1
|
Brophy RH, Silverman RM, Rai MF. Mechanisms of anterior cruciate ligament injury-induced disruption of joint homeostasis and onset of osteoarthritis. Connect Tissue Res 2025:1-7. [PMID: 40247638 DOI: 10.1080/03008207.2025.2490097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 04/02/2025] [Indexed: 04/19/2025]
Abstract
Osteoarthritis (OA) is a progressive joint disorder that leads to pain and disability for millions of people worldwide. Post-traumatic OA (PTOA), a form of OA, arises secondary to joint injury and often impacts younger individuals. Among the most common joint injuries leading to disrupted joint homeostasis and PTOA is anterior cruciate ligament (ACL) rupture. Even with successful surgical stabilization, the risk of developing PTOA persists due to several factors, including altered biology that contributes to disease progression. Recent research into the biology of ACL injuries has advanced our understanding of the mechanisms by which PTOA develops, including the inflammatory pathways involved, the expression of biomarkers specific to ACL injuries, and their interaction with factors such as the chronicity of the injury. Evidence suggests that homeostatic balance of anabolic and catabolic processes in the knee is disturbed after ACL tears, triggering a catabolic and degenerative phenotype, ultimately leading to premature joint degeneration, pain, and disability. Several key knowledge gaps exist, such as the determinants of the transition from acute to chronic inflammation, inter-patient variability in inflammatory responses, and influence of systemic factors on disease development. PTOA research faces numerous challenges, including protracted nature of the disease, the complexity of joint biology, and difficulties in translating molecular discoveries into clinical practice. Future research should prioritize improving biomarker precision for early detection, developing targeted therapies, and leveraging emerging technologies like machine learning to personalize treatment. This approach will enhance our understanding of the biological basis of PTOA resulting from ACL injuries and identify opportunities to mitigate the long-term consequences of these injuries.
Collapse
Affiliation(s)
- Robert H Brophy
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Richard M Silverman
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Muhammad Farooq Rai
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Saint Louis University School of Science and Engineering, St. Louis, MO, USA
| |
Collapse
|
2
|
Ziemian SN, Antoinette AY, Witkowski A, Otero M, Goldring SR, Goldring MB, van der Meulen MCH. Joint damage is more severe following a single bout than multiple bouts of high magnitude loading in mice. Osteoarthritis Cartilage 2025:S1063-4584(25)00821-0. [PMID: 40020990 DOI: 10.1016/j.joca.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 01/24/2025] [Accepted: 01/30/2025] [Indexed: 03/03/2025]
Abstract
OBJECTIVE While physiological loads maintain cartilage health, both joint overload and abnormal joint mechanical loading contribute to osteoarthritis (OA) development. Here, we examined the role of abnormal mechanical loading on joint health by comparing the severity of OA development following a single overload event and repetitive joint overloads. METHOD Cyclic tibial compression was applied to the left limbs of 26-week-old male mice at a peak load of 9N for either a single bout or daily bouts to initiate OA disease. Joint damage severity was morphologically examined using histology and microcomputed tomography at 6 weeks following the start of loading. Early-stage transcriptomic responses to loading were evaluated. RESULTS Joint damage was more severe at 6 weeks following a single bout of loading than after daily loading bouts. Severe cartilage damage, subchondral plate erosions, and soft tissue calcifications occurred following the single bout of loading. Daily loading bouts resulted in less severe cartilage damage and preserved subchondral plate integrity. A diverging transcriptomic response was identified in cartilage at 1 week with increased expression of fibrosis- and inflammation-related genes following a single bout of loading compared to daily loading. CONCLUSIONS Even applied at hyperphysiological load magnitudes known to initiate cartilage damage, repetitive loading may induce protective effects in the joint and attenuate OA progression over time relative to a single bout of loading. Our findings suggest the potential of mechanotherapies that use repetitive loading as disease-modifying treatments for OA disease.
Collapse
Affiliation(s)
- Sophia N Ziemian
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Adrien Y Antoinette
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Ana Witkowski
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Miguel Otero
- Hospital for Special Surgery, New York, NY, USA; Weill Cornell Medicine, New York, NY, USA
| | - Steven R Goldring
- Hospital for Special Surgery, New York, NY, USA; Weill Cornell Medicine, New York, NY, USA
| | - Mary B Goldring
- Hospital for Special Surgery, New York, NY, USA; Weill Cornell Medicine, New York, NY, USA
| | - Marjolein C H van der Meulen
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA; Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA; Hospital for Special Surgery, New York, NY, USA.
| |
Collapse
|
3
|
Durongbhan P, Davey CE, Stok KS. Empirical Modelling Workflow for Resolution Invariant Assessment of Osteophytes. IEEE Trans Biomed Eng 2024; 71:3523-3530. [PMID: 39037882 DOI: 10.1109/tbme.2024.3431634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
OBJECTIVE Traditional quantitative analysis of bone microstructure in micro-computed tomography (microCT) is dependent on animal scale and requires parametric tuning in new implementations. This study aims to develop an automated and resolution-invariant 3D image processing workflow for quantitative assessment of osteophytes. METHODS In this workflow, cortical bone was segmented from microCT scans, and a 3D sphere-fitting transform was performed to obtain a thickness map, for which each voxel is assigned a thickness value corresponding to the size of the largest sphere containing the voxel that fits entirely within the cortical bone. From the thickness map, a 1-voxel thick outer surface was extracted to model surface roughness. The thickness values of the outer surface were empirically estimated by a series of known statistical distributions. Resulting parameters describing best-fit distributions, along with other cortical bone metrics, were analysed to determine sensitivity to osteoarthritis and the presence of osteophytes. RESULTS The workflow was validated using microCT scans and histological gradings of rabbit and rat tibiofemoral joints. Visual inspection shows that samples with osteoarthritis and the presence of osteophytes have more surface voxels assigned small thickness values. The distribution of surface thickness values for each animal is best described by Gamma distributions, whose shape parameter is consistently sensitive to osteoarthritis and the presence of osteophytes. CONCLUSION Combining traditional image processing with empirical distribution fitting provides an automated, objective, and resolution-invariant workflow for osteophyte assessment. SIGNIFICANCE The proposed method is simple, yet elegant in its implementation, and can be readily used in new implementations.
Collapse
|
4
|
Kalshoven JM, Badida R, Morton AM, Molino J, Crisco JJ. Do osteophytes alter thumb carpometacarpal Biomechanics? a preliminary in vitro study. J Biomech 2024; 176:112333. [PMID: 39326245 PMCID: PMC11560589 DOI: 10.1016/j.jbiomech.2024.112333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
Osteoarthritis (OA) of the thumb carpometacarpal (CMC) joint is prevalent and debilitating, marked by substantial loss of range of motion (ROM) and overall function. CMC OA is associated with osteophyte growth, but the impact of this growth on CMC ROM has not been systematically characterized. Our goal was to determine whether osteophytes decrease CMC ROM and, if so, whether these decreases are direction-dependent. A robotic musculoskeletal simulation system was used to manipulate 18 CMC specimens with a range of joint health following three test protocols: (1) Rotational ROM in flexion, extension, abduction, adduction, and 20 combined directions, (2) Internal/External Rotation (IR/ER), and (3) Translational ROM in volar, dorsal, radial, ulnar, and 4 combined directions. Osteophyte volume (OV) was computed in total and by volar, dorsal, radial, and ulnar quadrants, and correlations with ROM were computed by direction and in total. We found that an increase in overall trapezial OV was associated with a reduction in overall rotational ROM and IR/ER, but not with translational ROM. We found decreased extension was associated with increased ulnar, volar, and radial OV, and decreased abduction was associated with increased volar OV. Decreased internal rotation was associated with increased ulnar, volar, and radial OV. The proposed method and findings of this pilot study will lay the groundwork for a larger investigation into the relationship between pathological structure and function in the CMC joint.
Collapse
Affiliation(s)
- Josephine M Kalshoven
- Center for Biomedical Engineering and School of Engineering, Brown University, Providence, RI 02912, USA.
| | - Rohit Badida
- Department of Orthopedics, The Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI 02903, USA.
| | - Amy M Morton
- Department of Orthopedics, The Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI 02903, USA.
| | - Janine Molino
- Department of Orthopedics, The Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI 02903, USA; Lifespan Biostatistics, Epidemiology, Research Design and Informatics Core, Rhode Island Hospital, Providence, RI, 02903, USA.
| | - Joseph J Crisco
- Center for Biomedical Engineering and School of Engineering, Brown University, Providence, RI 02912, USA; Department of Orthopedics, The Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI 02903, USA.
| |
Collapse
|
5
|
Lin YY, Jbeily EH, Tjandra PM, Pride MC, Lopez-Torres M, Elmankabadi SB, Delman CM, Biris KK, Bang H, Silverman JL, Lee CA, Christiansen BA. Surgical restabilization reduces the progression of post-traumatic osteoarthritis initiated by ACL rupture in mice. Osteoarthritis Cartilage 2024; 32:909-920. [PMID: 38697509 DOI: 10.1016/j.joca.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 02/29/2024] [Accepted: 04/02/2024] [Indexed: 05/05/2024]
Abstract
OBJECTIVE People who sustain joint injuries such as anterior cruciate ligament (ACL) rupture often develop post-traumatic osteoarthritis (PTOA). In human patients, ACL injuries are often treated with ACL reconstruction. However, it is still unclear how effective joint restabilization is for reducing the progression of PTOA. The goal of this study was to determine how surgical restabilization of a mouse knee joint following non-invasive ACL injury affects PTOA progression. DESIGN In this study, 187 mice were subjected to non-invasive ACL injury or no injury. After injury, mice underwent restabilization surgery, sham surgery, or no surgery. Mice were then euthanized on day 14 or day 49 after injury/surgery. Functional analyses were performed at multiple time points to assess voluntary movement, gait, and pain. Knees were analyzed ex vivo with micro-computed tomography, RT-PCR, and whole-joint histology to assess articular cartilage degeneration, synovitis, and osteophyte formation. RESULTS Both ACL injury and surgery resulted in loss of epiphyseal trabecular bone (-27-32%) and reduced voluntary movement at early time points. Joint restabilization successfully lowered OA score (-78% relative to injured at day 14, p < 0.0001), and synovitis scores (-37% relative to injured at day 14, p = 0.042), and diminished the formation of chondrophytes/osteophytes (-97% relative to injured at day 14, p < 0.001, -78% at day 49, p < 0.001). CONCLUSIONS This study confirmed that surgical knee restabilization was effective at reducing articular cartilage degeneration and diminishing chondrophyte/osteophyte formation after ACL injury in mice, suggesting that these processes are largely driven by joint instability in this mouse model. However, restabilization was not able to mitigate the early inflammatory response and the loss of epiphyseal trabecular bone, indicating that these processes are independent of joint instability.
