defect in the operated groups showed better filling than the medial half. The mean overall macroscopic score for the rhCo-PLA, spontaneous, and nonoperated groups were 5.96 ± 0.33, 4.63 ± 0.42, and 10.98 ± 0.35, respectively. The overall histological appearance of the specimens was predominantly hyaline cartilage in 3 of 9 samples of the rhCo-PLA group, 2 of 8 of the spontaneous group, and 9 of 9 of the nonoperated group. CONCLUSIONS The use of rhCo-PLA scaffold did not differ from spontaneous healing. The repair was affected by the spatial properties within the defect, as the lateral part of the defect showed better repair than the medial part, probably due to different weightbearing conditions.
Collapse
Affiliation(s)
- E. Salonius
- Department of Orthopaedics and
Traumatology, Clinicum, University of Helsinki, Helsinki, Finland,Department of Surgery, Päijät-Häme
Central Hospital, Lahti, Finland,E. Salonius, Department of Orthopaedics and
Traumatology, Clinicum, University of Helsinki, Biomedicum Helsinki,
Haartmaninkatu 8, Helsinki, 00014, Finland.
| | - A. Meller
- University of Helsinki, HiLIFE–Helsinki
Institute of Life Science Laboratory Animal Center, Helsinki, Finland
| | - T. Paatela
- Department of Orthopaedics and
Traumatology, Clinicum, University of Helsinki, Helsinki, Finland,Department of Orthopaedics and
Traumatology, Helsinki University Hospital, Helsinki, Finland
| | - A. Vasara
- Department of Orthopaedics and
Traumatology, Clinicum, University of Helsinki, Helsinki, Finland,Department of Orthopaedics and
Traumatology, Helsinki University Hospital, Helsinki, Finland
| | - J. Puhakka
- Department of Orthopaedics and
Traumatology, Clinicum, University of Helsinki, Helsinki, Finland,Department of Orthopaedics and
Traumatology, Helsinki University Hospital, Helsinki, Finland
| | - M. Hannula
- Department of Electronics and
Communications Engineering, Tampere University of Technology, BioMediTech, Institute
of Biosciences and Medical Technology, Tampere, Pirkanmaa, Finland
| | - A.-M. Haaparanta
- Department of Electronics and
Communications Engineering, Tampere University of Technology, BioMediTech, Institute
of Biosciences and Medical Technology, Tampere, Pirkanmaa, Finland
| | - I. Kiviranta
- Department of Orthopaedics and
Traumatology, Clinicum, University of Helsinki, Helsinki, Finland,Department of Orthopaedics and
Traumatology, Helsinki University Hospital, Helsinki, Finland
| | - V. Muhonen
- Department of Orthopaedics and
Traumatology, Clinicum, University of Helsinki, Helsinki, Finland
| |
Collapse
|
10
|
Wu Z, Korntner SH, Mullen AM, Zeugolis DI. Collagen type II: From biosynthesis to advanced biomaterials for cartilage engineering. BIOMATERIALS AND BIOSYSTEMS 2021; 4:100030. [PMID: 36824570 PMCID: PMC9934443 DOI: 10.1016/j.bbiosy.2021.100030] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/02/2021] [Accepted: 11/19/2021] [Indexed: 12/11/2022] Open
Abstract
Collagen type II is the major constituent of cartilage tissue. Yet, cartilage engineering approaches are primarily based on collagen type I devices that are associated with suboptimal functional therapeutic outcomes. Herein, we briefly describe cartilage's development and cellular and extracellular composition and organisation. We also provide an overview of collagen type II biosynthesis and purification protocols from tissues of terrestrial and marine species and recombinant systems. We then advocate the use of collagen type II as a building block in cartilage engineering approaches, based on safety, efficiency and efficacy data that have been derived over the years from numerous in vitro and in vivo studies.
Collapse
Affiliation(s)
- Z Wu
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - SH Korntner
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - AM Mullen
- Teagasc Research Centre, Ashtown, Ireland
| | - DI Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway (NUI Galway), Galway, Ireland
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland
- Correspondence author at: REMODEL, NUI Galway & UCD.
