1
|
Smith MJ, Hoffman NJ, Jose AJS, Burke LM, Opar DA. Nutritional Interventions to Attenuate Quadriceps Muscle Deficits following Anterior Cruciate Ligament Injury and Reconstruction. Sports Med 2025; 55:569-596. [PMID: 39853659 PMCID: PMC11985700 DOI: 10.1007/s40279-025-02174-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2025] [Indexed: 01/26/2025]
Abstract
Following anterior cruciate ligament (ACL) injury, quadriceps muscle atrophy persists despite rehabilitation, leading to loss of lower limb strength, osteoarthritis, poor knee joint health and reduced quality of life. However, the molecular mechanisms responsible for these deficits in hypertrophic adaptations within the quadriceps muscle following ACL injury and reconstruction are poorly understood. While resistance exercise training stimulates skeletal muscle hypertrophy, attenuation of these hypertrophic pathways can hinder rehabilitation following ACL injury and reconstruction, and ultimately lead to skeletal muscle atrophy that persists beyond ACL reconstruction, similar to disuse atrophy. Numerous studies have documented beneficial roles of nutritional support, including nutritional supplementation, in maintaining and/or increasing muscle mass. There are three main mechanisms by which nutritional supplementation may attenuate muscle atrophy and promote hypertrophy: (1) by directly affecting muscle protein synthetic machinery; (2) indirectly increasing an individual's ability to work harder; and/or (3) directly affecting satellite cell proliferation and differentiation. We propose that nutritional support may enhance rehabilitative responses to exercise training and positively impact molecular machinery underlying muscle hypertrophy. As one of the fastest growing knee injuries worldwide, a better understanding of the potential mechanisms involved in quadriceps muscle deficits following ACL injury and reconstruction, and potential benefits of nutritional support, are required to help restore quadriceps muscle mass and/or strength. This review discusses our current understanding of the molecular mechanisms involved in muscle hypertrophy and disuse atrophy, and how nutritional supplements may leverage these pathways to maximise recovery from ACL injury and reconstruction.
Collapse
Affiliation(s)
- Miriam J Smith
- School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, VIC, Australia
- Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, Australian Catholic University, Melbourne, VIC, Australia
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Nolan J Hoffman
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Argell J San Jose
- School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, VIC, Australia
- OrthoSport Victoria Institute (OSVi), Richmond, VIC, Australia
| | - Louise M Burke
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - David A Opar
- School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, VIC, Australia.
- Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, Australian Catholic University, Melbourne, VIC, Australia.
- , Level 1, Daniel Mannix Building, 17 Young Street, Fitzroy, VIC, 3065, Australia.
| |
Collapse
|
2
|
Lu A, Sikes KJ, Guo P, Huard M, Green S, Santangelo K, Singer J, Groesbeck A, Tashman S, Narkar VA, Huard J. Muscle-specific ERRγ activation mitigates muscle atrophy after ACL injury. FASEB J 2025; 39:e70409. [PMID: 39964243 DOI: 10.1096/fj.202402021r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/20/2024] [Accepted: 02/10/2025] [Indexed: 05/10/2025]
Abstract
Anterior cruciate ligament (ACL) injury adversely affects skeletal muscle, leading to muscle atrophy and weakness, significantly impacting clinical outcomes. This study aimed to determine if estrogen-related receptor gamma (ERRγ) overexpression in skeletal muscle could mitigate muscle atrophy after ACL injury. An animal model with selective overexpression of ERRγ in skeletal muscle (ERR-gamma transgenic mice, TG) and WT control mice were used for this study. All the mice received a mechanical ACL rupture and were euthanized at 4- and 8-week post-injury. Muscle histology, atrophy, and function were evaluated and compared between the TG and WT mice. Muscle-specific ERRγ activation in TG mice demonstrated a reduction in muscle fiber atrophy, which consequently ameliorated muscle function loss post-ACL rupture. Less fibrogenic cellular expansion and muscle fibrosis were observed after ACL injury in TG mice compared to WT mice. Both male and female TG mice can maintain their muscle function 4 weeks after ACL rupture with the muscle function of female TG mice declining 8 weeks post-injury. In vivo results revealed that ERRγ activation decreased fibrogenic factors, P65, and myostatin expression, prevented the functional loss of muscle progenitor cells (MPCs), and increased CD31 and VEGF expression. These results suggest that overexpression ERRγ in skeletal muscle has a beneficial effect in preventing muscle atrophy and fibrosis after ACL rupture. This study's results will help to develop a novel rehabilitation approach that can significantly improve outcomes after ACL injury.
Collapse
Affiliation(s)
- Aiping Lu
- Center for Regenerative & Personalized Medicine, Steadman Philippon Research Institute, Vail, Colorado, USA
| | - Katie J Sikes
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Ping Guo
- Center for Regenerative & Personalized Medicine, Steadman Philippon Research Institute, Vail, Colorado, USA
| | - Matthieu Huard
- Center for Regenerative & Personalized Medicine, Steadman Philippon Research Institute, Vail, Colorado, USA
| | - Shelbi Green
- Center for Regenerative & Personalized Medicine, Steadman Philippon Research Institute, Vail, Colorado, USA
| | - Kelly Santangelo
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Jacob Singer
- Center for Regenerative & Personalized Medicine, Steadman Philippon Research Institute, Vail, Colorado, USA
| | - Ashley Groesbeck
- Center for Regenerative & Personalized Medicine, Steadman Philippon Research Institute, Vail, Colorado, USA
| | - Scott Tashman
- Center for Regenerative & Personalized Medicine, Steadman Philippon Research Institute, Vail, Colorado, USA
| | - Vihang A Narkar
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Johnny Huard
- Center for Regenerative & Personalized Medicine, Steadman Philippon Research Institute, Vail, Colorado, USA
| |
Collapse
|
3
|
Owen AM, Gonzalez-Velez S, Keeble AR, Thomas NT, Fry CS. Fork in the road: therapeutic and pathological actions for fibro-adipogenic progenitors following musculoskeletal injury. J Physiol 2025. [PMID: 39930980 DOI: 10.1113/jp286816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/20/2025] [Indexed: 02/19/2025] Open
Abstract
Musculoskeletal injuries are a substantial source of global disability through weakness and loss of function, which can be attributable, in part, to deficits in skeletal muscle quality. Poor muscle quality, resulting from fibrotic pathology or fatty infiltration, strongly predicts lower rates of patient recovery following injury and higher rates of re-injury. The cellular sources of fibrosis and fatty infiltration within skeletal muscle are mesenchymal fibro-adipogenic progenitors (FAPs), which are central effectors to support muscle homeostasis, regeneration and growth. However, following acute or chronic musculoskeletal injury, FAPs can promote fibro/fatty pathology within muscle that is likely to limit recovery and repair. Given their indispensable role within skeletal muscle, FAPs have emerged as a compelling cellular target to promote tissue recovery following acute and chronic injury. This review provides insight into the aetiology of FAP activity following various musculoskeletal injuries, in addition to signalling components that effect FAP differentiation. Contrasting pathology with therapeutic potential, insight into disease- and injury-specific FAP activation further cements their role as crucial effectors to improve muscle function and enhance patient outcomes.