Collapse
Affiliation(s)
- Yu-Yang Lin
- University of California Davis Health, Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, 2700 Stockton Blvd, Suite 2301, Sacramento, CA 95817, USA
| | - Elias H Jbeily
- University of California Davis Health, Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, 2700 Stockton Blvd, Suite 2301, Sacramento, CA 95817, USA
| | - Priscilla M Tjandra
- University of California Davis Health, Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, 2700 Stockton Blvd, Suite 2301, Sacramento, CA 95817, USA
| | - Michael C Pride
- University of California Davis Health, Department of Psychiatry and Behavioral Sciences, 4625 2nd Ave, Sacramento, CA 95817, USA
| | - Michael Lopez-Torres
- University of California Davis Health, Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, 2700 Stockton Blvd, Suite 2301, Sacramento, CA 95817, USA
| | - Seif B Elmankabadi
- University of California Davis Health, Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, 2700 Stockton Blvd, Suite 2301, Sacramento, CA 95817, USA
| | - Connor M Delman
- University of California Davis Health, Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, 2700 Stockton Blvd, Suite 2301, Sacramento, CA 95817, USA
| | - Kristin K Biris
- University of California Davis Health, Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, 2700 Stockton Blvd, Suite 2301, Sacramento, CA 95817, USA
| | - Heejung Bang
- University of California Davis Health, Department of Public Health Sciences, Medical Sciences 1C, Davis, CA 95616, USA
| | - Jill L Silverman
- University of California Davis Health, Department of Psychiatry and Behavioral Sciences, 4625 2nd Ave, Sacramento, CA 95817, USA
| | - Cassandra A Lee
- University of California Davis Health, Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, 2700 Stockton Blvd, Suite 2301, Sacramento, CA 95817, USA
| | - Blaine A Christiansen
- University of California Davis Health, Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, 2700 Stockton Blvd, Suite 2301, Sacramento, CA 95817, USA.
| |
Collapse
|
6
|
Takahata K, Lin YY, Osipov B, Arakawa K, Enomoto S, Christiansen BA, Kokubun T. Concurrent Joint Contact in Anterior Cruciate Ligament Injury induces cartilage micro-injury and subchondral bone sclerosis, resulting in knee osteoarthritis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593114. [PMID: 38766109 PMCID: PMC11100711 DOI: 10.1101/2024.05.08.593114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Objective Anterior Cruciate Ligament (ACL) injury initiates post-traumatic osteoarthritis (PTOA) via two distinct processes: initial direct contact injury of the cartilage surface during ACL injury, and secondary joint instability due to the ACL deficiency. Using the well-established Compression-induced ACL rupture method (ACL-R) and a novel Non-Compression ACL-R model, we aimed to reveal the individual effects of cartilage compression and joint instability on PTOA progression after ACL injury in mice. Design Twelve-week-old C57BL/6J male were randomly divided to three experimental groups: Compression ACL-R, Non-Compression ACL-R, and Intact. Following ACL injury, we performed joint laxity testing and microscopic analysis of the articular cartilage surface at 0 days, in vivo optical imaging of matrix-metalloproteinase (MMP) activity at 3 and 7 days, and histological and microCT analysis at 0, 7, 14, and 28 days. Results The Compression ACL-R group exhibited a significant increase of cartilage roughness immediately after injury compared with the Non-Compression group. At 7 days, the Compression group exhibited increased MMP-induced fluorescence intensity and MMP-13 positive cell ratio of chondrocytes. Moreover, histological cartilage degeneration was observable in the Compression group at the same time point. Sclerosis of tibial subchondral bone in the Compression group was more significantly developed than in the Non-Compression group at 28 days. Conclusions Both Compression and Non-Compression ACL injury initiated PTOA progression due to joint instability. However, joint contact during ACL rupture also caused initial micro-damage on the cartilage surface and initiated early MMP activity, which could accelerate PTOA progression compared to ACL injury without concurrent joint contact.
Collapse
|
7
|
Kaneguchi A, Masuhara N, Okahara R, Doi Y, Yamaoka K, Umehara T, Ozawa J. Long-term effects of non-weight bearing and immobilization after anterior cruciate ligament reconstruction on joint contracture formation in rats. Connect Tissue Res 2024; 65:187-201. [PMID: 38517297 DOI: 10.1080/03008207.2024.2331567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 03/12/2024] [Indexed: 03/23/2024]
Abstract
PURPOSE Non-weight bearing improves and immobilization worsens contracture induced by anterior cruciate ligament reconstruction (ACLR), but effect persistence after reloading and remobilization remains unclear, and the combined effects of these factors on ACLR-induced contracture are unknown. We aimed to determine 1) whether the effects of short-term (2-week) non-weight bearing or immobilization after ACLR on contracture would be sustained by reloading or remobilization during a 10-week observation period, and 2) how the combination of both interventions compared to the outcome of either alone. METHODS We divided 88 ACL-reconstructed male rats into four groups: non-intervention, non-weight bearing, joint immobilization, and both interventions. Interventions were performed for 2 weeks, followed by rearing without intervention. Twelve untreated rats were used as controls. At 2, 4, and 12 weeks post-surgery, we assessed range of motion (ROM) and histological changes. RESULTS ACLR resulted in persistent loss of ROM, accompanied by synovial shortening, capsule thickening, and osteophyte formation. Two weeks of non-weight bearing increased ROM and reduced osteophyte size, but the beneficial effects disappeared within 10 weeks after reloading. Two-week immobilization decreased ROM and facilitated synovial shortening. After remobilization, ROM partially recovered but remained below non-intervention levels at 12 weeks. When both interventions were combined, ROM was similar to immobilization alone. CONCLUSIONS The beneficial effects of 2-week non-weight bearing on contracture diminished within 10 weeks after reloading. The adverse effects of 2-week immobilization on contracture persisted after 10 weeks of remobilization. The effects of the combined use of both interventions on contracture were primarily determined by immobilization.
Collapse
Affiliation(s)
- Akinori Kaneguchi
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Higashi-Hiroshima, Hiroshima, Japan
| | - Nanami Masuhara
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Higashi-Hiroshima, Hiroshima, Japan
| | - Ryo Okahara
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Higashi-Hiroshima, Hiroshima, Japan
| | - Yoshika Doi
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Higashi-Hiroshima, Hiroshima, Japan
| | - Kaoru Yamaoka
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Higashi-Hiroshima, Hiroshima, Japan
| | - Takuya Umehara
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Higashi-Hiroshima, Hiroshima, Japan
| | - Junya Ozawa
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Higashi-Hiroshima, Hiroshima, Japan
| |
Collapse
|
8
|
Jbeily EH, Lin YY, Elmankabadi SB, Osipov B, June RK, Christiansen BA. Validation of a Low-Cost Portable Device for Inducing Noninvasive Anterior Cruciate Ligament Injury in Mice. J Biomech Eng 2023; 145:114501. [PMID: 37417814 PMCID: PMC10777735 DOI: 10.1115/1.4062904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 07/08/2023]
Abstract
Noninvasive compression-induced anterior cruciate ligament rupture (ACL-R) is an easy and reproducible model for studying post-traumatic osteoarthritis (PTOA) in mice. However, equipment typically used for ACL-R is expensive, immobile, and not available to all researchers. In this study, we compared PTOA progression in mice injured with a low-cost custom ACL-rupture device (CARD) to mice injured with a standard system (ElectroForce 3200). We quantified anterior-posterior (AP) joint laxity immediately following injury, epiphyseal trabecular bone microstructure, and osteophyte volume at 2 and 6 weeks post injury using micro-computed tomography, and osteoarthritis progression and synovitis at 2 and 6 weeks post injury using whole-joint histology. We observed no significant differences in outcomes in mice injured with the CARD system compared to mice injured with the Electroforce (ELF) system. However, AP joint laxity data and week 2 micro-CT and histology outcomes suggested that injuries may have been slightly more severe and PTOA progressed slightly faster in mice injured with the CARD system compared to the ELF system. Altogether, these data confirm that ACL-R can be successfully and reproducibly performed with the CARD system and that osteoarthritis (OA) progression is mostly comparable to that of mice injured with the ELF system, though potentially slightly faster. The CARD system is low cost and portable, and we are making the plans and instructions freely available to all interested investigators in the hopes that they will find this system useful for their studies of OA in mice.
Collapse
Affiliation(s)
- Elias H. Jbeily
- Lawrence J. Ellison Musculoskeletal Research Center, Department of Orthopaedic Surgery, University of California Davis Health, 2700 Stockton Blvd, Suite 2301, Sacramento, CA 95817
| | - Yu-Yang Lin
- Lawrence J. Ellison Musculoskeletal Research Center, Department of Orthopaedic Surgery, University of California Davis Health, 2700 Stockton Blvd, Suite 2301, Sacramento, CA 95817
| | - Seif B. Elmankabadi
- Lawrence J. Ellison Musculoskeletal Research Center, Department of Orthopaedic Surgery, University of California Davis Health, 2700 Stockton Blvd, Suite 2301, Sacramento, CA 95817
| | - Benjamin Osipov
- Lawrence J. Ellison Musculoskeletal Research Center, Department of Orthopaedic Surgery, University of California Davis Health, 2700 Stockton Blvd, Suite 2301, Sacramento, CA 95817
| | - Ron K. June
- Department of Mechanical and Industrial Engineering, Montana State University, P.O. Box 173820, Bozeman, MT 59717
| | - Blaine A. Christiansen
- Lawrence J. Ellison Musculoskeletal Research Center, Department of Orthopaedic Surgery, University of California Davis Health, 2700 Stockton Blvd, Suite 2301, Sacramento, CA 95817
| |
Collapse
|
9
|
Kaneguchi A, Takahashi A, Shimoe A, Hayakawa M, Yamaoka K, Ozawa J. The combined effects of treadmill exercise and steroid administration on anterior cruciate ligament reconstruction-induced joint contracture and muscle atrophy in rats. Steroids 2023; 192:109183. [PMID: 36690288 DOI: 10.1016/j.steroids.2023.109183] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/28/2022] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
Rehabilitation protocols to treat joint contracture and muscle atrophy following anterior cruciate ligament (ACL) reconstruction have not been established. In this study, we examined the combined effects of exercise therapy and steroid administration on joint contracture and muscle atrophy following ACL reconstruction. Rats received ACL transection and reconstructive surgery in one knee. After surgery, they were divided into four groups: no intervention, treadmill exercise (started from day three post-surgery, 12 m/min, 60 min/d, 6 d/week), treatment with the steroidal drug dexamethasone (250 μg/kg on days 0-5, 7, and 9 post-surgery), and dexamethasone treatment plus treadmill exercise. Age-matched untreated rats were used as controls. At day 10 or 30 post-surgery, we assessed ACL-reconstruction-induced joint contracture, joint capsule fibrosis, osteophyte formation, and muscle atrophy of the rectus femoris and gastrocnemius. Treadmill exercise after ACL reconstruction improved several indicators of muscle atrophy in both muscles, but it did not have positive effects on joint contracture. Dexamethasone treatment after ACL reconstruction improved joint contracture and joint capsule fibrosis at both timepoints and partially attenuated osteophyte formation at day 10 post-surgery, but delayed recovery from atrophy of the rectus femoris at day 30 post-surgery. The two treatments combined improved both joint contracture and atrophy of the rectus femoris and gastrocnemius. Exercise therapy combined with steroid administration may therefore be a novel therapeutic strategy for joint contracture and muscle atrophy following ACL reconstruction.