| |
Collapse
|
11
|
Puhakka J, Paatela T, Salonius E, Muhonen V, Meller A, Vasara A, Kautiainen H, Kosola J, Kiviranta I. Arthroscopic International Cartilage Repair Society Classification System Has Only Moderate Reliability in a Porcine Cartilage Repair Model. Am J Sports Med 2021; 49:1524-1529. [PMID: 33733882 DOI: 10.1177/0363546521998006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The International Cartilage Repair Society (ICRS) score was designed for arthroscopic use to evaluate the quality of cartilage repair. PURPOSE To evaluate the reliability of the ICRS scoring system using an animal cartilage repair model. STUDY DESIGN Controlled laboratory study. METHODS A chondral defect with an area of 1.5 cm2 was made in the medial femoral condyle of 18 domestic pigs. Five weeks later, 9 pigs were treated using a novel recombinant human type III collagen/polylactide scaffold, and 9 were left to heal spontaneously. After 4 months, the pigs were sacrificed, then 3 arthroscopic surgeons evaluated the medial femoral condyles via video-recorded simulated arthroscopy using the ICRS scoring system. The surgeons repeated the evaluation twice within a 9-month period using their recorded arthroscopy. RESULTS The porcine cartilage repair model produced cartilage repair tissue of poor to good quality. The mean ICRS total scores for all observations were 6.6 (SD, 2.6) in arthroscopy, 5.9 (SD, 2.7) in the first reevaluation, and 6.2 (SD, 2.8) in the second reevaluation. The interrater reliability with the intraclass correlation coefficient (ICC) for the ICRS total scores (ICC, 0.46-0.60) and for each individual subscore (ICC, 0.26-0.71) showed poor to moderate reliability. The intrarater reliability with the ICC also showed poor to moderate reliability for ICRS total scores (ICC, 0.52-0.59) and for each individual subscore (ICC, 0.29-0.58). A modified Bland-Altman plot for the initial arthroscopy and for the 2 reevaluations showed an evident disagreement among the observers. CONCLUSION In an animal cartilage repair model, the ICRS scoring system seems to have poor to moderate reliability. CLINICAL RELEVANCE Arthroscopic assessment of cartilage repair using the ICRS scoring method has limited reliability. We need more objective methods with acceptable reliability to evaluate cartilage repair outcomes.
Collapse
Affiliation(s)
- Jani Puhakka
- Department of Orthopaedics and Traumatology, Helsinki University Hospital, Helsinki, Finland.,Department of Orthopaedics and Traumatology, University of Helsinki, Helsinki, Finland
| | - Teemu Paatela
- Department of Orthopaedics and Traumatology, Helsinki University Hospital, Helsinki, Finland.,Department of Orthopaedics and Traumatology, University of Helsinki, Helsinki, Finland
| | - Eve Salonius
- Department of Orthopaedics and Traumatology, Helsinki University Hospital, Helsinki, Finland.,Department of Orthopaedics and Traumatology, University of Helsinki, Helsinki, Finland
| | - Virpi Muhonen
- Department of Orthopaedics and Traumatology, University of Helsinki, Helsinki, Finland
| | - Anna Meller
- University of Helsinki, Helsinki Institute of Life Science (HiLIFE), Laboratory Animal Center, Helsinki, Finland
| | - Anna Vasara
- Department of Orthopaedics and Traumatology, Helsinki University Hospital, Helsinki, Finland
| | - Hannu Kautiainen
- Folkhälsan Research Center, Helsinki, Finland.,Kuopio University Hospital, Primary Health Care Unit, Kuopio, Finland
| | - Jussi Kosola
- Department of Orthopaedics and Traumatology, University of Helsinki, Helsinki, Finland.,Department of Orthopaedics and Traumatology, Kanta-Häme Hospital, Hämeenlinna, Finland
| | - Ilkka Kiviranta
- Department of Orthopaedics and Traumatology, Helsinki University Hospital, Helsinki, Finland.,Department of Orthopaedics and Traumatology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
12
|
Wasyłeczko M, Sikorska W, Chwojnowski A. Review of Synthetic and Hybrid Scaffolds in Cartilage Tissue Engineering. MEMBRANES 2020; 10:E348. [PMID: 33212901 PMCID: PMC7698415 DOI: 10.3390/membranes10110348] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023]
Abstract
Cartilage tissue is under extensive investigation in tissue engineering and regenerative medicine studies because of its limited regenerative potential. Currently, many scaffolds are undergoing scientific and clinical research. A key for appropriate scaffolding is the assurance of a temporary cellular environment that allows the cells to function as in native tissue. These scaffolds should meet the relevant requirements, including appropriate architecture and physicochemical and biological properties. This is necessary for proper cell growth, which is associated with the adequate regeneration of cartilage. This paper presents a review of the development of scaffolds from synthetic polymers and hybrid materials employed for the engineering of cartilage tissue and regenerative medicine. Initially, general information on articular cartilage and an overview of the clinical strategies for the treatment of cartilage defects are presented. Then, the requirements for scaffolds in regenerative medicine, materials intended for membranes, and methods for obtaining them are briefly described. We also describe the hybrid materials that combine the advantages of both synthetic and natural polymers, which provide better properties for the scaffold. The last part of the article is focused on scaffolds in cartilage tissue engineering that have been confirmed by undergoing preclinical and clinical tests.
Collapse
Affiliation(s)
- Monika Wasyłeczko
- Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Trojdena 4 str., 02-109 Warsaw, Poland; (W.S.); (A.C.)