Collapse
Affiliation(s)
- Allison M Owen
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Sara Gonzalez-Velez
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Alexander R Keeble
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Nicholas T Thomas
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Christopher S Fry
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, USA
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
4
|
Kharaz YA, Zamboulis DE, Fang Y, Welting TJM, Peffers MJ, Comerford EJ. Small RNA signatures of the anterior cruciate ligament from patients with knee joint osteoarthritis. Front Mol Biosci 2023; 10:1266088. [PMID: 38187089 PMCID: PMC10768046 DOI: 10.3389/fmolb.2023.1266088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
Introduction: The anterior cruciate ligament (ACL) is susceptible to degeneration, resulting in joint pain, reduced mobility, and osteoarthritis development. There is currently a paucity of knowledge on how anterior cruciate ligament degeneration and disease leads to osteoarthritis. Small non-coding RNAs (sncRNAs), such as microRNAs and small nucleolar RNA (snoRNA), have diverse roles, including regulation of gene expression. Methods: We profiled the sncRNAs of diseased osteoarthritic ACLs to provide novel insights into osteoarthritis development. Small RNA sequencing from the ACLs of non- or end-stage human osteoarthritic knee joints was performed. Significantly differentially expressed sncRNAs were defined, and bioinformatics analysis was undertaken. Results and Discussion: A total of 184 sncRNAs were differentially expressed: 68 small nucleolar RNAs, 26 small nuclear RNAs (snRNAs), and 90 microRNAs. We identified both novel and recognized (miR-206, -365, and -29b and -29c) osteoarthritis-related microRNAs and other sncRNAs (including SNORD72, SNORD113, and SNORD114). Significant pathway enrichment of differentially expressed miRNAs includes differentiation of the muscle, inflammation, proliferation of chondrocytes, and fibrosis. Putative mRNAs of the microRNA target genes were associated with the canonical pathways "hepatic fibrosis signaling" and "osteoarthritis." The establishing sncRNA signatures of ACL disease during osteoarthritis could serve as novel biomarkers and potential therapeutic targets in ACL degeneration and osteoarthritis development.
Collapse
Affiliation(s)
- Yalda A. Kharaz
- Department of Musculoskeletal Ageing Sciences, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Danae E. Zamboulis
- Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| | - Yongxiang Fang
- Centre for Genomic Research, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Tim J. M. Welting
- Department of Orthopaedic Surgery, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Mandy J. Peffers
- Department of Musculoskeletal Ageing Sciences, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Eithne J. Comerford
- Department of Musculoskeletal Ageing Sciences, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
- Institute of Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
5
|
Brightwell CR, Latham CM, Keeble AR, Thomas NT, Owen AM, Reeves KA, Long DE, Patrick M, Gonzalez-Velez S, Abed V, Annamalai RT, Jacobs C, Conley CE, Hawk GS, Stone AV, Fry JL, Thompson KL, Johnson DL, Noehren B, Fry CS. GDF8 inhibition enhances musculoskeletal recovery and mitigates posttraumatic osteoarthritis following joint injury. SCIENCE ADVANCES 2023; 9:eadi9134. [PMID: 38019905 PMCID: PMC10686569 DOI: 10.1126/sciadv.adi9134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023]
Abstract
Musculoskeletal disorders contribute substantially to worldwide disability. Anterior cruciate ligament (ACL) tears result in unresolved muscle weakness and posttraumatic osteoarthritis (PTOA). Growth differentiation factor 8 (GDF8) has been implicated in the pathogenesis of musculoskeletal degeneration following ACL injury. We investigated GDF8 levels in ACL-injured human skeletal muscle and serum and tested a humanized monoclonal GDF8 antibody against a placebo in a mouse model of PTOA (surgically induced ACL tear). In patients, muscle GDF8 was predictive of atrophy, weakness, and periarticular bone loss 6 months following surgical ACL reconstruction. In mice, GDF8 antibody administration substantially mitigated muscle atrophy, weakness, and fibrosis. GDF8 antibody treatment rescued the skeletal muscle and articular cartilage transcriptomic response to ACL injury and attenuated PTOA severity and deficits in periarticular bone microarchitecture. Furthermore, GDF8 genetic deletion neutralized musculoskeletal deficits in response to ACL injury. Our findings support an opportunity for rapid targeting of GDF8 to enhance functional musculoskeletal recovery and mitigate the severity of PTOA after injury.