Collapse
Affiliation(s)
- Akinori Kaneguchi
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima 739-2695, Japan.
| | - Akira Takahashi
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima 739-2695, Japan
| | - Atsuhiro Shimoe
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima 739-2695, Japan
| | - Momoka Hayakawa
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima 739-2695, Japan
| | - Kaoru Yamaoka
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima 739-2695, Japan
| | - Junya Ozawa
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima 739-2695, Japan
| |
Collapse
|
10
|
Functional Loss of Terminal Complement Complex Protects Rabbits from Injury-Induced Osteoarthritis on Structural and Cellular Level. Biomolecules 2023; 13:biom13020216. [PMID: 36830586 PMCID: PMC9953363 DOI: 10.3390/biom13020216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023] Open
Abstract
The terminal complement complex (TCC) has been described as a potential driver in the pathogenesis of posttraumatic osteoarthritis (PTOA). However, sublytic TCC deposition might also play a crucial role in bone development and regeneration. Therefore, we elucidated the effects of TCC on joint-related tissues using a rabbit PTOA model. In brief, a C6-deficient rabbit breed was characterized on genetic, protein, and functional levels. Anterior cruciate ligament transection (ACLT) was performed in C6-deficient (C6-/-) and C6-sufficient (C6+/-) rabbits. After eight weeks, the progression of PTOA was determined histologically. Moreover, the structure of the subchondral bone was evaluated by µCT analysis. C6 deficiency could be attributed to a homozygous 3.6 kb deletion within the C6 gene and subsequent loss of the C5b binding site. Serum from C6-/- animals revealed no hemolytic activity. After ACLT surgery, joints of C6-/- rabbits exhibited significantly lower OA scores, including reduced cartilage damage, hypocellularity, cluster formation, and osteophyte number, as well as lower chondrocyte apoptosis rates and synovial prostaglandin E2 levels. Moreover, ACLT surgery significantly decreased the trabecular number in the subchondral bone of C6-/- rabbits. Overall, the absence of TCC protected from injury-induced OA progression but had minor effects on the micro-structure of the subchondral bone.
Collapse
|
11
|
Dagneaux L, Limberg AK, Owen AR, Bettencourt JW, Dudakovic A, Bayram B, Gades NM, Sanchez-Sotelo J, Berry DJ, van Wijnen A, Morrey ME, Abdel MP. Knee immobilization reproduces key arthrofibrotic phenotypes in mice. Bone Joint Res 2023; 12:58-71. [PMID: 36647696 PMCID: PMC9872038 DOI: 10.1302/2046-3758.121.bjr-2022-0250.r2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
AIMS As has been shown in larger animal models, knee immobilization can lead to arthrofibrotic phenotypes. Our study included 168 C57BL/6J female mice, with 24 serving as controls, and 144 undergoing a knee procedure to induce a contracture without osteoarthritis (OA). METHODS Experimental knees were immobilized for either four weeks (72 mice) or eight weeks (72 mice), followed by a remobilization period of zero weeks (24 mice), two weeks (24 mice), or four weeks (24 mice) after suture removal. Half of the experimental knees also received an intra-articular injury. Biomechanical data were collected to measure passive extension angle (PEA). Histological data measuring area and thickness of posterior and anterior knee capsules were collected from knee sections. RESULTS Experimental knees immobilized for four weeks demonstrated mean PEAs of 141°, 72°, and 79° after zero, two, and four weeks of remobilization (n = 6 per group), respectively. Experimental knees demonstrated reduced PEAs after two weeks (p < 0.001) and four weeks (p < 0.0001) of remobilization compared to controls. Following eight weeks of immobilization, experimental knees exhibited mean PEAs of 82°, 73°, and 72° after zero, two, and four weeks of remobilization, respectively. Histological analysis demonstrated no cartilage degeneration. Similar trends in biomechanical and histological properties were observed when intra-articular violation was introduced. CONCLUSION This study established a novel mouse model of robust knee contracture without evidence of OA. This was appreciated consistently after eight weeks of immobilization and was irrespective of length of remobilization. As such, this arthrofibrotic model provides opportunities to investigate molecular pathways and therapeutic strategies.Cite this article: Bone Joint Res 2023;12(1):58-71.
Collapse
Affiliation(s)
- Louis Dagneaux
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Afton K. Limberg
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Aaron R. Owen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Banu Bayram
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Naomi M. Gades
- Department of Comparative Medicine, Mayo Clinic, Scottsdale, Arizona, USA
| | | | - Daniel J. Berry
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Andre van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA,Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
| | - Mark E. Morrey
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthew P. Abdel
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA, Matthew P. Abdel. E-mail:
| |
Collapse
|
12
|
Christiansen BA, Chan DD, van der Meulen MCH, Maerz T. Small-Animal Compression Models of Osteoarthritis. Methods Mol Biol 2023; 2598:345-356. [PMID: 36355304 PMCID: PMC10521326 DOI: 10.1007/978-1-0716-2839-3_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The utility of nonsurgical, mechanical compression-based joint injury models to study osteoarthritis pathogenesis and treatments is increasing. Joint injury may be induced via cyclic compression loading or acute overloading to induce anterior cruciate ligament rupture. Models utilizing mechanical testing systems are highly repeatable, require little expertise, and result in a predictable onset of osteoarthritis-like pathology on a rapidly progressing timeline. In this chapter, we describe the procedures and equipment needed to perform mechanical compression-induced initiation of osteoarthritis in mice and rats.
Collapse
Affiliation(s)
- Blaine A Christiansen
- University of California Davis Health, Department of Orthopaedic Surgery, Sacramento, CA, USA.
| | - Deva D Chan
- Purdue University, Weldon School of Biomedical Engineering, West Lafayette, IN, USA
| | - Marjolein C H van der Meulen
- Cornell University, Meinig School of Biomedical Engineering and Sibley School of Mechanical & Aerospace Engineering, Ithaca, NY, USA
| | - Tristan Maerz
- University of Michigan, Departments of Orthopaedic Surgery and Biomedical Engineering, Ann Arbor, MI, USA
| |
Collapse
|
13
|
Narez GE, Brown G, Herrick A, Ek RJ, Dejardin L, Wei F, Haut RC, Haut Donahue TL. Evaluating the Efficacy of Combined P188 Treatment and Surgical Intervention in Preventing Post-Traumatic Osteoarthritis Following a Traumatic Knee Injury. J Biomech Eng 2022; 144:1120716. [PMID: 34751734 DOI: 10.1115/1.4052564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Indexed: 11/08/2022]
Abstract
Previous studies have shown that reconstructive surgery alone following injury to the anterior cruciate ligament (ACL) does not prevent the development of post-traumatic osteoarthritis (PTOA). Poloxamer 188 (P188) has been shown to prevent cell death following trauma in both articular cartilage and meniscal tissue. This study aims to test the efficacy of single or multiple administrations of P188 in conjunction with reconstructive surgery to help prevent or delay the onset of the disease. Thirty skeletally mature rabbits underwent closed-joint trauma that resulted in ACL rupture and meniscal damage and were randomly assigned to one of four treatment groups with varying doses of P188. ACL reconstruction was then performed using an autograft from the semitendinosus tendon. Animals were euthanized 1-month following trauma, meniscal tissue was assessed for changes in morphology, mechanical properties, and proteoglycan content. Femurs and tibias were scanned using microcomputed tomography to determine changes in bone quality, architecture, and osteophyte formation. The medial meniscus experienced more damage and a decrease in the instantaneous modulus regardless of treatment group, while P188 treatment tended to limit degenerative changes in the lateral meniscus. Both lateral and medial menisci had documented decreases in the equilibrium modulus and inconsistent changes in proteoglycan content. Minimal changes were documented in the tibias and femurs, with the only significant change being the formation of osteophytes in both bones regardless of treatment group. The data suggest that P188 was able to limit some degenerative changes in the meniscus associated with PTOA and may warrant future studies.
Collapse
Affiliation(s)
- Gerardo E Narez
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA 01003
| | - Gabriel Brown
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA 01003
| | - Ashley Herrick
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA 01003
| | - Ryan J Ek
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA 01003
| | - Loic Dejardin
- Department of Small Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824
| | - Feng Wei
- Orthopaedic Biomechanics Laboratories, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824
| | - Roger C Haut
- Orthopaedic Biomechanics Laboratories, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824; Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824
| | - Tammy L Haut Donahue
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA 01003; S631 Life Sciences Laboratory, University of Massachusetts, 240 Thatcher Road, Amherst, MA 01003
| |
Collapse
|
14
|
Chilbule SK, Rajagopal K, Walter N, Dutt V, Madhuri V. Role of WNT Agonists, BMP and VEGF Antagonists in Rescuing Osteoarthritic Knee Cartilage in a Rat Model. Indian J Orthop 2022; 56:24-33. [PMID: 35070139 PMCID: PMC8748585 DOI: 10.1007/s43465-021-00434-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/27/2021] [Indexed: 02/04/2023]
Abstract
INTRODUCTION The superficial zone of articular cartilage (AC) is vital for its function and biomechanics. The damaged AC gets vascularized and undergoes hypertrophy and ossification. Studies have highlighted these two as the major causative factors in osteoarthritis (OA). We aimed at preventing the OA progression in a rat knee instability model by inhibiting the vascular ingrowth and ossification using VEGF and BMP antagonist. A WNT agonist was also used to promote AC regeneration because of its protective effect on the superficial layer. METHODS Rat knee OA was created by surgical excision of the medial meniscus and medial collateral ligament. Forty rats were divided into two groups of twenty each for surgical control and tests (surgery + intra-articular injection of drugs every two weeks). Ten animals from each group were sacrificed at four and eight weeks. Histology was mainly used to evaluate the outcome. RESULTS A surgical OA model was successfully created with higher histological scores for operated knees, both in short- (P = 0.0001) and long-term (P = 0.001). Modified Mankin score was lesser in the test animals as compared to control (P = 0.17) in the short-term, but the trend was reversed in the long-term (P = 0.13). Subgroup analysis revealed that repeated injections in the anterolateral compartment contributed to higher scores in the lateral (P = 0.03) and anterior (P = 0.03) compartment of the knee in the long-term. CONCLUSION The combinatorial approach was effective in controlling the OA in short-term. Further studies are needed to test the sustained drug delivery system to improve the outcome.