| | | | | |
Collapse
|
13
|
Yan W, Xu X, Xu Q, Sun Z, Lv Z, Wu R, Yan W, Jiang Q, Shi D. An Injectable Hydrogel Scaffold With Kartogenin-Encapsulated Nanoparticles for Porcine Cartilage Regeneration: A 12-Month Follow-up Study. Am J Sports Med 2020; 48:3233-3244. [PMID: 33026830 DOI: 10.1177/0363546520957346] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Treatment of cartilage lesions is clinically challenging. A previous study demonstrated that a hyaluronic acid hydrogel (m-HA) with kartogenin (KGN)-loaded PLGA nanoparticles (m-HA+KGN treatment) achieved superior cartilage repair in a rabbit model. However, large animals serve as a bridge to translate animal outcomes into the clinic. HYPOTHESES (1) m-HA+KGN treatment could facilitate hyaline cartilage and subchondral bone tissue repair in a porcine model. (2) Defect size and type (full-thickness chondral vs osteochondral) influence the therapeutic efficacy of m-HA+KGN treatment. STUDY DESIGN Controlled laboratory study. METHODS 48 minipigs were randomized into 3 treatment groups: m-HA hydrogel with KGN-loaded PLGA nanoparticles (m-HA+KGN treatment), m-HA hydrogel (m-HA treatment), and untreated (blank treatment). Full-thickness chondral (6.5 mm or 8.5 mm in diameter) or osteochondral (6.5 mm or 8.5 mm in diameter; 5-mm depth) defects were prepared in the medial femoral condyle. At 6 and 12 months postoperatively, defect repair was assessed by macroscopic appearance, magnetic resonance imaging (MRI), micro-computed tomography (µCT), and histologic and biomechanical tests. RESULTS The m-HA+KGN group exhibited superior gross and histological healing after evaluation at 6 and 12 months postoperatively. Improved quality of the repaired cartilage demonstrated by MRI and better subchondral bone reconstruction assessed by µCT were observed in the m-HA+KGN group. The m-HA+KGN group showed more hyaline-like cartilage exhibited by histological staining in terms of extracellular matrix, cartilage lacuna, and type II collagen. The biomechanical properties were improved in the m-HA+KGN group. With m-HA+KGN treatment, defects with a diameter of 6.5 mm or full-thickness chondral-type defects possessed significantly higher ICRS macroscopic and histological scores compared with diameter 8.5 mm or osteochondral-type defects. CONCLUSION (1) m-HA+KGN treatment facilitated hyaline cartilage and subchondral bone tissue repair in a porcine model at the 12-month follow-up. (2) m-HA+KGN treatment demonstrated better therapeutic efficacy in defects with a diameter of 6.5 mm or full-thickness chondral-type defects. CLINICAL RELEVANCE This study verified the efficacy of this innovative KGN release system on cartilage repair. The KGN release system can be injected into defect sites arthroscopically. This convenient and minimally invasive operation holds important prospects for clinical application.
Collapse
Affiliation(s)
- Wenqiang Yan
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu, China
| | - Xingquan Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu, China
| | - Qian Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu, China
| | - Ziying Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu, China
| | - Zhongyang Lv
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu, China
| | - Rui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu, China
| | - Wenjin Yan
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu, China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu, China.,Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Jiangsu, China
| | - Dongquan Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu, China
| |
Collapse
|
14
|
Three-Dimensional Culture System of Cancer Cells Combined with Biomaterials for Drug Screening. Cancers (Basel) 2020; 12:cancers12102754. [PMID: 32987868 PMCID: PMC7601447 DOI: 10.3390/cancers12102754] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary For the research and development of drug discovery, it is of prime importance to construct the three-dimensional (3D) tissue models in vitro. To this end, the enhancement design of cell function and activity by making use of biomaterials is essential. In this review, 3D culture systems of cancer cells combined with several biomaterials for anticancer drug screening are introduced. Abstract Anticancer drug screening is one of the most important research and development processes to develop new drugs for cancer treatment. However, there is a problem resulting in gaps between the in vitro drug screening and preclinical or clinical study. This is mainly because the condition of cancer cell culture is quite different from that in vivo. As a trial to mimic the in vivo cancer environment, there has been some research on a three-dimensional (3D) culture system by making use of biomaterials. The 3D culture technologies enable us to give cancer cells an in vitro environment close to the in vivo condition. Cancer cells modified to replicate the in vivo cancer environment will promote the biological research or drug discovery of cancers. This review introduces the in vitro research of 3D cell culture systems with biomaterials in addition to a brief summary of the cancer environment.
Collapse
|
15
|
Lam AT, Reuveny S, Oh SKW. Human mesenchymal stem cell therapy for cartilage repair: Review on isolation, expansion, and constructs. Stem Cell Res 2020; 44:101738. [DOI: 10.1016/j.scr.2020.101738] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/31/2020] [Accepted: 02/07/2020] [Indexed: 12/29/2022] Open
|
16
|
Abstract
PURPOSE OF REVIEW To review the current basic science and clinical literature on mesenchymal stem cell (MSC) therapy for articular cartilage defects and osteoarthritis of the knee. RECENT FINDINGS MSCs derived from bone marrow, adipose, and umbilical tissue have the capacity for self-renewal and differentiation into the chondrocyte lineage. In theory, MSC therapy may help restore cartilage focally or diffusely where nascent regenerative potential in the intra-articular environment is limited. Over the last several years, in vitro and animal studies have elucidated the use of MSCs in isolation as injectables, in combination with biological delivery media and scaffolding, and as surgical adjuvants for cartilage regeneration and treatment of knee degenerative conditions. More recently, clinical and translational literature has grown more convincing from early descriptive case series to randomized controlled trials showing promise in efficacy and safety. Studies describing MSC for knee cartilage regeneration applications are numerous and varied in quality. Future research directions should include work on elucidating optimal cell concentration and dosing, as well as standardization in methodology and reporting in prospective trials. Backed by promise from in vitro and animal studies, preliminary clinical evidence on MSC therapy shows promise as a nonoperative therapeutic option or an adjuvant to existing surgical cartilage restoration techniques. While higher quality evidence to support MSC therapy has emerged over the last several years, further refinement of methodology will be necessary to support its routine clinical use.