Collapse
Affiliation(s)
- Camille R. Brightwell
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Christine M. Latham
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Alexander R. Keeble
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Nicholas T. Thomas
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Allison M. Owen
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Kelsey A. Reeves
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Douglas E. Long
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Matthew Patrick
- Department of Biomedical Engineering, College of Engineering, University of Kentucky, Lexington, KY, USA
| | | | - Varag Abed
- Department of Orthopaedic Surgery and Sports Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Ramkumar T. Annamalai
- Department of Biomedical Engineering, College of Engineering, University of Kentucky, Lexington, KY, USA
| | - Cale Jacobs
- Department of Orthopaedic Surgery and Sports Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Caitlin E. Conley
- Department of Orthopaedic Surgery and Sports Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Gregory S. Hawk
- Department of Statistics, College of Arts and Sciences, University of Kentucky, Lexington, KY, USA
| | - Austin V. Stone
- Department of Orthopaedic Surgery and Sports Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Jean L. Fry
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Katherine L. Thompson
- Department of Statistics, College of Arts and Sciences, University of Kentucky, Lexington, KY, USA
| | - Darren L. Johnson
- Department of Orthopaedic Surgery and Sports Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Brian Noehren
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY, USA
- Department of Orthopaedic Surgery and Sports Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Christopher S. Fry
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
6
|
Kaneguchi A, Ozawa J, Minamimoto K, Yamaoka K. The temporal and spatial effects of reconstructive surgery on the atrophy of hindlimb muscles in anterior cruciate ligament transected rats. Physiol Res 2023; 72:99-109. [PMID: 36545871 PMCID: PMC10069818 DOI: 10.33549/physiolres.934909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023] Open
Abstract
After anterior cruciate ligament (ACL) injury, a decrease in muscle strength associated with muscle atrophy is frequently observed. The temporal and spatial effects of reconstructive surgery on muscle atrophy have not been examined in detail. This study aimed to 1) reveal the short and mid-term effects of reconstructive surgery on muscle atrophy, and 2) investigate the differences in the degree of atrophy after ACL reconstruction in the hindlimb muscles. ACL transection with or without reconstructive surgery was performed unilaterally on the knees of rats. Untreated rats were used as controls. At one or four weeks post-surgery, the relative muscle wet weights (wet weight/body weight) of the hindlimb muscles were calculated to assess atrophy. At one week post-surgery, muscle atrophy was induced by ACL transection and further aggravated by reconstructive surgery. Reconstructive surgery facilitated recovery from muscle atrophy in some muscles compared with those without reconstructive surgery (ACL transection alone) at four weeks post-surgery. Muscle atrophy after ACL reconstruction was greater in the rectus femoris and plantar flexors than in the semitendinosus and plantar extensors at one week post-surgery. These results indicate that reconstructive surgery exacerbates muscle atrophy in the first week post-surgery, while facilitating recovery between the first and fourth week post-surgery. After reconstructive surgery, muscle atrophy was observed not only in the quadriceps and hamstrings, but also in the lower leg muscles, suggesting the need for muscle strengthening interventions for the lower leg muscles as well as the quadriceps and hamstrings.
Collapse
Affiliation(s)
- A Kaneguchi
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Higashi-Hiroshima, Hiroshima, Japan.
| | | | | | | |
Collapse
|
7
|
Zhang Y, Wang Y, Lu S, Zhong R, Liu Z, Zhao Q, Wang C. Nicotinamide Phosphoribosyltransferase-elevated NAD + biosynthesis prevents muscle disuse atrophy by reversing mitochondrial dysfunction. J Cachexia Sarcopenia Muscle 2023; 14:1003-1018. [PMID: 36864250 PMCID: PMC10067495 DOI: 10.1002/jcsm.13182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/15/2022] [Accepted: 01/02/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND It is well known that muscle disuse atrophy is associated with mitochondrial dysfunction, which is implicated in reduced nicotinamide adenine dinucleotide (NAD+ ) levels. Nicotinamide phosphoribosyltransferase (NAMPT), a rate-limiting enzyme in NAD+ biosynthesis, may serve as a novel strategy to treat muscle disuse atrophy by reversing mitochondrial dysfunction. METHODS To investigate the effects of NAMPT on the prevention of disuse atrophy of skeletal muscles predominantly composed of slow-twitch (type I) or fast-twitch (type II) fibres, rabbit models of rotator cuff tear-induced supraspinatus muscle atrophy and anterior cruciate ligament (ACL) transection-induced extensor digitorum longus (EDL) atrophy were established and then administered NAMPT therapy. Muscle mass, fibre cross-sectional area (CSA), fibre type, fatty infiltration, western blot, and mitochondrial function were assayed to analyse the effects and molecular mechanisms of NAMPT in preventing muscle disuse atrophy. RESULTS Acute disuse of the supraspinatus muscle exhibited significant loss of mass (8.86 ± 0.25 to 5.10 ± 0.79 g; P < 0.001) and decreased fibre CSA (3939.6 ± 136.1 to 2773.4 ± 217.6 μm2 , P < 0.001), which were reversed by NAMPT (muscle mass 6.17 ± 0.54 g, P = 0.0033; fibre CSA, 3219.8 ± 289.4 μm2 , P = 0.0018). Disuse-induced impairment of mitochondrial function were significantly improved by NAMPT, including citrate synthase activity (40.8 ± 6.3 to 50.5 ± 5.6 nmol/min/mg, P = 0.0043), and NAD+ biosynthesis (279.9 ± 48.7 to 392.2 ± 43.2 pmol/mg, P = 0.0023). Western blot revealed that NAMPT increases NAD+ levels by activating NAMPT-dependent NAD+ salvage synthesis pathway. In supraspinatus muscle atrophy due to chronic disuse, a combination of NAMPT injection and repair surgery was more effective than repair in reversing muscle atrophy. Although the predominant composition of EDL muscle is fast-twitch (type II) fibre type that differ from supraspinatus muscle, its mitochondrial function and NAD+ levels are also susceptible to disuse. Similar to the supraspinatus muscle, NAMPT-elevated NAD+ biosynthesis was also efficient in preventing EDL disuse atrophy by reversing mitochondrial dysfunction. CONCLUSIONS NAMPT-elevated NAD+ biosynthesis can prevent disuse atrophy of skeletal muscles that predominantly composed with either slow-twitch (type I) or fast-twitch (type II) fibres by reversing mitochondrial dysfunction.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Yingming Wang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Shuai Lu
- Department of Orthopedics, Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui, 230001, China
| | - Rui Zhong
- Department of Orthopedics, Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui, 230001, China
| | - Zhilin Liu
- Department of Orthopedics, Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui, 230001, China
| | - Qichun Zhao
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.,Department of Orthopedics, Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui, 230001, China