Collapse
Affiliation(s)
- Sanjay K. Chilbule
- Department of Paediatric Orthopaedics, Christian Medical College, Vellore, 632004 India
| | - Karthikeyan Rajagopal
- Department of Paediatric Orthopaedics, Christian Medical College, Vellore, 632004 India
- Centre for Stem Cell Research, Christian Medical College, Vellore, 632002 India
| | - Noel Walter
- Department of Forensic Medicine, Christian Medical College, Vellore, 632004 India
| | - Vivek Dutt
- Department of Paediatric Orthopaedics, Christian Medical College, Vellore, 632004 India
| | - Vrisha Madhuri
- Department of Paediatric Orthopaedics, Christian Medical College, Vellore, 632004 India
- Centre for Stem Cell Research, Christian Medical College, Vellore, 632002 India
| |
Collapse
|
15
|
Hsia AW, Jbeily EH, Mendez ME, Cunningham HC, Biris KK, Bang H, Lee CA, Loots GG, Christiansen BA. Post-traumatic osteoarthritis progression is diminished by early mechanical unloading and anti-inflammatory treatment in mice. Osteoarthritis Cartilage 2021; 29:1709-1719. [PMID: 34653605 PMCID: PMC8678362 DOI: 10.1016/j.joca.2021.09.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 09/08/2021] [Accepted: 09/22/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Post-traumatic osteoarthritis (PTOA) is a degenerative joint disease initiated by injury. Early phase (0-7 days) treatments often include rest (unloading) and anti-inflammatory medications, but how those early interventions impact PTOA progression is unknown. We hypothesized that early unloading and anti-inflammatory treatment would diminish joint inflammation and slow PTOA progression. DESIGN Mice were injured with non-invasive ACL rupture followed by hindlimb unloading (HLU) or normal cage activity (ground control: GC) for 7 days, after which all mice were allowed normal cage activity. HLU and GC mice were treated with daily celecoxib (CXB; 10 mg/kg IP) or vehicle. Protease activity was evaluated using in vivo fluorescence imaging, osteophyte formation and epiphyseal trabecular bone were quantified using micro-computed tomography, and synovitis and articular cartilage were evaluated using whole-joint histology at 7, 14, 21, and 28 days post-injury. RESULTS HLU significantly reduced protease activity (-22-30% compared to GC) and synovitis (-24-50% relative to GC) at day 7 post-injury (during unloading), but these differences were not maintained at later timepoints. Similarly, trabecular bone volume was partially preserved in HLU mice at during unloading (-14-15% BV/TV for HLU mice, -21-22% for GC mice relative to uninjured), but these differences were not maintained during reloading. Osteophyte volume was reduced by both HLU and CXB, but there was not an additive effect of these treatments (HLU: -46%, CXB: -30%, HLU + CXB: -35% relative to vehicle GC at day 28). CONCLUSIONS These data suggest that early unloading following joint injury can reduce inflammation and potentially slow PTOA progression.
Collapse
Affiliation(s)
- A W Hsia
- University of California Davis Health, Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, 4635 2nd Ave, Suite 2000, Sacramento, CA 95817, USA.
| | - E H Jbeily
- University of California Davis Health, Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, 4635 2nd Ave, Suite 2000, Sacramento, CA 95817, USA.
| | - M E Mendez
- Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, 7000 East Avenue, L-452, Livermore, CA 94550, USA.
| | - H C Cunningham
- University of California Davis Health, Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, 4635 2nd Ave, Suite 2000, Sacramento, CA 95817, USA.
| | - K K Biris
- University of California Davis Health, Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, 4635 2nd Ave, Suite 2000, Sacramento, CA 95817, USA.
| | - H Bang
- University of California Davis Health, Department of Public Health Sciences, Sciences 1C, Suite 145, Davis, CA 95616, USA.
| | - C A Lee
- University of California Davis Health, Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, 4635 2nd Ave, Suite 2000, Sacramento, CA 95817, USA.
| | - G G Loots
- Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, 7000 East Avenue, L-452, Livermore, CA 94550, USA.
| | - B A Christiansen
- University of California Davis Health, Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, 4635 2nd Ave, Suite 2000, Sacramento, CA 95817, USA.
| |
Collapse
|
16
|
Oka Y, Murata K, Kano T, Ozone K, Arakawa K, Kokubun T, Kanemura N. Impact of Controlling Abnormal Joint Movement on the Effectiveness of Subsequent Exercise Intervention in Mouse Models of Early Knee Osteoarthritis. Cartilage 2021; 13:1334S-1344S. [PMID: 31718284 PMCID: PMC8804869 DOI: 10.1177/1947603519885007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Moderate mechanical stress is necessary for preserving the cartilage. The clinician empirically understands that prescribing only exercise will progress osteoarthritis (OA) for knee OA patients with abnormal joint movement. When prescribing exercise for OA, we hypothesized that degeneration of articular cartilage could be further prevented by combining interventions with the viewpoint of normalizing joint movement. DESIGN Twelve-week-old ICR mice underwent anterior cruciate ligament transection (ACL-T) surgery in their right knee and divided into 4 groups: ACL-T, controlled abnormal joint movement (CAJM), ACL-T with exercise (ACL-T/Ex), CAJM with exercise (CAJM/Ex). Animals in the walking group were subjected to treadmill exercise 6 weeks after surgery, which included walking for 18 m/min, 30 min/d, 3 d/wk for 4 weeks. Joint instability was measured by anterior drawer test, and safranin-O staining and immunohistochemical staining were performed. RESULTS OARSI (Osteoarthritis Research Society International) score of ACL-T/Ex group showed highest among 4 groups (P < 0.001). And CAJM/Ex group was lower than ACL-T/Ex group. Positive cell ratio of IL-1β and MMP-13 in CAJM/Ex group was lower than ACL-T/Ex group (P < 0.05). CONCLUSIONS We found that the state of the intra-articular environment can greatly influence the effect of exercise on cartilage degeneration, even if exercise is performed under the same conditions. In the CAJM/Ex group where joint movement was normalized, abnormal mechanical stress such as shear force and compression force accompanying ACL cutting was alleviated. These findings may highlight the need to consider an intervention to correct abnormal joint movement before prescribing physical exercise in the treatment of OA.
Collapse
Affiliation(s)
- Yuichiro Oka
- Department of Health and Social
Services, Health and Social Services, Graduate School of Saitama Prefectural
University, Koshigaya, Saitama, Japan
| | - Kenji Murata
- Department of Physical Therapy,
Health and Social Services, Saitama Prefectural University, Koshigaya,
Saitama, Japan
| | - Takuma Kano
- Department of Health and Social
Services, Health and Social Services, Graduate School of Saitama Prefectural
University, Koshigaya, Saitama, Japan
| | - Kaichi Ozone
- Department of Health and Social
Services, Health and Social Services, Graduate School of Saitama Prefectural
University, Koshigaya, Saitama, Japan
| | - Kohei Arakawa
- Department of Health and Social
Services, Health and Social Services, Graduate School of Saitama Prefectural
University, Koshigaya, Saitama, Japan
| | - Takanori Kokubun
- Department of Physical Therapy,
Health and Social Services, Saitama Prefectural University, Koshigaya,
Saitama, Japan
| | - Naohiko Kanemura
- Department of Physical Therapy,
Health and Social Services, Saitama Prefectural University, Koshigaya,
Saitama, Japan,Naohiko Kanemura, Department of
Physical Therapy, Health and Social Services, Saitama Prefectural
University, 820 Sannomiya, Koshigaya, Saitama 343-8540, Japan.
| |
Collapse
|
17
|
Narez GE, Brown G, Herrick A, Ek RJ, Dejardin L, Wei F, Haut RC, Haut Donahue TL. Assessment of changes in the meniscus and subchondral bone in a novel closed-joint impact and surgical reconstruction lapine model. J Biomech 2021; 126:110630. [PMID: 34303894 DOI: 10.1016/j.jbiomech.2021.110630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/17/2021] [Accepted: 07/05/2021] [Indexed: 11/25/2022]
Abstract
Despite reconstruction surgery to repair a torn anterior cruciate ligament (ACL), patients often still show signs of post-traumatic osteoarthritis (PTOA) years following the procedure. The goal of this study was to document changes in the meniscus and subchondral bone due to closed-joint impact and surgical reconstruction in a lapine model. Animals received insult to the joint followed by surgical reconstruction of the ACL and partial meniscectomy. Following euthanasia of the animals at 1, 3, and 6-months post-impact, meniscal tissue was assessed for changes in morphology, mechanical properties and proteoglycan content. Femurs and tibias were scanned via micro-computed tomography to determine changes in bone quality, morphometry, and formation of osteophytes. Both the lateral and medial menisci showed severe degradation and tearing at all-time points, with higher degree of degeneration being observed at 6-months. Decreases in both the instantaneous and equilibrium modulus were documented in both menisci. Minimal changes were found in bone quality and morphometry, with most change documented in the tibia. Bones from the reconstructed limbs showed large volumes of osteophyte formations, with an increase in volume over time. The initial changes that were representative of PTOA may have been limited to the meniscus, but at later time points consistent changes due to the disease were seen in both tissues. This study, which builds on a previous study by this laboratory, suggests that the addition of surgical reconstruction of the ACL to our model was not sufficient to prevent the development of PTOA.