Collapse
|
17
|
Hassan CR, Qin YX, Komatsu DE, Uddin SMZ. Utilization of Finite Element Analysis for Articular Cartilage Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3331. [PMID: 31614845 PMCID: PMC6829543 DOI: 10.3390/ma12203331] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/02/2019] [Accepted: 10/08/2019] [Indexed: 01/22/2023]
Abstract
Scaffold design plays an essential role in tissue engineering of articular cartilage by providing the appropriate mechanical and biological environment for chondrocytes to proliferate and function. Optimization of scaffold design to generate tissue-engineered cartilage has traditionally been conducted using in-vitro and in-vivo models. Recent advances in computational analysis allow us to significantly decrease the time and cost of scaffold optimization using finite element analysis (FEA). FEA is an in-silico analysis technique that allows for scaffold design optimization by predicting mechanical responses of cells and scaffolds under applied loads. Finite element analyses can potentially mimic the morphology of cartilage using mesh elements (tetrahedral, hexahedral), material properties (elastic, hyperelastic, poroelastic, composite), physiological loads by applying loading conditions (static, dynamic), and constitutive stress-strain equations (linear, porous-elastic, biphasic). Furthermore, FEA can be applied to the study of the effects of dynamic loading, material properties cell differentiation, cell activity, scaffold structure optimization, and interstitial fluid flow, in isolated or combined multi-scale models. This review covers recent studies and trends in the use of FEA for cartilage tissue engineering and scaffold design.
Collapse
Affiliation(s)
- Chaudhry R Hassan
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Yi-Xian Qin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| | - David E Komatsu
- Department of Orthopaedics, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Sardar M Z Uddin
- Department of Orthopaedics, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
18
|
Salonius E, Kontturi L, Laitinen A, Haaparanta AM, Korhonen M, Nystedt J, Kiviranta I, Muhonen V. Chondrogenic differentiation of human bone marrow-derived mesenchymal stromal cells in a three-dimensional environment. J Cell Physiol 2019; 235:3497-3507. [PMID: 31552691 DOI: 10.1002/jcp.29238] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/03/2019] [Indexed: 12/20/2022]
Abstract
Cell therapy combined with biomaterial scaffolds is used to treat cartilage defects. We hypothesized that chondrogenic differentiation bone marrow-derived mesenchymal stem cells (BM-MSCs) in three-dimensional biomaterial scaffolds would initiate cartilaginous matrix deposition and prepare the construct for cartilage regeneration in situ. The chondrogenic capability of human BM-MSCs was first verified in a pellet culture. The BM-MSCs were then either seeded onto a composite scaffold rhCo-PLA combining polylactide and collagen type II (C2) or type III (C3), or commercial collagen type I/III membrane (CG). The BM-MSCs were either cultured in a proliferation medium or chondrogenic culture medium. Adult human chondrocytes (ACs) served as controls. After 3, 14, and 28 days, the constructs were analyzed with quantitative polymerase chain reaction and confocal microscopy and sulfated glycosaminoglycans (GAGs) were measured. The differentiated BM-MSCs entered a hypertrophic state by Day 14 of culture. The ACs showed dedifferentiation with no expression of chondrogenic genes and low amount of GAG. The CG membrane induced the highest expression levels of hypertrophic genes. The two different collagen types in composite scaffolds yielded similar results. Regardless of the biomaterial scaffold, culturing BM-MSCs in chondrogenic differentiation medium resulted in chondrocyte hypertrophy. Thus, caution for cell fate is required when designing cell-biomaterial constructs for cartilage regeneration.
Collapse
Affiliation(s)
- Eve Salonius
- Department of Orthopaedics and Traumatology, Clinicum, University of Helsinki, Helsinki, Finland
| | - Leena Kontturi
- Drug Research Program, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Anita Laitinen
- Advanced Cell Therapy Centre, Finnish Red Cross Blood Service, Helsinki, Finland
| | - Anne-Marie Haaparanta
- Department of Electronics and Communications Engineering, Tampere University of Technology and BioMediTech, Tampere, Finland
| | - Matti Korhonen
- Advanced Cell Therapy Centre, Finnish Red Cross Blood Service, Helsinki, Finland
| | - Johanna Nystedt
- Advanced Cell Therapy Centre, Finnish Red Cross Blood Service, Helsinki, Finland
| | - Ilkka Kiviranta
- Department of Orthopaedics and Traumatology, Clinicum, University of Helsinki, Helsinki, Finland.,Department of Orthopaedics and Traumatology, Helsinki University Hospital, Helsinki, Finland
| | - Virpi Muhonen
- Department of Orthopaedics and Traumatology, Clinicum, University of Helsinki, Helsinki, Finland
| |
Collapse
|
19
|
Peng L, Zhou Y, Lu W, Zhu W, Li Y, Chen K, Zhang G, Xu J, Deng Z, Wang D. Characterization of a novel polyvinyl alcohol/chitosan porous hydrogel combined with bone marrow mesenchymal stem cells and its application in articular cartilage repair. BMC Musculoskelet Disord 2019; 20:257. [PMID: 31138200 PMCID: PMC6540438 DOI: 10.1186/s12891-019-2644-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 05/20/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Different substances are combined to compensate for each other's drawbacks and create an appropriate biomaterial. A novel Polyvinyl alcohol (PVA)/chitosan (CS) porous hydrogel was designed and applied to the treatment of osteochondral defects. METHODS Hydrogels of various PVA/CS ratios were tested for physiochemical and mechanical properties in addition to cytotoxicity and biocompatibility. The hydrogels with the best PVA/CS ratio were used in the animal study. Osteochondral defects were created at the articular cartilage of 18 rabbits. They were assigned to different groups randomly (n = 6 per group): the osteochondral defect only group (control group), the osteochondral defect treated with hydrogel group (HG group), and the osteochondral defect treated with hydrogel loaded with bone marrow mesenchymal stem cells (BMSCs) group (HG-BMSCs group). The cartilage was collected for macro-observation and histological evaluation at 12 weeks after surgery. RESULTS The Hydrogel with PVA/CS ratio of 6:4 exhibited the best mechanical properties; it also showed stable physical and chemical properties with porosity and over 90% water content. Furthermore, it demonstrated no cytotoxicity and was able to promote cell proliferation. The HG-BMSCs group achieved the best cartilage healing. CONCLUSIONS The novel PVA/CS porous composite hydrogel could be a good candidate for a tissue engineering material in cartilage repair.