| | - Chongyang Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.,Department of Orthopedics, Shanghai Eighth People's Hospital, Shanghai, 200235, China
| |
Collapse
|
8
|
Davi SM, Ahn A, White MS, Butterfield TA, Kosmac K, Kwon OS, Lepley LK. Long-Lasting Impairments in Quadriceps Mitochondrial Health, Muscle Size, and Phenotypic Composition Are Present After Non-invasive Anterior Cruciate Ligament Injury. Front Physiol 2022; 13:805213. [PMID: 35153832 PMCID: PMC8832056 DOI: 10.3389/fphys.2022.805213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionDespite rigorous rehabilitation aimed at restoring muscle health, anterior cruciate ligament (ACL) injury is often hallmarked by significant long-term quadriceps muscle weakness. Derangements in mitochondrial function are a common feature of various atrophying conditions, yet it is unclear to what extent mitochondria are involved in the detrimental sequela of quadriceps dysfunction after ACL injury. Using a preclinical, non-invasive ACL injury rodent model, our objective was to explore the direct effect of an isolated ACL injury on mitochondrial function, muscle atrophy, and muscle phenotypic transitions.MethodsA total of 40 male and female, Long Evans rats (16-week-old) were exposed to non-invasive ACL injury, while 8 additional rats served as controls. Rats were euthanized at 3, 7, 14, 28, and 56 days after ACL injury, and vastus lateralis muscles were extracted to measure the mitochondrial respiratory control ratio (RCR; state 3 respiration/state 4 respiration), mitochondrial reactive oxygen species (ROS) production, fiber cross sectional area (CSA), and fiber phenotyping. Alterations in mitochondrial function and ROS production were detected using two-way (sex:group) analyses of variance. To determine if mitochondrial characteristics were related to fiber atrophy, individual linear mixed effect models were run by sex.ResultsMitochondria-derived ROS increased from days 7 to 56 after ACL injury (30–100%, P < 0.05), concomitant with a twofold reduction in RCR (P < 0.05). Post-injury, male rats displayed decreases in fiber CSA (days 7, 14, 56; P < 0.05), loss of IIa fibers (day 7; P < 0.05), and an increase in IIb fibers (day 7; P < 0.05), while females displayed no changes in CSA or phenotyping (P > 0.05). Males displayed a positive relationship between state 3 respiration and CSA at days 14 and 56 (P < 0.05), while females only displayed a similar trend at day 14 (P = 0.05).ConclusionLong-lasting impairments in quadriceps mitochondrial health are present after ACL injury and play a key role in the dysregulation of quadriceps muscle size and composition. Our preclinical data indicate that using mitoprotective therapies may be a potential therapeutic strategy to mitigate alterations in muscle size and characteristic after ACL injury.
Collapse
Affiliation(s)
- Steven M. Davi
- Department of Kinesiology, University of Connecticut, Storrs, CT, United States
- Department of Orthopedic Surgery, John A. Feagin Jr Sports Medicine Fellowship, Keller Army Hospital, West Point, NY, United States
| | - Ahram Ahn
- Department of Kinesiology, University of Connecticut, Storrs, CT, United States
| | - McKenzie S. White
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States
| | - Timothy A. Butterfield
- Center for Muscle Biology, University of Kentucky, Lexington, KY, United States
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, United States
| | - Kate Kosmac
- Center for Muscle Biology, University of Kentucky, Lexington, KY, United States
- Department of Physical Therapy, University of Kentucky, Lexington, KY, United States
| | - Oh Sung Kwon
- Department of Kinesiology, University of Connecticut, Storrs, CT, United States
- Department of Orthopaedic Surgery and Center on Aging, University of Connecticut School of Medicine, Farmington, CT, United States
- *Correspondence: Oh Sung Kwon,
| | - Lindsey K. Lepley
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States
- Lindsey K. Lepley,
| |
Collapse
|
9
|
Arthrogenic Muscle Inhibition: Best Evidence, Mechanisms, and Theory for Treating the Unseen in Clinical Rehabilitation. J Sport Rehabil 2021; 31:717-735. [PMID: 34883466 DOI: 10.1123/jsr.2021-0139] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 08/06/2021] [Accepted: 09/07/2021] [Indexed: 11/18/2022]
Abstract
CONTEXT Arthrogenic muscle inhibition (AMI) impedes the recovery of muscle function following joint injury, and in a broader sense, acts as a limiting factor in rehabilitation if left untreated. Despite a call to treat the underlying pathophysiology of muscle dysfunction more than three decades ago, the continued widespread observations of post-traumatic muscular impairments are concerning, and suggest that interventions for AMI are not being successfully integrated into clinical practice. OBJECTIVES To highlight the clinical relevance of AMI, provide updated evidence for the use of clinically accessible therapeutic adjuncts to treat AMI, and discuss the known or theoretical mechanisms for these interventions. EVIDENCE ACQUISITION PubMed and Web of Science electronic databases were searched for articles that investigated the effectiveness or efficacy of interventions to treat outcomes relevant to AMI. EVIDENCE SYNTHESIS 122 articles that investigated an intervention used to treat AMI among individuals with pathology or simulated pathology were retrieved from 1986 to 2021. Additional articles among uninjured individuals were considered when discussing mechanisms of effect. CONCLUSION AMI contributes to the characteristic muscular impairments observed in patients recovering from joint injuries. If left unresolved, AMI impedes short-term recovery and threatens patients' long-term joint health and well-being. Growing evidence supports the use of neuromodulatory strategies to facilitate muscle recovery over the course of rehabilitation. Interventions should be individualized to meet the needs of the patient through shared clinician-patient decision-making. At a minimum, we propose to keep the treatment approach simple by attempting to resolve inflammation, pain, and effusion early following injury.
Collapse
|
10
|
Brightwell CR, Graber TG, Brightwell BD, Borkowski M, Noehren B, Fry CS. In vivo Measurement of Knee Extensor Muscle Function in Mice. J Vis Exp 2021:10.3791/62211. [PMID: 33749677 PMCID: PMC8095664 DOI: 10.3791/62211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Skeletal muscle plasticity in response to countless conditions and stimuli mediates concurrent functional adaptation, both negative and positive. In the clinic and the research laboratory, maximal muscular strength is widely measured longitudinally in humans, with knee extensor musculature the most reported functional outcome. Pathology of the knee extensor muscle complex is well documented in aging, orthopedic injury, disease, and disuse; knee extensor strength is closely related to functional capacity and injury risk, underscoring the importance of reliable measurement of knee extensor strength. Repeatable, in vivo assessment of knee extensor strength in pre-clinical rodent studies offers valuable functional endpoints for studies exploring osteoarthritis or knee injury. We report an in vivo and non-invasive protocol to repeatedly measure isometric peak tetanic torque of the knee extensors in mice across time. We demonstrate consistency using this novel method to measure knee extensor strength with repeated assessment in multiple mice producing similar results.