Collapse
Affiliation(s)
- Gerardo E Narez
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| | - Gabriel Brown
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| | - Ashley Herrick
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| | - Ryan J Ek
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| | - Loic Dejardin
- Department of Small Animal Clinical Sciences, Michigan State University, East Lansing, MI, USA
| | - Feng Wei
- Orthopaedic Biomechanics Laboratories, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Roger C Haut
- Orthopaedic Biomechanics Laboratories, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA; Department of Mechanical Engineering, Michigan State University, East Lansing, MI, USA
| | - Tammy L Haut Donahue
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA, USA.
| |
Collapse
|
18
|
Berke IM, Jain E, Yavuz B, McGrath T, Chen L, Silva MJ, Mbalaviele G, Guilak F, Kaplan DL, Setton LA. NF-κB-mediated effects on behavior and cartilage pathology in a non-invasive loading model of post-traumatic osteoarthritis. Osteoarthritis Cartilage 2021; 29:248-256. [PMID: 33246158 PMCID: PMC8023431 DOI: 10.1016/j.joca.2020.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/25/2020] [Accepted: 10/13/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE This study aimed to examine the temporal activation of NF-κB and its relationship to the development of pain-related sensitivity and behavioral changes in a non-invasive murine knee loading model of PTOA. METHOD Following knee injury NF-κB activity was assessed longitudinally via in vivo imaging in FVB. Cg-Tg (HIV-EGFP,luc)8Tsb/J mice. Measures of pain-related sensitivity and behavior were also assessed longitudinally for 16 weeks. Additionally, we antagonized NF-κB signaling via intra-articular delivery of an IκB kinase two antagonist to understand how local NF-κB inhibition might alter disease progression. RESULTS Following joint injury NF-κB signaling within the knee joint was transiently increased and peaked on day 3 with an estimated 1.35 p/s/cm2/sr (95% CI 0.913.1.792 p/s/cm2/sr) fold increase in signaling when compared to control joints. Furthermore, injury resulted in the long-term development of hindpaw allodynia. Hyperalgesia withdrawal thresholds were reduced at injured knee joints, with the largest reduction occurring 2 days following injury (estimate of between group difference 129.1 g with 95% CI 60.9,197.4 g), static weight bearing on injured limbs was also reduced. Local delivery of an NF-κB inhibitor following joint injury reduced chondrocyte death and influenced the development of pain-related sensitivity but did not reduce long-term cartilage degeneration. CONCLUSION These findings underscore the development of behavioral changes in this non-invasive loading model of PTOA and their relationships to NF-κB activation and pathology. They also highlight the potential chondroprotective effects of NF-κB inhibition shortly following joint injury despite limitations in preventing the long-term development of joint degeneration in this model of PTOA.
Collapse
Affiliation(s)
- I M Berke
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - E Jain
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - B Yavuz
- Department of Biomedical Engineering, Tufts University School of Engineering, Medford, MA, 02155, USA
| | - T McGrath
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - L Chen
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - M J Silva
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA; Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA; Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - G Mbalaviele
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA; Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - F Guilak
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA; Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA; Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO, 63110, USA
| | - D L Kaplan
- Department of Biomedical Engineering, Tufts University School of Engineering, Medford, MA, 02155, USA
| | - L A Setton
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA; Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA; Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
19
|
Fukui T, Yik JHN, Doyran B, Davis J, Haudenschild AK, Adamopoulos IE, Han L, Haudenschild DR. Bromodomain-containing-protein-4 and cyclin-dependent-kinase-9 inhibitors interact synergistically in vitro and combined treatment reduces post-traumatic osteoarthritis severity in mice. Osteoarthritis Cartilage 2021; 29:68-77. [PMID: 33164842 PMCID: PMC7785706 DOI: 10.1016/j.joca.2020.07.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 06/30/2020] [Accepted: 07/20/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Joint injury rapidly induces expression of primary response genes (PRGs), which activate a cascade of secondary genes that destroy joint tissues and initiate post-traumatic osteoarthritis (PTOA). Bromodomain-containing-protein-4 (Brd4) and cyclin-dependent-kinase-9 (CDK9) cooperatively control the rate-limiting step of PRG transactivation, including pro-inflammatory genes. This study investigated whether Brd4 and CDK9 inhibitors suppress inflammation and prevent PTOA development in vitro and in a mouse PTOA model. METHODS The effects of Brd4 and CDK9 inhibitors (JQ1 and Flavopiridol) on PRG and associated secondary damage were rigorously tested in different settings. Short-term effects of inflammatory stimuli (IL-1β, IL-6, TNF) on human chondrocyte PRG expression were assessed by RT-PCR and microarray after 5-h. We quantified glycosaminoglycan release from IL-1β-treated bovine cartilage explants after 3-6 days, and osteoarthritic changes in mice after ACL-rupture using RT-PCR (2-24hrs), in vivo imaging of MMP activity (24hrs), AFM-nanoindentation (3-7days), and histology (3days-4wks). RESULTS Flavopiridol and JQ1 inhibitors act synergistically, and a combination of both almost completely prevented the activation of most IL-1β-induced PRGs in vitro by microarray analysis, and prevented IL-1β-induced glycosaminoglycan release from cartilage explants. Mice given the drug combination showed reduced IL-1β and IL-6 expression, less in vivo MMP activity, and lower synovitis (1.5 vs 4.9) and OARSI scores (2.8 vs 6.0) than untreated mice with ACL-rupture. CONCLUSIONS JQ1 and Flavopiridol work synergistically to reduce injury response after joint trauma, suggesting that targeting Brd4 and/or CDK9 could be a viable strategy for PTOA prevention and treatment of early OA.
Collapse
Affiliation(s)
- Tomoaki Fukui
- Department of Orthopaedic Surgery, University of California Davis School of Medicine, 4635 Second Avenue, Sacramento, CA 95817 USA Tel:916-734-5015 Fax:916-734-5750
| | - Jasper H. N. Yik
- Department of Orthopaedic Surgery, University of California Davis School of Medicine, 4635 Second Avenue, Sacramento, CA 95817 USA Tel:916-734-5015 Fax:916-734-5750
| | - Basak Doyran
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | - Jack Davis
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children-Northern California, Sacramento, CA, USA
| | - Anne K. Haudenschild
- Department of Biomedical Engineering, University of California Davis, Davis, CA USA
| | - Iannis E. Adamopoulos
- Department of Internal Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, USA,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children-Northern California, Sacramento, CA, USA
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | - Dominik R. Haudenschild
- Department of Orthopaedic Surgery, University of California Davis School of Medicine, 4635 Second Avenue, Sacramento, CA 95817 USA Tel:916-734-5015 Fax:916-734-5750
| |
Collapse
|
20
|
Differential patterns of pathology in and interaction between joint tissues in long-term osteoarthritis with different initiating causes: phenotype matters. Osteoarthritis Cartilage 2020; 28:953-965. [PMID: 32360537 DOI: 10.1016/j.joca.2020.04.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/23/2020] [Accepted: 04/15/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To determine if osteoarthritis (OA) progression and joint tissue-pathology associations link specific animal models to different human OA phenotypes. DESIGN Male 11-week-old C57BL6 mice had unilateral medial-meniscal-destabilization (DMM) or antigen-induced-arthritis (AIA). Joint tissue histopathology was scored day-3 to week-16. Tissue-pathology associations (corrected for time and at week-16) were determined by partial correlation coefficients, and odds ratios (OR) calculated for likelihood of cartilage damage and joint inflammation by ordinal-logistic-regression. RESULTS Despite distinct temporal patterns of progression, by week-16 joint-wide OA pathology in DMM and AIA was equivalent. Significant pathology associations common to both models included: osteophyte size and maturity (r > 0.4); subchondral bone (SCB) sclerosis and osteophyte maturity (r > 0.25); cartilage erosion and chondrocyte hypertrophy/apoptosis (r > 0.4), SCB sclerosis (r > 0.26), osteophyte size (r > 0.3), and maturity (r > 0.32). DMM-specific associations were between cartilage proteoglycan loss and structural damage (r = 0.56), osteophyte maturity (r = 0.49), size (r = 0.45), and SCB sclerosis (r = 0.28). AIA-specific associations were between SCB sclerosis and chondrocyte hypertrophy/apoptosis (r = 0.40) and osteophyte size (r = 0.37); and synovitis with cartilage structural damage (r = 0.18). No tissue-pathology associations were common to both models at week-16. Increased likelihood of cartilage structural damage was associated with: chondrocyte hypertrophy/apoptosis (OR>1.7), and osteophyte size (OR>2.3) in both models; SCB sclerosis (OR = 2.0) and proteoglycan loss (OR = 2.4) in DMM; and synovitis (OR = 1.2) in AIA. Joint inflammation was associated positively with cartilage proteoglycan loss (OR = 1.4) and inversely with osteophyte size (OR = 0.21) in AIA only. CONCLUSION This study highlights the importance of defining OA-models by initiating mechanisms and progression, not just end-stage joint-tissue pathology.
Collapse
|
21
|
Ishii Y, Noguchi H, Sato J, Ishii H, Ishii R, Todoroki K, Ezawa N, Toyabe SI. Size of Medial Knee Osteophytes Correlates With Knee Alignment But Not With Coronal Laxity in Patients With Medial Knee Osteoarthritis. J Orthop Res 2020; 38:639-644. [PMID: 31709593 DOI: 10.1002/jor.24501] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/25/2019] [Indexed: 02/04/2023]
Abstract
The severity of osteoarthritis (OA) has been related to osteophyte size. However, the effects on osteophyte size of repeated and increased loading associated with joint laxity and varus misalignment remain unclear. We investigated these relationships in patients with medial knee OA and compared the performances of computed tomography (CT) and radiography for assessing osteophyte parameters. We examined knee joint alignment on radiographs and knee laxity using arthrometry in 191 patients with medial knee OA who were undergoing total knee arthroplasty. We also measured femur and tibia osteophyte distance (largest perpendicular distance from the cortical line to outer margin of the osteophyte) using radiography and CT, osteophyte areas (largest area surrounded by the outer margin of an osteophyte) by CT and determined the locations of the osteophytes in the femur and tibia by CT. We then analyzed the correlations between the variables using Spearman's rank correlation tests. Osteophyte sizes in the femur and tibia as determined by radiography (distance) or CT (distance and area) were positively correlated with the degree of varus alignment but not with medial or lateral laxity. There was also a significant correlation between maximum osteophyte distances measured by radiography and CT. The greatest number and the largest osteophytes were located in the posterior third of the femur and middle third of the tibia, respectively. Osteophyte size was correlated with preoperative knee alignment but not with knee laxity in patients with medial knee OA. Osteophyte size can be evaluated using conventional radiography, without the need for CT. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:639-644, 2020.