Collapse
Affiliation(s)
- Liangquan Peng
- Department of Sports Medicine, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, 518035 Guangdong China
- School of Medicine, Shenzhen University, Shenzhen, 518060 Guangdong China
- Clinical College of Anhui Medical University Affiliated Shenzhen Second Hospital, Shenzhen, 518035 Guangdong China
- Key Laboratory of Tissue Engineering of Shenzhen, Shenzhen Second People’s Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, 518035 Guangdong China
- Guangzhou Medical University, Guangzhou, 510182 Guangdong China
| | - Yong Zhou
- Department of Sports Medicine, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, 518035 Guangdong China
- School of Medicine, Shenzhen University, Shenzhen, 518060 Guangdong China
- Clinical College of Anhui Medical University Affiliated Shenzhen Second Hospital, Shenzhen, 518035 Guangdong China
| | - Wei Lu
- Department of Sports Medicine, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, 518035 Guangdong China
| | - Weimin Zhu
- Department of Sports Medicine, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, 518035 Guangdong China
- Clinical College of Anhui Medical University Affiliated Shenzhen Second Hospital, Shenzhen, 518035 Guangdong China
| | - Yusheng Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Kang Chen
- Department of Sports Medicine, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, 518035 Guangdong China
| | - Greg Zhang
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77054 USA
| | - Jian Xu
- Department of Sports Medicine, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, 518035 Guangdong China
- Clinical College of Anhui Medical University Affiliated Shenzhen Second Hospital, Shenzhen, 518035 Guangdong China
| | - Zhenhan Deng
- Department of Sports Medicine, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, 518035 Guangdong China
- School of Medicine, Shenzhen University, Shenzhen, 518060 Guangdong China
| | - Daping Wang
- Department of Sports Medicine, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, 518035 Guangdong China
- School of Medicine, Shenzhen University, Shenzhen, 518060 Guangdong China
- Clinical College of Anhui Medical University Affiliated Shenzhen Second Hospital, Shenzhen, 518035 Guangdong China
| |
Collapse
|
20
|
Salonius E, Rieppo L, Nissi MJ, Pulkkinen HJ, Brommer H, Brünott A, Silvast TS, Van Weeren PR, Muhonen V, Brama PAJ, Kiviranta I. Critical-sized cartilage defects in the equine carpus. Connect Tissue Res 2019; 60:95-106. [PMID: 29560747 DOI: 10.1080/03008207.2018.1455670] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
AIM The horse joint, due to its similarity with the human joint, is the ultimate model for translational articular cartilage repair studies. This study was designed to determine the critical size of cartilage defects in the equine carpus and serve as a benchmark for the evaluation of new cartilage treatment options. MATERIAL AND METHODS Circular full-thickness cartilage defects with a diameter of 2, 4, and 8 mm were created in the left middle carpal joint and similar osteochondral (3.5 mm in depth) defects in the right middle carpal joint of 5 horses. Spontaneously formed repair tissue was examined macroscopically, with MR and µCT imaging, polarized light microscopy, standard histology, and immunohistochemistry at 12 months. RESULTS Filling of 2 mm chondral defects was good (77.8 ± 8.5%), but proteoglycan depletion was evident in Safranin-O staining and gadolinium-enhanced MRI (T1Gd). Larger chondral defects showed poor filling (50.6 ± 2.7% in 4 mm and 31.9 ± 7.3% in 8 mm defects). Lesion filling in 2, 4, and 8 mm osteochondral defects was 82.3 ± 3.0%, 68.0 ± 4.6% and 70.8 ± 15.4%, respectively. Type II collagen staining was seen in 9/15 osteochondral defects but only in 1/15 chondral defects. Subchondral bone pathologies were evident in 14/15 osteochondral samples but only in 5/15 chondral samples. Although osteochondral lesions showed better neotissue quality than chondral lesions, the overall repair was deemed unsatisfactory because of the subchondral bone pathologies. CONCLUSION We recommend classifying 4 mm as critical osteochondral lesion size and 2 mm as critical chondral lesion size for cartilage repair research in the equine carpal joint model.