Collapse
Affiliation(s)
- Camille R Brightwell
- Department of Athletic Training and Clinical Nutrition, University of Kentucky; Center for Muscle Biology, University of Kentucky
| | - Ted G Graber
- Department of Physical Therapy, East Carolina University
| | - Benjamin D Brightwell
- Kinesiology and Health Promotion Graduate Program, University of Kentucky; Biomotion Lab, College of Health Sciences, University of Kentucky
| | | | - Brian Noehren
- Biomotion Lab, College of Health Sciences, University of Kentucky; Department of Physical Therapy, College of Health Sciences, University of Kentucky
| | - Christopher S Fry
- Department of Athletic Training and Clinical Nutrition, University of Kentucky; Center for Muscle Biology, University of Kentucky;
| |
Collapse
|
11
|
Zhang L, Sun Y. Muscle-Bone Crosstalk in Chronic Obstructive Pulmonary Disease. Front Endocrinol (Lausanne) 2021; 12:724911. [PMID: 34650518 PMCID: PMC8505811 DOI: 10.3389/fendo.2021.724911] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/13/2021] [Indexed: 12/30/2022] Open
Abstract
Sarcopenia and osteoporosis are common musculoskeletal comorbidities of chronic obstructive pulmonary disease (COPD) that seriously affect the quality of life and prognosis of the patient. In addition to spatially mechanical interactions, muscle and bone can also serve as endocrine organs by producing myokines and osteokines to regulate muscle and bone functions, respectively. As positive and negative regulators of skeletal muscles, the myokines irisin and myostatin not only promote/inhibit the differentiation and growth of skeletal muscles, but also regulate bone metabolism. Both irisin and myostatin have been shown to be dysregulated and associated with exercise and skeletal muscle dysfunction in COPD. During exercise, skeletal muscles produce a large amount of IL-6 which acts as a myokine, exerting at least two different conflicting functions depending on physiological or pathological conditions. Remarkably, IL-6 is highly expressed in COPD, and considered to be a biomarker of systemic inflammation, which is associated with both sarcopenia and bone loss. For osteokines, receptor activator of nuclear factor kappa-B ligand (RANKL), a classical regulator of bone metabolism, was recently found to play a critical role in skeletal muscle atrophy induced by chronic cigarette smoke (CS) exposure. In this focused review, we described evidence for myokines and osteokines in the pathogenesis of skeletal muscle dysfunction/sarcopenia and osteoporosis in COPD, and proposed muscle-bone crosstalk as an important mechanism underlying the coexistence of muscle and bone diseases in COPD.
Collapse
|
12
|
Sancho-Muñoz A, Guitart M, Rodríguez DA, Gea J, Martínez-Llorens J, Barreiro E. Deficient muscle regeneration potential in sarcopenic COPD patients: Role of satellite cells. J Cell Physiol 2020; 236:3083-3098. [PMID: 32989805 DOI: 10.1002/jcp.30073] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022]
Abstract
Sarcopenia is a major comorbidity in chronic obstructive pulmonary (COPD). Whether deficient muscle repair mechanisms and regeneration exist in the vastus lateralis (VL) of sarcopenic COPD remains debatable. In the VL of control subjects and severe COPD patients with/without sarcopenia, satellite cells (SCs) were identified (immunofluorescence, specific antibodies, anti-Pax-7, and anti-Myf-5): activated (Pax-7+/Myf-5+), quiescent/regenerative potential (Pax-7+/Myf-5-), and total SCs, nuclear activation (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling [TUNEL]), and muscle fiber type (morphometry and slow- and fast-twitch, and hybrid fibers), muscle damage (hematoxylin-eosin staining), muscle regeneration markers (Pax-7, Myf-5, myogenin, and MyoD), and myostatin levels were identified. Compared to controls, in VL of sarcopenic COPD patients, myostatin content, activated SCs, hybrid fiber proportions, TUNEL-positive cells, internal nuclei, and muscle damage significantly increased, while quadriceps muscle strength, numbers of Pax-7+/Myf-5- and slow- and fast-twitch, and hybrid myofiber areas decreased. In the VL of sarcopenic and nonsarcopenic patients, TUNEL-positive cells were greater, whereas muscle regeneration marker expression was lower than in controls. In VL of severe COPD patients regardless of the sarcopenia level, the muscle regeneration process is triggered as identified by SC activation and increased internal nuclei. Nonetheless, a lower regenerative potential along with significant alterations in muscle phenotype and damage, and increased myostatin were prominently seen in sarcopenic COPD.
Collapse
Affiliation(s)
- Antonio Sancho-Muñoz
- Pulmonology Department, Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Barcelona, Spain.,Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), Barcelona, Spain
| | - Maria Guitart
- Pulmonology Department, Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Barcelona, Spain.,Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), Barcelona, Spain.,Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Diego A Rodríguez
- Pulmonology Department, Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Barcelona, Spain.,Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), Barcelona, Spain.,Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Joaquim Gea
- Pulmonology Department, Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Barcelona, Spain.,Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), Barcelona, Spain.,Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Juana Martínez-Llorens
- Pulmonology Department, Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Barcelona, Spain.,Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), Barcelona, Spain.,Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Esther Barreiro
- Pulmonology Department, Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Barcelona, Spain.,Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), Barcelona, Spain.,Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
13
|
Lepley LK, Davi SM, Burland JP, Lepley AS. Muscle Atrophy After ACL Injury: Implications for Clinical Practice. Sports Health 2020; 12:579-586. [PMID: 32866081 DOI: 10.1177/1941738120944256] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
CONTEXT Distinct from the muscle atrophy that develops from inactivity or disuse, atrophy that occurs after traumatic joint injury continues despite the patient being actively engaged in exercise. Recognizing the multitude of factors and cascade of events that are present and negatively influence the regulation of muscle mass after traumatic joint injury will likely enable clinicians to design more effective treatment strategies. To provide sports medicine practitioners with the best strategies to optimize muscle mass, the purpose of this clinical review is to discuss the predominant mechanisms that control muscle atrophy for disuse and posttraumatic scenarios, and to highlight how they differ. EVIDENCE ACQUISITION Articles that reported on disuse atrophy and muscle atrophy after traumatic joint injury were collected from peer-reviewed sources available on PubMed (2000 through December 2019). Search terms included the following: disuse muscle atrophy OR disuse muscle mass OR anterior cruciate ligament OR ACL AND mechanism OR muscle loss OR atrophy OR neurological disruption OR rehabilitation OR exercise. STUDY DESIGN Clinical review. LEVEL OF EVIDENCE Level 5. RESULTS We highlight that (1) muscle atrophy after traumatic joint injury is due to a broad range of atrophy-inducing factors that are resistant to standard resistance exercises and need to be effectively targeted with treatments and (2) neurological disruptions after traumatic joint injury uncouple the nervous system from muscle tissue, contributing to a more complex manifestation of muscle loss as well as degraded tissue quality. CONCLUSION Atrophy occurring after traumatic joint injury is distinctly different from the muscle atrophy that develops from disuse and is likely due to the broad range of atrophy-inducing factors that are present after injury. Clinicians must challenge the standard prescriptive approach to combating muscle atrophy from simply prescribing physical activity to targeting the neurophysiological origins of muscle atrophy after traumatic joint injury.