Collapse
Affiliation(s)
- Yoshinori Ishii
- Ishii Orthopaedic & Rehabilitation Clinic, 1089 Shimo-Oshi, Gyoda, Saitama, 361-0037, Japan
| | - Hideo Noguchi
- Ishii Orthopaedic & Rehabilitation Clinic, 1089 Shimo-Oshi, Gyoda, Saitama, 361-0037, Japan
| | - Junko Sato
- Ishii Orthopaedic & Rehabilitation Clinic, 1089 Shimo-Oshi, Gyoda, Saitama, 361-0037, Japan
| | - Hana Ishii
- School of Plastic Surgery, Kanazawa Medical University, 1-1 Daigaku Uchinada, Ishikawa, 920-0253, Japan
| | - Ryo Ishii
- Sado General Hospital, 161 Chikusa Sado, Niigata, 952-1209, Japan
| | - Koji Todoroki
- Ishii Orthopaedic & Rehabilitation Clinic, 1089 Shimo-Oshi, Gyoda, Saitama, 361-0037, Japan
| | - Nobukazu Ezawa
- Ishii Orthopaedic & Rehabilitation Clinic, 1089 Shimo-Oshi, Gyoda, Saitama, 361-0037, Japan
| | - Shin-Ichi Toyabe
- Niigata University Crisis Management Office, Niigata University Hospital, Niigata University Graduate School of Medical and Dental Sciences, 1 Asahimachi Dori Niigata, Niigata, 951-8520, Japan
| |
Collapse
|
22
|
Takada S, Nakamura E, Sabanai K, Tsukamoto M, Otomo H, Kanoh S, Murai T, Fukuda H, Okada Y, Uchida S, Sakai A. Attenuation of Post-Traumatic Osteoarthritis After Anterior Cruciate Ligament Injury Via Inhibition of Hedgehog Signaling. J Orthop Res 2020; 38:609-619. [PMID: 31608494 DOI: 10.1002/jor.24494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 10/04/2019] [Indexed: 02/04/2023]
Abstract
We aimed to investigate whether post-traumatic osteoarthritis (PTOA) progression is appropriately represented by a PTOA mouse model using a unique climbing cage to add mechanical loading after anterior cruciate ligament (ACL) transection and to determine how Hedgehog signaling inhibition prevents PTOA progression by observing time-dependent morphological changes. This controlled laboratory study histologically compared mice with surgically-induced ACL transection (ACLT) and those with voluntary increased activity in a climbing cage from 1 week postoperatively (ACLT + climbing). We generated conditional knockout (cKO) mice with a deleted Smoothened (Smo) gene. Time-dependent histopathological, immunohistochemical, and gene expression analyses were performed. The ACLT + climbing group showed more severe cartilage defects and massive osteophyte formation than the ACLT group. Smo deletion significantly suppressed PTOA progression. The time-dependent assessment revealed cartilaginous processes of equivalent size at the posterior tibial margin in the Smo cKO and control mice at 4 weeks postoperatively. However, at 8 weeks postoperatively, mature ossifying lesions were detected in the controls but not in Smo cKO mice. In the articular cartilage, ADAMTS5 and RUNX2 expression were observed in hypertrophic chondrocytes near the defective cartilage in controls but not in Smo cKO mice. Climbing exercise after ACLT accelerated PTOA progression more severely not only through increasing joint instability induced by ACLT but also through mechanical loading force induced by climbing exercise. Hedgehog signaling inhibition attenuated PTOA progression by suppressing chondrocyte hypertrophy induced by mechanical loads, to which ACL-deficient athletes are usually exposed. Thus, Hedgehog signaling inhibition may be a therapeutic option to prevent arthritic changes in athletes. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:609-619, 2020.
Collapse
Affiliation(s)
- Shinichiro Takada
- Department of Orthopaedic Surgery, University of Occupational and Environmental Health, 1-1 Iseigaoka Yahatanishui-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Eiichiro Nakamura
- Department of Orthopaedic Surgery, University of Occupational and Environmental Health, 1-1 Iseigaoka Yahatanishui-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Ken Sabanai
- Department of Orthopaedic Surgery, University of Occupational and Environmental Health, 1-1 Iseigaoka Yahatanishui-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Manabu Tsukamoto
- Department of Orthopaedic Surgery, University of Occupational and Environmental Health, 1-1 Iseigaoka Yahatanishui-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Hajime Otomo
- Department of Orthopaedic Surgery, University of Occupational and Environmental Health, 1-1 Iseigaoka Yahatanishui-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Shinkichi Kanoh
- Department of Orthopaedic Surgery, University of Occupational and Environmental Health, 1-1 Iseigaoka Yahatanishui-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Teppei Murai
- Department of Orthopaedic Surgery, University of Occupational and Environmental Health, 1-1 Iseigaoka Yahatanishui-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Hokuto Fukuda
- Department of Orthopaedic Surgery, University of Occupational and Environmental Health, 1-1 Iseigaoka Yahatanishui-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Yasuaki Okada
- Department of Orthopaedic Surgery, University of Occupational and Environmental Health, 1-1 Iseigaoka Yahatanishui-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Soshi Uchida
- Department of Orthopaedic Surgery, Wakamatsu hospital, University of Occupational and Environmental Health, 1-17-1 Hamamachi Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0024, Japan
| | - Akinori Sakai
- Department of Orthopaedic Surgery, University of Occupational and Environmental Health, 1-1 Iseigaoka Yahatanishui-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| |
Collapse
|
23
|
Brown SB, Hornyak JA, Jungels RR, Shah YY, Yarmola EG, Allen KD, Sharma B. Characterization of Post-Traumatic Osteoarthritis in Rats Following Anterior Cruciate Ligament Rupture by Non-Invasive Knee Injury (NIKI). J Orthop Res 2020; 38:356-367. [PMID: 31520482 PMCID: PMC8596306 DOI: 10.1002/jor.24470] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/03/2019] [Indexed: 02/04/2023]
Abstract
Small animal models are essential for studying anterior cruciate ligament (ACL) injury, one of the leading risk factors for post-traumatic osteoarthritis (PTOA). Non-surgical models of ACL rupture have recently surged as a new tool to study PTOA, as they circumvent the confounding effects of surgical disruption of the joint. These models primarily have been explored in mice and rabbits, but are relatively understudied in rats. The purpose of this work was to establish a non-invasive, mechanical overload model of ACL rupture in the rat and to study the disease pathogenesis following the injury. ACL rupture was induced via non-invasive tibial compression in Lewis rats. Disease state was characterized for 4 months after ACL rupture via histology, computed tomography, and biomarker capture from the synovial fluid. The non-invasive knee injury (NIKI) model created consistent ACL ruptures without direct damage to other tissues and resulted in conventional OA pathology. NIKI knees exhibited structural changes as early as 4 weeks post-injury, including regional structural changes to cartilage, chondrocyte and cartilage disorganization, changes to the bone architecture, synovial hyperplasia, and the increased presence of biomarkers of cartilage fragmentation and pro-inflammatory cytokines. These results suggest that this model can be a valuable tool to study PTOA. By establishing the fundamental pathogenesis of this injury, additional opportunities are created to evaluate unique contributing factors and potential therapeutic interventions for this disease. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:356-367, 2020.
Collapse
Affiliation(s)
- Shannon B. Brown
- University of Florida 1275 Center Drive, Biomedical Sciences Building, JG‐56 Gainesville Florida 32611
| | - Jessica A. Hornyak
- University of Florida 1275 Center Drive, Biomedical Sciences Building, JG‐56 Gainesville Florida 32611
| | - Ryan R. Jungels
- University of Florida 1275 Center Drive, Biomedical Sciences Building, JG‐56 Gainesville Florida 32611
| | - Yash Y. Shah
- University of Florida 1275 Center Drive, Biomedical Sciences Building, JG‐56 Gainesville Florida 32611
| | - Elena G. Yarmola
- University of Florida 1275 Center Drive, Biomedical Sciences Building, JG‐56 Gainesville Florida 32611
| | - Kyle D. Allen
- University of Florida 1275 Center Drive, Biomedical Sciences Building, JG‐56 Gainesville Florida 32611
| | - Blanka Sharma
- University of Florida 1275 Center Drive, Biomedical Sciences Building, JG‐56 Gainesville Florida 32611
| |
Collapse
|
24
|
Crisco JJ, Morton AM, Moore DC, Kahan LG, Ladd AL, Weiss APC. Osteophyte growth in early thumb carpometacarpal osteoarthritis. Osteoarthritis Cartilage 2019; 27:1315-1323. [PMID: 31136802 PMCID: PMC6702046 DOI: 10.1016/j.joca.2019.05.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 04/09/2019] [Accepted: 05/03/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Osteophyte formation is a critical part of the degeneration of a joint with osteoarthritis (OA). While often qualitatively described, few studies have succeeded in quantifying osteophyte growth over time. Using computed tomography (CT) image data from a longitudinal, observational study of thumb carpometacarpal (CMC) OA, our aim was to quantify osteophyte growth volume and location over a three-year period in men and women. METHOD Ninety patients with early thumb OA were recruited and assessed at baseline, 1.5 years, and 3 years with CT imaging. Osteophyte volume and location on the trapezium and first metacarpal were determined using a library of 46 healthy subjects as a nonarthritic reference database. RESULTS There was a significant increase in osteophyte volume for women and men over the three-year follow-up in the trapezium (86.8 mm3-120.5 mm3 and 165.1 mm3-235.3 mm3, means respectively) and in the proximal metacarpal (63 mm3-80.4 mm3, and 115.8 mm3-161.7 mm3, respectively). The location of osteophyte initiation and growth was consistent across subjects and was located in non-opposing regions on the trapezium and first metacarpal. Osteophyte growth occurred about the radial and ulnar margins of the trapezial facet, while on the proximal metacarpal, growth occurred principally about the volar and dorsal margins of the facet. CONCLUSION Osteophyte growth occurred in early thumb osteoarthritis over three years. Growth was localized in specific, non-opposing regions on the trapezium and metacarpal, raising intriguing questions about the triggers for their formation, whether the mechanisms are mechanical, biological or a combination of both.