Collapse
Affiliation(s)
- Eve Salonius
- a Department of Orthopaedics and Traumatology , University of Helsinki , Helsinki , Finland
| | - Lassi Rieppo
- b Research Unit of Medical Imaging, Physics and Technology , University of Oulu , Oulu , Finland.,c Medical Research Center , University of Oulu and Oulu University Hospital , Oulu , Finland
| | - Mikko J Nissi
- d Department of Applied Physics , University of Eastern Finland , Kuopio , Finland
| | - Hertta J Pulkkinen
- e Institute of Biomedicine , University of Eastern Finland , Kuopio , Finland
| | - Harold Brommer
- f Department of Equine Sciences , Utrecht University , Utrecht , The Netherlands
| | - Anne Brünott
- f Department of Equine Sciences , Utrecht University , Utrecht , The Netherlands
| | - Tuomo S Silvast
- g SIB Labs , University of Eastern Finland , Kuopio , Finland
| | - P René Van Weeren
- f Department of Equine Sciences , Utrecht University , Utrecht , The Netherlands
| | - Virpi Muhonen
- a Department of Orthopaedics and Traumatology , University of Helsinki , Helsinki , Finland
| | - Pieter A J Brama
- h Section of Veterinary Clinical Sciences , School of Veterinary Medicine, University College Dublin , Dublin , Ireland
| | - Ilkka Kiviranta
- a Department of Orthopaedics and Traumatology , University of Helsinki , Helsinki , Finland.,i Department of Orthopaedics and Traumatology , Helsinki University Hospital , Helsinki , Finland
| |
Collapse
|
21
|
Gasik M, Zühlke A, Haaparanta AM, Muhonen V, Laine K, Bilotsky Y, Kellomäki M, Kiviranta I. The Importance of Controlled Mismatch of Biomechanical Compliances of Implantable Scaffolds and Native Tissue for Articular Cartilage Regeneration. Front Bioeng Biotechnol 2018; 6:187. [PMID: 30560126 PMCID: PMC6287196 DOI: 10.3389/fbioe.2018.00187] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 11/16/2018] [Indexed: 12/12/2022] Open
Abstract
Scaffolds for articular cartilage repair have to be optimally biodegradable with simultaneous promotion of hyaline cartilage formation under rather complex biomechanical and physiological conditions. It has been generally accepted that scaffold structure and composition would be the best when it mimics the structure of native cartilage. However, a reparative construct mimicking the mature native tissue in a healing tissue site presents a biological mismatch of reparative stimuli. In this work, we studied a new recombinant human type III collagen-polylactide (rhCol-PLA) scaffolds. The rhCol-PLA scaffolds were assessed for their relative performance in simulated synovial fluids of 1 and 4 mg/mL sodium hyaluronate with application of model-free analysis with Biomaterials Enhanced Simulation Test (BEST). Pure PLA scaffold was used as a control. The BEST results were compared to the results of a prior in vivo study with rhCol-PLA. Collectively the data indicated that a successful articular cartilage repair require lower stiffness of the scaffold compared to surrounding cartilage yet matching the strain compliance both in static and dynamic conditions. This ensures an optimal combination of load transfer and effective oscillatory nutrients supply to the cells. The results encourage further development of intelligent scaffold structures for optimal articular cartilage repair rather than simply trying to imitate the respective original tissue.
Collapse
Affiliation(s)
- Michael Gasik
- School of Chemical Engineering Aalto University Foundation, Espoo, Finland.,Seqvera Ltd., Helsinki, Finland
| | - Alexandra Zühlke
- School of Chemical Engineering Aalto University Foundation, Espoo, Finland
| | - Anne-Marie Haaparanta
- BioMediTech and Faculty of Biomedical Sciences and Engineering Tampere University of Technology, Tampere, Finland
| | - Virpi Muhonen
- Department of Orthopaedics and Traumatology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kaisa Laine
- BioMediTech and Faculty of Biomedical Sciences and Engineering Tampere University of Technology, Tampere, Finland
| | | | - Minna Kellomäki
- BioMediTech and Faculty of Biomedical Sciences and Engineering Tampere University of Technology, Tampere, Finland.,BioMediTech and Faculty of Life Sciences and Medicine University of Tampere, Tampere, Finland
| | - Ilkka Kiviranta
- Department of Orthopaedics and Traumatology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
22
|
Gao L, Orth P, Cucchiarini M, Madry H. Effects of solid acellular type-I/III collagen biomaterials on in vitro and in vivo chondrogenesis of mesenchymal stem cells. Expert Rev Med Devices 2018; 14:717-732. [PMID: 28817971 DOI: 10.1080/17434440.2017.1368386] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Type-I/III collagen membranes are advocated for clinical use in articular cartilage repair as being able of inducing chondrogenesis, a technique termed autologous matrix-induced chondrogenesis (AMIC). Area covered: The current in vitro and translational in vivo evidence for chondrogenic effects of solid acellular type-I/III collagen biomaterials. Expert commentary: In vitro, mesenchymal stem cells (MSCs) adhere to the fibers of the type-I/III collagen membrane. No in vitro study provides evidence that a type-I/III collagen matrix alone may induce chondrogenesis. Few in vitro studies compare the effects of type-I and type-II collagen scaffolds on chondrogenesis. Recent investigations suggest better chondrogenesis with type-II collagen scaffolds. A systematic review of the translational in vivo data identified one long-term study showing that covering of cartilage defects treated by microfracture with a type-I/III collagen membrane significantly enhanced the repair tissue volume compared with microfracture alone. Other in vivo evidence is lacking to suggest either improved histological structure or biomechanical function of the repair tissue. Taken together, there is a paucity of in vitro and preclinical in vivo evidence supporting the concept that solid acellular type-I/III collagen scaffolds may be superior to classical approaches to induce in vitro or in vivo chondrogenesis of MSCs.