Collapse
Affiliation(s)
- Lindsey K Lepley
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Steven M Davi
- Department of Kinesiology, University of Connecticut, Storrs, Connecticut
| | - Julie P Burland
- Spaulding National Running Center, Harvard Medical School, Boston, Massachusetts
| | - Adam S Lepley
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
14
|
Gupta P, Dutt V, Kaur N, Kalra P, Gupta S, Dua A, Dabur R, Saini V, Mittal A. S-allyl cysteine: A potential compound against skeletal muscle atrophy. Biochim Biophys Acta Gen Subj 2020; 1864:129676. [PMID: 32649980 DOI: 10.1016/j.bbagen.2020.129676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/03/2020] [Accepted: 06/25/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Oxidative stress is crucial player in skeletal muscle atrophy pathogenesis. S-allyl cysteine (SAC), an organosulfur compound of Allium sativum, possesses broad-spectrum properties including immuno- and redox-modulatory impact. Considering the role of SAC in regulating redox balance, we hypothesize that SAC may have a protective role in oxidative-stress induced atrophy. METHODS C2C12 myotubes were treated with H2O2 (100 μM) in the presence or absence of SAC (200 μM) to study morphology, redox status, inflammatory cytokines and proteolytic systems using fluorescence microscopy, biochemical analysis, real-time PCR and immunoblotting approaches. The anti-atrophic potential of SAC was confirmed in denervation-induced atrophy model. RESULTS SAC pre-incubation (4 h) could protect the myotube morphology (i.e. length/diameter/fusion index) from atrophic effects of H2O2. Lower levels of ROS, lipid peroxidation, oxidized glutathione and altered antioxidant enzymes were observed in H2O2-exposed cells upon pre-treatment with SAC. SAC supplementation also suppressed the rise in cytokines levels (TWEAK/IL6/myostatin) caused by H2O2. SAC treatment also moderated the degradation of muscle-specific proteins (MHCf) in the H2O2-treated myotubes supported by lower induction of diverse proteolytic systems (i.e. cathepsin, calpain, ubiquitin-proteasome E3-ligases, caspase-3, autophagy). Denervation-induced atrophy in mice illustrates that SAC administration alleviates the negative effects (i.e. mass loss, decreased cross-sectional area, up-regulation of proteolytic systems, and degradation of total/specific protein) of denervation on muscles. CONCLUSIONS SAC exerts significant anti-atrophic effects to protect myotubes from H2O2-induced protein loss and myofibers from denervation-induced muscle loss, due to the prevention of elevated proteolytic systems and inflammatory/oxidative molecules. GENERAL SIGNIFICANCE The results signify the potential of SAC against muscle atrophy.
Collapse
Affiliation(s)
- Prachi Gupta
- Skeletal Muscle Laboratory, Institute of Integrated and Honors Studies, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Vikas Dutt
- Skeletal Muscle Laboratory, Institute of Integrated and Honors Studies, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Nirmaljeet Kaur
- Skeletal Muscle Laboratory, Institute of Integrated and Honors Studies, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Priya Kalra
- Laboratory of Infection Biology and Translational Research, Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sanjeev Gupta
- Skeletal Muscle Laboratory, Institute of Integrated and Honors Studies, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Anita Dua
- Skeletal Muscle Laboratory, Institute of Integrated and Honors Studies, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Rajesh Dabur
- Biochemistry Department, MD University, Rohtak, Haryana 124001, India
| | - Vikram Saini
- Laboratory of Infection Biology and Translational Research, Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Ashwani Mittal
- Skeletal Muscle Laboratory, Institute of Integrated and Honors Studies, Kurukshetra University, Kurukshetra, Haryana 136119, India.
| |
Collapse
|
15
|
Mendias CL, Enselman ERS, Olszewski AM, Gumucio JP, Edon DL, Konnaris MA, Carpenter JE, Awan TM, Jacobson JA, Gagnier JJ, Barkan AL, Bedi A. The Use of Recombinant Human Growth Hormone to Protect Against Muscle Weakness in Patients Undergoing Anterior Cruciate Ligament Reconstruction: A Pilot, Randomized Placebo-Controlled Trial. Am J Sports Med 2020; 48:1916-1928. [PMID: 32452208 PMCID: PMC7351248 DOI: 10.1177/0363546520920591] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Anterior cruciate ligament (ACL) tears are common knee injuries. Despite undergoing extensive rehabilitation after ACL reconstruction (ACLR), many patients have persistent quadriceps muscle weakness that limits their successful return to play and are also at an increased risk of developing knee osteoarthritis (OA). Human growth hormone (HGH) has been shown to prevent muscle atrophy and weakness in various models of disuse and disease but has not been evaluated in patients undergoing ACLR. HYPOTHESIS Compared with placebo treatment, a 6-week perioperative treatment course of HGH would protect against muscle atrophy and weakness in patients undergoing ACLR. STUDY DESIGN Randomized controlled trial; Level of evidence, 2. METHODS A total of 19 male patients (aged 18-35 years) scheduled to undergo ACLR were randomly assigned to the placebo (n = 9) or HGH (n = 10) group. Patients began placebo or HGH treatment twice daily 1 week before surgery and continued through 5 weeks after surgery. Knee muscle strength and volume, patient-reported outcome scores, and circulating biomarkers were measured at several time points through 6 months after surgery. Mixed-effects models were used to evaluate differences between treatment groups and time points, and as this was a pilot study, significance was set at P < .10. The Cohen d was calculated to determine the effect size. RESULTS HGH was well-tolerated, and no differences in adverse events between the groups were observed. The HGH group had a 2.1-fold increase in circulating insulin-like growth factor 1 over the course of the treatment period (P < .05; d = 2.93). The primary outcome measure was knee extension strength, and HGH treatment increased normalized peak isokinetic knee extension torque by 29% compared with the placebo group (P = .05; d = 0.80). Matrix metalloproteinase-3 (MMP3), which was used as an indirect biomarker of cartilage degradation, was 36% lower in the HGH group (P = .05; d = -1.34). HGH did not appear to be associated with changes in muscle volume or patient-reported outcome scores. CONCLUSION HGH improved quadriceps strength and reduced MMP3 levels in patients undergoing ACLR. On the basis of this pilot study, further trials to more comprehensively evaluate the ability of HGH to improve muscle function and potentially protect against OA in patients undergoing ACLR are warranted. REGISTRATION NCT02420353 ( ClinicalTrials.gov identifier).