Collapse
Affiliation(s)
- Joseph J. Crisco
- Bioengineering Laboratory, Department of Orthopaedics, The Warren Alpert Medical School of Brown University and Rhode Island Hospital, 1 Hoppin Street, CORO West Suite 404, Providence, RI 02903,Address correspondence and reprint requests to: J.J. Crisco, Bioengineering Laboratory, Department of Orthopaedics, The Warren Alpert Medical School of Brown University and Rhode Island Hospital, 1 Hoppin Street, CORO West Suite 404, Providence, RI 02903,
| | - Amy M. Morton
- Bioengineering Laboratory, Department of Orthopaedics, The Warren Alpert Medical School of Brown University and Rhode Island Hospital, 1 Hoppin Street, CORO West Suite 404, Providence, RI 02903
| | - Douglas C. Moore
- Bioengineering Laboratory, Department of Orthopaedics, The Warren Alpert Medical School of Brown University and Rhode Island Hospital, 1 Hoppin Street, CORO West Suite 404, Providence, RI 02903
| | - Lindsey G. Kahan
- Bioengineering Laboratory, Department of Orthopaedics, The Warren Alpert Medical School of Brown University and Rhode Island Hospital, 1 Hoppin Street, CORO West Suite 404, Providence, RI 02903
| | - Amy L. Ladd
- Department of Orthopaedics, The Warren Alpert Medical School of Brown University/University Orthopedics, 2 Dudley Street, Suite 200, Providence, RI 02905
| | - Arnold-Peter C. Weiss
- Robert A. Chase Hand & Upper Limb Center, Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
25
|
The importance of performing knee surgery in rats. Osteoarthritis Cartilage 2019; 27:1107-1108. [PMID: 31034922 DOI: 10.1016/j.joca.2019.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 02/02/2023]
|
26
|
|
27
|
Restoring knee joint kinematics after anterior cruciate ligament injury might inhibit synovial membrane inflammation. SPORT SCIENCES FOR HEALTH 2019. [DOI: 10.1007/s11332-018-0481-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
28
|
Wang B, Lang Y, Zhang L. Histopathological changes in the infrapatellar fat pad in an experimental rabbit model of early patellofemoral osteoarthritis. Knee 2019; 26:2-13. [PMID: 30415972 DOI: 10.1016/j.knee.2018.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 05/20/2018] [Accepted: 06/08/2018] [Indexed: 02/02/2023]
Abstract
BACKGROUND The purpose of this study was to characterise the histopathological changes in the infrapatellar fat pad (IPFP) in the early stage of patellofemoral osteoarthritis (PFOA). METHODS Sixty-four New Zealand white rabbits were randomly divided into experimental (n = 24), sham (n = 16), and control groups (n = 24). In the experimental group, denoted as the patellar ligament uneven shortening group (US group), the patellar ligament (PL) was folded eight millimetres and sutured. After eight weeks, all animals were euthanised, and magnetic resonance imaging (MRI) evaluation, wet IPFP weight measurement, and histopathological and immunohistochemistry analysis were performed to analyse the histopathological changes in the IPFPs. RESULTS The maximum cross-sectional area (CSA) of the IPFPs in the sagittal position of MRI in the control group, sham group, and US group were 45.50 ± 7.19 mm2, 45.88 ± 6.60 mm2 (vs. control group, P = 0.907), and 53.83 ± 8.24 mm2 (vs. control group, P = 0.015; vs. sham group, P = 0.035), respectively. The MRI intensity of the IPFPs in the control group, sham group, and US group were 115.53 ± 28.85, 108.53 ± 26.73 (vs. control group, P = 0.589), and 154.52 ± 18.48 (vs. control group, P = 0.002; vs. sham group, P = 0.002), respectively. The wet weight of the IPFPs in the control group, sham group, and US group were 0.32 ± 0.05 g, 0.32 ± 0.04 g (vs. control group, P = 0.895), and 0.38 ± 0.06 g (vs. control group, P = 0.017; vs. sham group, P = 0.033), respectively. The Osteoarthritis Research Society International (OARSI) scores of the IPFPs in the US group were 6.00 ± 1.91, which was higher than the scores of 2.50 ± 2.02 (P < 0.001) in the control group and of 2.75 ± 1.67 (P = 0.001) in the sham group. CONCLUSIONS The histopathological changes of the IPFPs as determined via MRI and microscopic structure appeared to occur much earlier than cartilage damage in PFOA. Furthermore, detecting and treating the IPFP changes may offer aid in the diagnosis and treatment of PFOA.
Collapse
Affiliation(s)
- Binggang Wang
- Department of Orthopedic Surgery, Hebei Medical University, Shijiazhuang, China
| | - Yanfei Lang
- Department of Orthopedic Surgery, The Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Liu Zhang
- Department of Orthopedic Surgery, Hebei Medical University, Shijiazhuang, China; Department of Orthopedic Surgery, The Affiliated Hospital of North China University of Science and Technology, Tangshan, China.
| |
Collapse
|
29
|
Fisher M, Ackley T, Richard K, Oei B, Dealy CN. Osteoarthritis at the Cellular Level: Mechanisms, Clinical Perspectives, and Insights From Development. ENCYCLOPEDIA OF BIOMEDICAL ENGINEERING 2019:660-676. [DOI: 10.1016/b978-0-12-801238-3.64119-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
30
|
Murata K, Kokubun T, Morishita Y, Onitsuka K, Fujiwara S, Nakajima A, Fujino T, Takayanagi K, Kanemura N. Controlling Abnormal Joint Movement Inhibits Response of Osteophyte Formation. Cartilage 2018; 9:391-401. [PMID: 28397529 PMCID: PMC6139594 DOI: 10.1177/1947603517700955] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective Osteoarthritis (OA) is induced by accumulated mechanical stress to joints; however, little has been reported regarding the cause among detailed mechanical stress on cartilage degeneration. This study investigated the influence of the control of abnormal joint movement induced by anterior cruciate ligament (ACL) injury in the articular cartilage. Design The animals were divided into 3 experimental groups: CAJM group ( n = 22: controlling abnormal joint movement), ACL-T group ( n = 22: ACL transection or knee anterior instability increased), and INTACT group ( n = 12: no surgery). After 2 and 4 weeks, the knees were harvested for digital microscopic observation, soft X-ray analysis, histological analysis, and synovial membrane molecular evaluation. Results The 4-week OARSI scores showed that cartilage degeneration was significantly inhibited in the CAJM group as compared with the ACL-T group ( P < 0.001). At 4 weeks, the osteophyte formation had also significantly increased in the ACL-T group ( P < 0.001). These results reflected the microscopic scoring and soft X-ray analysis findings at 4 weeks. Real-time synovial membrane polymerase chain reaction analysis for evaluation of the osteophyte formation-associated factors showed that the mRNA expression of BMP-2 and VEGF in the ACL-T group had significantly increased after 2 weeks. Conclusions Typically, abnormal mechanical stress induces osteophyte formation; however, our results demonstrated that CAJM group inhibited osteophyte formation. Therefore, controlling abnormal joint movement may be a beneficial precautionary measure for OA progression in the future.
Collapse
Affiliation(s)
- Kenji Murata
- Department of Physical Therapy, School
of Health and Social Services, Saitama Prefectural University, Saitama, Japan,Department of Health and Social
Services, Course of Health and Social Services, Graduate School of Saitama
Prefectural University, Saitama, Japan
| | - Takanori Kokubun
- Department of Physical Therapy, School
of Health and Social Services, Saitama Prefectural University, Saitama, Japan
| | - Yuri Morishita
- Department of Health and Social
Services, Course of Health and Social Services, Graduate School of Saitama
Prefectural University, Saitama, Japan
| | - Katsuya Onitsuka
- Department of Health and Social
Services, Course of Health and Social Services, Graduate School of Saitama
Prefectural University, Saitama, Japan
| | - Shuhei Fujiwara
- Department of Health and Social
Services, Course of Health and Social Services, Graduate School of Saitama
Prefectural University, Saitama, Japan
| | - Aya Nakajima
- Department of Health and Social
Services, Course of Health and Social Services, Graduate School of Saitama
Prefectural University, Saitama, Japan
| | - Tsutomu Fujino
- Department of Health and Social
Services, Course of Health and Social Services, Graduate School of Saitama
Prefectural University, Saitama, Japan
| | - Kiyomi Takayanagi
- Department of Physical Therapy, School
of Health and Social Services, Saitama Prefectural University, Saitama, Japan
| | - Naohiko Kanemura
- Department of Physical Therapy, School
of Health and Social Services, Saitama Prefectural University, Saitama, Japan,Naohiko Kanemura, Department of Physical
Therapy, School of Health and Social Services, Saitama Prefectural University,
Saitama, Japan.
| |
Collapse
|
31
|
Hsia AW, Tarke FD, Shelton TJ, Tjandra PM, Christiansen BA. Comparison of knee injury threshold during tibial compression based on limb orientation in mice. J Biomech 2018; 74:220-224. [PMID: 29678417 DOI: 10.1016/j.jbiomech.2018.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/02/2018] [Accepted: 04/04/2018] [Indexed: 01/27/2023]
Abstract
Our previous studies used tibial compression overload to induce anterior cruciate ligament (ACL) rupture in mice, while others have applied similar or greater compressive magnitudes without injury. The causes of these differences in injury threshold are not known. In this study, we compared knee injury thresholds using a "prone configuration" and a "supine configuration" that differed with respect to hip, knee, and ankle flexion, and utilized different fixtures to stabilize the knee. Right limbs of female and male C57BL/6 mice were loaded using the prone configuration, while left limbs were loaded using the supine configuration. Mice underwent progressive loading from 2 to 20 N, or cyclic loading at 9 N or 14 N (n = 9-11/sex/loading method). Progressive loading with the prone configuration resulted in ACL rupture at an average of 10.2 ± 0.9 N for females and 11.4 ± 0.7 N for males. In contrast, progressive loading with the supine configuration resulted in ACL rupture in only 36% of female mice and 50% of male mice. Cyclic loading with the prone configuration resulted in ACL rupture after 15 ± 8 cycles for females and 24 ± 27 cycles for males at 9 N, and always during the first cycle for both sexes at 14 N. In contrast, cyclic loading with the supine configuration was able to complete 1,200 cycles at 9 N without injury for both sexes, and an average of 45 ± 41 cycles for females and 49 ± 25 cycles for males at 14 N before ACL rupture. These results show that tibial compression configurations can strongly affect knee injury thresholds during loading.
Collapse
Affiliation(s)
- Allison W Hsia
- Biomedical Engineering Graduate Group, University of California, Davis, Davis, CA, United States.
| | - Franklin D Tarke
- Department of Orthopaedic Surgery, University of California Davis Medical Center, Sacramento, CA, United States.
| | - Trevor J Shelton
- Department of Orthopaedic Surgery, University of California Davis Medical Center, Sacramento, CA, United States.
| | - Priscilla M Tjandra
- Biomedical Engineering Graduate Group, University of California, Davis, Davis, CA, United States.
| | - Blaine A Christiansen
- Biomedical Engineering Graduate Group, University of California, Davis, Davis, CA, United States; Department of Orthopaedic Surgery, University of California Davis Medical Center, Sacramento, CA, United States.
| |
Collapse
|
32
|
Gilbert SJ, Bonnet CS, Stadnik P, Duance VC, Mason DJ, Blain EJ. Inflammatory and degenerative phases resulting from anterior cruciate rupture in a non-invasive murine model of post-traumatic osteoarthritis. J Orthop Res 2018; 36:2118-2127. [PMID: 29453795 PMCID: PMC6120532 DOI: 10.1002/jor.23872] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 02/05/2018] [Indexed: 02/04/2023]
Abstract
Joint injury is the predominant risk factor for post-traumatic osteoarthritis development (PTOA). Several non-invasive mouse models mimicking human PTOA investigate molecular mechanisms of disease development; none have characterized the inflammatory response to this acute traumatic injury. Our aim was to characterize the early inflammatory phase and later degenerative component in our in vivo non-invasive murine model of PTOA induced by anterior cruciate ligament (ACL) rupture. Right knees of 12-week-old C57Bl6 mice were placed in flexion at a 30° offset position and subjected to a single compressive load (12N, 1.4 mm/s) to induce ACL rupture with no obvious damage to surrounding tissues. Tissue was harvested 4 h post-injury and on days 3, 14, and 21; contralateral left knees served as controls. Histological, immunohistochemical, and gene analyzes were performed to evaluate inflammatory and degenerative changes. Immunohistochemistry revealed time-dependent expression of mature (F4/80 positive) and inflammatory (CD11b positive) macrophage populations within the sub-synovial infiltrate, developing osteophytes, and inflammation surrounding the ACL in response to injury. Up-regulation of genes encoding acute pro-inflammatory markers, inducible nitric oxide synthase, interleukin-6 and interleukin-17, and the matrix degrading enzymes, ADAMTS-4 and MMP3 was detected in femoral cartilage, concomitant with extensive cartilage damage and bone remodelling over 21-days post-injury. Our non-invasive model describes pathologically distinct phases of the disease, increasing our understanding of inflammatory episodes, the tissues/cells producing inflammatory mediators and the early molecular changes in the joint, thereby defining the early phenotype of PTOA. This knowledge will guide appropriate interventions to delay or arrest disease progression following joint injury. © 2018 The Authors. Journal of Orthopaedic Research® Published by Wiley Periodicals, Inc. on behalf of the Orthopaedic Research Society. J Orthop Res 9999:1-10, 2018.