Collapse
Affiliation(s)
- Liang Gao
- a Lehrstuhl für Experimentelle Orthopädie und Arthroseforschung , Saarland University , Homburg/Saar , Germany
| | - Patrick Orth
- a Lehrstuhl für Experimentelle Orthopädie und Arthroseforschung , Saarland University , Homburg/Saar , Germany
| | - Magali Cucchiarini
- a Lehrstuhl für Experimentelle Orthopädie und Arthroseforschung , Saarland University , Homburg/Saar , Germany
| | - Henning Madry
- a Lehrstuhl für Experimentelle Orthopädie und Arthroseforschung , Saarland University , Homburg/Saar , Germany
| |
Collapse
|
23
|
Dias IR, Viegas CA, Carvalho PP. Large Animal Models for Osteochondral Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1059:441-501. [PMID: 29736586 DOI: 10.1007/978-3-319-76735-2_20] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Namely, in the last two decades, large animal models - small ruminants (sheep and goats), pigs, dogs and horses - have been used to study the physiopathology and to develop new therapeutic procedures to treat human clinical osteoarthritis. For that purpose, cartilage and/or osteochondral defects are generally performed in the stifle joint of selected large animal models at the condylar and trochlear femoral areas where spontaneous regeneration should be excluded. Experimental animal care and protection legislation and guideline documents of the US Food and Drug Administration, the American Society for Testing and Materials and the International Cartilage Repair Society should be followed, and also the specificities of the animal species used for these studies must be taken into account, such as the cartilage thickness of the selected defect localization, the defined cartilage critical size defect and the joint anatomy in view of the post-operative techniques to be performed to evaluate the chondral/osteochondral repair. In particular, in the articular cartilage regeneration and repair studies with animal models, the subchondral bone plate should always be taken into consideration. Pilot studies for chondral and osteochondral bone tissue engineering could apply short observational periods for evaluation of the cartilage regeneration up to 12 weeks post-operatively, but generally a 6- to 12-month follow-up period is used for these types of studies.
Collapse
Affiliation(s)
- Isabel R Dias
- Department of Veterinary Sciences, Agricultural and Veterinary Sciences School, University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal. .,3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque da Ciência e Tecnologia, Zona Industrial da Gandra, Barco - Guimarães, 4805-017, Portugal. .,Department of Veterinary Medicine, ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Carlos A Viegas
- Department of Veterinary Sciences, Agricultural and Veterinary Sciences School, University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal.,3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque da Ciência e Tecnologia, Zona Industrial da Gandra, Barco - Guimarães, 4805-017, Portugal.,Department of Veterinary Medicine, ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Pedro P Carvalho
- Department of Veterinary Medicine, University School Vasco da Gama, Av. José R. Sousa Fernandes 197, Lordemão, Coimbra, 3020-210, Portugal.,CIVG - Vasco da Gama Research Center, University School Vasco da Gama, Coimbra, Portugal
| |
Collapse
|
24
|
Abstract
CONTEXT With increasing life expectancy, there is growing demand for preservation of native articular cartilage to delay joint arthroplasties, especially in younger, active patients. Damage to the hyaline cartilage of a joint has a limited intrinsic capacity to heal. This can lead to accelerated degeneration of the joint and early-onset osteoarthritis. Treatment in the past was limited, however, and surgical treatment options continue to evolve that may allow restoration of the natural biology of the articular cartilage. This article reviews the most current literature with regard to indications, techniques, and outcomes of these restorative procedures. EVIDENCE ACQUISITION MEDLINE and PubMed searches relevant to the topic were performed for articles published between 1995 and 2016. Older articles were used for historical reference. This paper places emphasis on evidence published within the past 5 years. STUDY DESIGN Clinical review. LEVEL OF EVIDENCE Level 4. RESULTS Autologous chondrocyte implantation and osteochondral allografts (OCAs) for the treatment of articular cartilage injury allow restoration of hyaline cartilage to the joint surface, which is advantageous over options such as microfracture, which heal with less favorable fibrocartilage. Studies show that these techniques are useful for larger chondral defects where there is no alternative. Additionally, meniscal transplantation can be a valuable isolated or adjunctive procedure to prolong the health of the articular surface. CONCLUSION Newer techniques such as autologous chondrocyte implantation and OCAs may safely produce encouraging outcomes in joint preservation.