Collapse
Affiliation(s)
- Christopher L. Mendias
- Address correspondence to Christopher L. Mendias, PhD, ATC, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021, USA () (Twitter: @ChrisMendias)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Acute Effects of Open Kinetic Chain Exercise Versus Those of Closed Kinetic Chain Exercise on Quadriceps Muscle Thickness in Healthy Adults. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17134669. [PMID: 32610511 PMCID: PMC7369757 DOI: 10.3390/ijerph17134669] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/24/2020] [Accepted: 06/28/2020] [Indexed: 11/25/2022]
Abstract
This study aimed to compare immediate changes in the thickness of the rectus femoris (RF), vastus intermedius (VI), vastus lateralis (VL), vastus medialis (VM), and vastus medialis oblique (VMO) muscles after open kinetic chain exercise (OKCE) and closed kinetic chain exercise (CKCE) and identify the effect of both exercise types on each quadricep muscle for early rehabilitation to prevent knee joint injury. Twenty-six healthy participants (13 males and 13 females) were randomly divided into the OKCE (n = 13) and CKCE (n = 13) groups. The thickness of their quadriceps muscles was measured using a portable ultrasonic imaging device before and after exercise in the sequence RF, VI, VL, VM, and VMO. A two-way repeated measures analysis of variance was used to compare the thickness of each component of the quadriceps muscles between the two groups. The thickness of the RF, VL, VM, and VMO muscles increased after OKCE, and the thickness of the VI muscle showed the greatest increase with a medium–large effect size (F = 8.52, p = 0.01, and d = 0.53). The thickness of the VI, VL, VM, and VMO muscles increased after CKCE, and the VMO muscle had the largest effect size (F = 11.71, p = 0.00, and d = 1.02). These results indicate that the thickness of the quadriceps muscles can be selectively improved depending on the type of exercise.
Collapse
|
17
|
The Effects of Anterior Cruciate Ligament Reconstruction on Individual Quadriceps Muscle Thickness and Circulating Biomarkers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16244895. [PMID: 31817239 PMCID: PMC6950292 DOI: 10.3390/ijerph16244895] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/26/2019] [Accepted: 12/02/2019] [Indexed: 12/31/2022]
Abstract
Anterior cruciate ligament reconstruction (ACLR) frequently results in quadriceps atrophy. The present study investigated the effect of ACLR on the muscle thickness of the different constituent muscles of the quadriceps and circulating biomarkers related to muscle atrophy and hypertrophy. Fourteen subjects underwent anterior cruciate ligament reconstruction following injury. Quadriceps muscle thicknesses were measured using ultrasound, and circulating biomarkers in the blood were measured using enzyme-linked immunosorbent assays (ELISAs) at the preoperative visit (PRE) and at two postoperative visits (PO1, PO2) in the early stages post-surgery. Differences between time points were analyzed using one-way repeated measures analysis of variance (ANOVA) tests. The most important finding was that severe muscle atrophy occurred in the vastus intermedius (VI) after ACLR (PRE: 20.45 ± 6.82 mm, PO1: 16.05 ± 6.13 mm, PO2: 13.18 ± 4.7 mm, F = 59.0, p < 0.001). Furthermore, the myostatin level was slightly increased, and IGF-1 was significantly reduced throughout the entire period. Therefore, we suggest that inducing selective hypertrophy in the vastus intermedius during the process of rehabilitation would be important for athletes and individuals who engage in explosive sports. Moreover, inhibiting myostatin level increases and maintaining IGF-1 levels in the early phase of recovery after ACLR to prevent muscle atrophy may provide a pharmaceutical option for rehabilitation after anterior cruciate ligament injury.
Collapse
|
18
|
Brown LA, Judge JL, Macpherson PC, Koch LG, Qi NR, Britton SL, Brooks SV. Denervation and senescence markers data from old rats with intrinsic differences in responsiveness to aerobic training. Data Brief 2019; 27:104570. [PMID: 31687430 PMCID: PMC6820082 DOI: 10.1016/j.dib.2019.104570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/06/2019] [Accepted: 09/19/2019] [Indexed: 12/11/2022] Open
Abstract
The data described below is related to the manuscript “Late life maintenance and enhancement of functional exercise capacity in low and high responding rats after low intensity treadmill training” [1]. Rodents exhibit age-related declines in skeletal muscle function that is associated with muscle denervation and cellular senescence. Exercise training is a proven method to delay or even reverse some aging phenotypes, thus improving healthspan in the elderly. The beneficial effects of exercise to preserve muscle may be reliant on an individual's innate ability to adapt to aerobic training. To examine this question, we assessed aged rats that were selectively bred to be either minimally or highly responsive to aerobic exercise training. We specifically asked whether mild treadmill training initiated late in life would be beneficial to preserve muscle function in high response and low response trainer rats. We examined gene expression data on markers of denervation and senescence. We also evaluated measures of aerobic training and neuromuscular muscle function through work capacity, contractile properties, and endplate fragmentation for further analysis of the aging phenotype in older rodents.