Collapse
Affiliation(s)
- Sophie J. Gilbert
- Arthritis Research UK Biomechanics and Bioengineering Centre, Biomedicine Division, School of BiosciencesCardiff UniversityMuseum AvenueCardiffCF10 3AXUK
| | - Cleo S. Bonnet
- Arthritis Research UK Biomechanics and Bioengineering Centre, Biomedicine Division, School of BiosciencesCardiff UniversityMuseum AvenueCardiffCF10 3AXUK
| | - Paulina Stadnik
- Arthritis Research UK Biomechanics and Bioengineering Centre, Biomedicine Division, School of BiosciencesCardiff UniversityMuseum AvenueCardiffCF10 3AXUK
| | - Victor C. Duance
- Arthritis Research UK Biomechanics and Bioengineering Centre, Biomedicine Division, School of BiosciencesCardiff UniversityMuseum AvenueCardiffCF10 3AXUK
| | - Deborah J. Mason
- Arthritis Research UK Biomechanics and Bioengineering Centre, Biomedicine Division, School of BiosciencesCardiff UniversityMuseum AvenueCardiffCF10 3AXUK
| | - Emma J. Blain
- Arthritis Research UK Biomechanics and Bioengineering Centre, Biomedicine Division, School of BiosciencesCardiff UniversityMuseum AvenueCardiffCF10 3AXUK
| |
Collapse
|
33
|
Hsia AW, Emami AJ, Tarke FD, Cunningham HC, Tjandra PM, Wong A, Christiansen BA, Collette NM. Osteophytes and fracture calluses share developmental milestones and are diminished by unloading. J Orthop Res 2018; 36:699-710. [PMID: 29058776 PMCID: PMC5877458 DOI: 10.1002/jor.23779] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/13/2017] [Indexed: 02/04/2023]
Abstract
Osteophytes are a typical radiographic finding during osteoarthritis (OA), but the mechanisms leading to their formation are not well known. Comparatively, fracture calluses have been studied extensively; therefore, drawing comparisons between osteophytes and fracture calluses may lead to a deeper understanding of osteophyte formation. In this study, we compared the time courses of osteophyte and fracture callus formation, and investigated mechanisms contributing to development of these structure. Additionally, we investigated the effect of mechanical unloading on the formation of both fracture calluses and osteophytes. Mice underwent either transverse femoral fracture or non-invasive anterior cruciate ligament rupture. Fracture callus and osteophyte size and ossification were evaluated after 3, 5, 7, 14, 21, or 28 days. Additional mice were subjected to hindlimb unloading after injury for 3, 7, or 14 days. Protease activity and gene expression profiles after injury were evaluated after 3 or 7 days of normal ambulation or hindlimb unloading using in vivo fluorescence reflectance imaging (FRI) and quantitative PCR. We found that fracture callus and osteophyte growth achieved similar developmental milestones, but fracture calluses formed and ossified at earlier time points. Hindlimb unloading ultimately led to a threefold decrease in chondro/osteophyte area, and a twofold decrease in fracture callus area. Unloading was also associated with decreased inflammation and protease activity in injured limbs detected with FRI, particularly following ACL rupture. qPCR analysis revealed disparate cellular responses in fractured femurs and injured joints, suggesting that fracture calluses and osteophytes may form via different inflammatory, anabolic, and catabolic pathways. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:699-710, 2018.
Collapse
Affiliation(s)
- Allison W. Hsia
- Biomedical Engineering Graduate Group, University of California Davis, Davis, CA
| | - Armaun J. Emami
- Biomedical Engineering Graduate Group, University of California Davis, Davis, CA
| | - Franklin D. Tarke
- Department of Orthopaedic Surgery, University of California Davis Medical Center, Sacramento, CA
| | - Hailey C. Cunningham
- Biomedical Engineering Graduate Group, University of California Davis, Davis, CA
| | - Priscilla M. Tjandra
- Biomedical Engineering Graduate Group, University of California Davis, Davis, CA
| | - Alice Wong
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA
| | - Blaine A. Christiansen
- Biomedical Engineering Graduate Group, University of California Davis, Davis, CA
- Department of Orthopaedic Surgery, University of California Davis Medical Center, Sacramento, CA
| | - Nicole M. Collette
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA
| |
Collapse
|
34
|
Lateral osteophytes do not represent a contraindication to medial unicompartmental knee arthroplasty: a 15-year follow-up. Knee Surg Sports Traumatol Arthrosc 2017; 25:652-659. [PMID: 27631646 DOI: 10.1007/s00167-016-4313-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 08/31/2016] [Indexed: 12/18/2022]
Abstract
PURPOSE Lateral osteophytes have been reported to be associated with lateral compartment disease and as such it is unclear whether medial unicompartmental knee arthroplasty should be performed if these are present. METHODS Using the OARSI classification system, 0 (no osteophyte) to 3 (large osteophyte), radiographs from a series of cemented meniscal-bearing unicompartmental knee arthroplasty implanted in the setting of full-thickness lateral cartilage where lateral osteophytes were not considered a contraindication were identified and factors associated with the presence and size of lateral osteophytes, and their impact on clinical outcomes and implant survival were assessed. RESULTS Pre-operative radiographs from 458 knees (392 patients), independently followed up for a mean 10.5 years (range 5.3-16.6), were assessed. Lateral osteophytes were present in 62 % of knees with 18 % scored as Grade 3. Inter-observer reliability was good (kappa = 0.70). The presence and size of lateral osteophytes was associated with younger age at joint replacement (p = 0.01) and increasing BMI (p = 0.01). No association was seen with gender, pre-operative status, assessed using the Oxford Knee Score (OKS), American Knee Society (AKSS) Objective or Functional Score, Tegner activity score, or size of medial tibial lesion. Subgroup analysis of Grade 3 Osteophytes revealed that these were associated with a greater degree of macroscopic ACL damage. At 10 years there was no difference in function (n.s.), and at 15 years no difference in implant survival or mechanism of failure between groups (n.s.). Subgroup analysis of Grade 3 osteophytes found no significant difference in functional outcome at 10 years or implant survival at 15 years. CONCLUSION The presence of lateral osteophytes is not a contraindication to medial meniscal-bearing unicompartmental knee arthroplasty. The clinical relevance of this study is that it highlights the importance of an appropriate pre-operative assessment of the lateral compartment as in the setting of full-thickness cartilage at operation lateral osteophytes do not compromise long-term functional outcome or implant survival. LEVEL OF EVIDENCE IV.
Collapse
|
35
|
Blaker CL, Clarke EC, Little CB. Using mouse models to investigate the pathophysiology, treatment, and prevention of post-traumatic osteoarthritis. J Orthop Res 2017; 35:424-439. [PMID: 27312470 DOI: 10.1002/jor.23343] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/14/2016] [Indexed: 02/04/2023]
Abstract
Post-traumatic osteoarthritis (PTOA) is defined by its development after joint injury. Factors contributing to the risk of PTOA occurring, the rate of progression, and degree of associated disability in any individual, remain incompletely understood. What constitutes an "OA-inducing injury" is not defined. In line with advances in the traumatic brain injury field, we propose the scope of PTOA-inducing injuries be expanded to include not only those causing immediate structural damage and instability (Type I), but also those without initial instability/damage from moderate (Type II) or minor (Type III) loading severity. A review of the literature revealed this full spectrum of potential PTOA subtypes can be modeled in mice, with 27 Type I, 6 Type II, and 4 Type III models identified. Despite limitations due to cartilage anatomy, joint size, and bio-fluid availability, mice offer advantages as preclinical models to study PTOA, particularly genetically modified strains. Histopathology was the most common disease outcome, cartilage more frequently studied than bone or synovium, and meniscus and ligaments rarely evaluated. Other methods used to examine PTOA included gene expression, protein analysis, and imaging. Despite the major issues reported by patients being pain and biomechanical dysfunction, these were the least commonly measured outcomes in mouse models. Informative correlations of simultaneously measured disease outcomes in individual animals, was rarely done in any mouse PTOA model. This review has identified knowledge gaps that need to be addressed to increase understanding and improve prevention and management of PTOA. Preclinical mouse models play a critical role in these endeavors. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:424-439, 2017.
Collapse
Affiliation(s)
- Carina L Blaker
- Murray Maxwell Biomechanics Laboratory, Institute of Bone and Joint Research, Level 10, Kolling Institute B6, Northern Sydney Local Health District, Sydney Medical School Northern, University of Sydney, The Royal North Shore Hospital, St. Leonards, New South Wales, 2065, Australia.,Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Sydney Medical School Northern, University of Sydney, St. Leonards, New South Wales, 2065, Australia
| | - Elizabeth C Clarke
- Murray Maxwell Biomechanics Laboratory, Institute of Bone and Joint Research, Level 10, Kolling Institute B6, Northern Sydney Local Health District, Sydney Medical School Northern, University of Sydney, The Royal North Shore Hospital, St. Leonards, New South Wales, 2065, Australia
| | - Christopher B Little
- Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Sydney Medical School Northern, University of Sydney, St. Leonards, New South Wales, 2065, Australia
| |
Collapse
|
36
|
Murata K, Kanemura N, Kokubun T, Morishita Y, Fujino T, Takayanagi K. Acute chondrocyte response to controlling joint instability in an osteoarthritis rat model. SPORT SCIENCES FOR HEALTH 2016. [DOI: 10.1007/s11332-016-0320-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|