Collapse
Affiliation(s)
- Philip J. York
- Department of Orthopedic Surgery, University of Colorado School of Medicine, Aurora, Colorado
| | - Frank B. Wydra
- Department of Orthopedic Surgery, University of Colorado School of Medicine, Aurora, Colorado
| | - Matthew E. Belton
- Department of Orthopedic Surgery, University of Colorado School of Medicine, Aurora, Colorado
| | - Armando F. Vidal
- Department of Orthopedic Surgery, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
25
|
Bonfrate V, Manno D, Serra A, Salvatore L, Sannino A, Buccolieri A, Serra T, Giancane G. Enhanced electrical conductivity of collagen films through long-range aligned iron oxide nanoparticles. J Colloid Interface Sci 2017; 501:185-191. [PMID: 28456102 DOI: 10.1016/j.jcis.2017.04.067] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 04/19/2017] [Accepted: 04/21/2017] [Indexed: 11/18/2022]
Abstract
The development of biocompatible collagen substrates able to conduct electric current along specific pathways represent an appealing issue in tissue engineering, since it is well known that electrical stimuli significantly affects important cell behaviour, such as proliferation, differentiation, directional migration, and, therefore, tissue regeneration. In this work, a cheap and easy approach was proposed to produce collagen-based films exhibiting enhanced electrical conductivity, through the simple manipulation of a weak external magnetic trigger. Paramagnetic iron oxide nanoparticles (NPs) capped by a biocompatible polyethylene-glycol coating were synthetized by a co-precipitation and solvothermic method and sprayed onto a collagen suspension. The system was then subjected to a static external magnetic field in order to conveniently tune NPs organization. Under the action of the external stimulus, NPs were induced to orient along the magnetic field lines, forming long-range aligned micropatterns within the collagen matrix. Drying of the substrate following water evaporation permanently blocked the magnetic architecture produced, thereby preserving NPs organization even after magnetic field removal. Electrical conductivity measurements clearly showed that the presence of such a magnetic framework endowed collagen with marked conductive properties in specific directions. The biocompatibility of the paramagnetic collagen films was also demonstrated by MTT cell cytotoxicity test.
Collapse
Affiliation(s)
- Valentina Bonfrate
- Department of Engineering for Innovation, University of Salento, Via Per Arnesano, Lecce, Italy
| | - Daniela Manno
- Department of Mathematics & Physics "Ennio De Giorgi", University of Salento, Via Per Arnesano, Lecce, Italy
| | - Antonio Serra
- Department of Mathematics & Physics "Ennio De Giorgi", University of Salento, Via Per Arnesano, Lecce, Italy
| | - Luca Salvatore
- Department of Engineering for Innovation, University of Salento, Via Per Arnesano, Lecce, Italy
| | - Alessandro Sannino
- Department of Engineering for Innovation, University of Salento, Via Per Arnesano, Lecce, Italy
| | - Alessandro Buccolieri
- Biological and Environmental Sciences and Technologies, University of Salento, Via Per Arnesano, Lecce, Italy
| | - Tiziano Serra
- AO Research Institute, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Gabriele Giancane
- Department of Cultural Heritage, University of Salento, Via D. Birago, 64, Lecce, Italy.
| |
Collapse
|
26
|
Zhou J, Guo X, Zheng Q, Wu Y, Cui F, Wu B. Improving osteogenesis of three-dimensional porous scaffold based on mineralized recombinant human-like collagen via mussel-inspired polydopamine and effective immobilization of BMP-2-derived peptide. Colloids Surf B Biointerfaces 2017; 152:124-132. [DOI: 10.1016/j.colsurfb.2016.12.041] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 12/04/2016] [Accepted: 12/30/2016] [Indexed: 11/15/2022]
|
27
|
Dong C, Lv Y. Application of Collagen Scaffold in Tissue Engineering: Recent Advances and New Perspectives. Polymers (Basel) 2016; 8:polym8020042. [PMID: 30979136 PMCID: PMC6432532 DOI: 10.3390/polym8020042] [Citation(s) in RCA: 441] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 01/24/2016] [Accepted: 01/27/2016] [Indexed: 12/11/2022] Open
Abstract
Collagen is the main structural protein of most hard and soft tissues in animals and the human body, which plays an important role in maintaining the biological and structural integrity of the extracellular matrix (ECM) and provides physical support to tissues. Collagen can be extracted and purified from a variety of sources and offers low immunogenicity, a porous structure, good permeability, biocompatibility and biodegradability. Collagen scaffolds have been widely used in tissue engineering due to these excellent properties. However, the poor mechanical property of collagen scaffolds limits their applications to some extent. To overcome this shortcoming, collagen scaffolds can be cross-linked by chemical or physical methods or modified with natural/synthetic polymers or inorganic materials. Biochemical factors can also be introduced to the scaffold to further improve its biological activity. This review will summarize the structure and biological characteristics of collagen and introduce the preparation methods and modification strategies of collagen scaffolds. The typical application of a collagen scaffold in tissue engineering (including nerve, bone, cartilage, tendon, ligament, blood vessel and skin) will be further provided. The prospects and challenges about their future research and application will also be pointed out.
Collapse
Affiliation(s)
- Chanjuan Dong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China.
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, China.
| | - Yonggang Lv
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China.
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, China.
| |
Collapse
|