Collapse
Affiliation(s)
- Lemuel A Brown
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Jennifer L Judge
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Peter C Macpherson
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Lauren G Koch
- Department of Physiology and Pharmacology, The University of Toledo, Toledo, OH, USA
| | - Nathan R Qi
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Steven L Britton
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.,Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | - Susan V Brooks
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
19
|
Rettig A, Haase T, Pletnyov A, Kohl B, Ertel W, von Kleist M, Sunkara V. SLCV-a supervised learning-computer vision combined strategy for automated muscle fibre detection in cross-sectional images. PeerJ 2019; 7:e7053. [PMID: 31367478 PMCID: PMC6657690 DOI: 10.7717/peerj.7053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/02/2019] [Indexed: 11/20/2022] Open
Abstract
Muscle fibre cross-sectional area (CSA) is an important biomedical measure used to determine the structural composition of skeletal muscle, and it is relevant for tackling research questions in many different fields of research. To date, time consuming and tedious manual delineation of muscle fibres is often used to determine the CSA. Few methods are able to automatically detect muscle fibres in muscle fibre cross-sections to quantify CSA due to challenges posed by variation of brightness and noise in the staining images. In this paper, we introduce the supervised learning-computer vision combined pipeline (SLCV), a robust semi-automatic pipeline for muscle fibre detection, which combines supervised learning (SL) with computer vision (CV). SLCV is adaptable to different staining methods and is quickly and intuitively tunable by the user. We are the first to perform an error analysis with respect to cell count and area, based on which we compare SLCV to the best purely CV-based pipeline in order to identify the contribution of SL and CV steps to muscle fibre detection. Our results obtained on 27 fluorescence-stained cross-sectional images of varying staining quality suggest that combining SL and CV performs significantly better than both SL-based and CV-based methods with regards to both the cell separation- and the area reconstruction error. Furthermore, applying SLCV to our test set images yielded fibre detection results of very high quality, with average sensitivity values of 0.93 or higher on different cluster sizes and an average Dice similarity coefficient of 0.9778.
Collapse
Affiliation(s)
- Anika Rettig
- Systems Pharmacology and Disease Control, Freie Universität Berlin, Berlin, Germany
| | - Tobias Haase
- Department of Traumatology and Reconstructive Surgery, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Alexandr Pletnyov
- Department of Traumatology and Reconstructive Surgery, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Benjamin Kohl
- Department of Traumatology and Reconstructive Surgery, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Wolfgang Ertel
- Department of Traumatology and Reconstructive Surgery, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Max von Kleist
- Systems Pharmacology and Disease Control, Freie Universität Berlin, Berlin, Germany
| | - Vikram Sunkara
- Systems Pharmacology and Disease Control, Freie Universität Berlin, Berlin, Germany.,Computational Medicine, Zuse Institute Berlin, Berlin, Germany
| |
Collapse
|
20
|
Peck BD, Brightwell CR, Johnson DL, Ireland ML, Noehren B, Fry CS. Anterior Cruciate Ligament Tear Promotes Skeletal Muscle Myostatin Expression, Fibrogenic Cell Expansion, and a Decline in Muscle Quality. Am J Sports Med 2019; 47:1385-1395. [PMID: 30995070 PMCID: PMC6995871 DOI: 10.1177/0363546519832864] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Anterior cruciate ligament (ACL) tears result in significant quadriceps muscle atrophy that is resistant to recovery despite extensive rehabilitation. Recent work suggests an elevated fibrotic burden in the quadriceps muscle after the injury, which may limit recovery. Elucidating the mechanisms and cell types involved in the progression of fibrosis is critical for developing new treatment strategies. PURPOSE To identify factors contributing to the elevated fibrotic burden found after the injury. STUDY DESIGN Descriptive laboratory study. METHODS After an ACL injury, muscle biopsy specimens were obtained from the injured and noninjured vastus lateralis of young adults (n = 14, mean ± SD: 23 ± 4 years). The expression of myostatin, transforming growth factor β, and other regulatory factors was measured, and immunohistochemical analyses were performed to assess turnover of extracellular matrix components. RESULTS Injured limb skeletal muscle demonstrated elevated myostatin gene ( P < .005) and protein ( P < .0005) expression, which correlated ( R2 = 0.38, P < .05) with fibroblast cell abundance. Immunohistochemical analysis showed that human fibroblasts express the activin type IIB receptor and that isolated primary human muscle-derived fibroblasts increased proliferation after myostatin treatment in vitro ( P < .05). Collagen 1 and fibronectin, primary components of the muscle extracellular matrix, were significantly higher in the injured limb ( P < .05). The abundance of procollagen 1-expressing cells as well as a novel index of collagen remodeling was also elevated in the injured limb ( P < .05). CONCLUSION These findings support a role for myostatin in promoting fibrogenic alterations within skeletal muscle after an ACL injury. CLINICAL RELEVANCE The current work shows that the cause of muscle quality decline after ACL injury likely involves elevated myostatin expression, and future studies should explore therapeutic inhibition of myostatin to facilitate improvements in muscle recovery and return to sport.
Collapse
Affiliation(s)
- Bailey D. Peck
- Department of Rehabilitation Health Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Camille R. Brightwell
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, Texas, USA
| | - Darren L. Johnson
- Department of Orthopedic Surgery and Sports Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Mary Lloyd Ireland
- Department of Orthopedic Surgery and Sports Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Brian Noehren
- Department of Rehabilitation Health Sciences, University of Kentucky, Lexington, Kentucky, USA.,Department of Orthopedic Surgery and Sports Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Christopher S. Fry
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, Texas, USA.,Address correspondence to Christopher S. Fry, PhD, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1224, USA ()
| |
Collapse
|
21
|
Friedmann-Bette B, Profit F, Gwechenberger T, Weiberg N, Parstorfer M, Weber MA, Streich N, Barié A. Strength Training Effects on Muscular Regeneration after ACL Reconstruction. Med Sci Sports Exerc 2019; 50:1152-1161. [PMID: 29389836 DOI: 10.1249/mss.0000000000001564] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE Protracted quadriceps muscle atrophy is observed after anterior cruciate ligament reconstruction (ACL-R). The aim of this study was to assess if quadriceps strength training with eccentric overload (CON/ECC) is more efficient to induce muscle regeneration after ACL-R than conventional concentric/eccentric (CON/ECC) strength training. METHODS Biopsies from the vastus lateralis muscle were obtained from 37 recreational athletes after 12 wk of regular rehabilitation after ACL-R and again after 12 wk with twice a week of either conventional CON/ECC (n = 16) or CON/ECC (n = 21) one-legged supervised leg-press training. Immunohistochemical analyses were used to determine satellite cell (SC) number (Pax7); activated SC number (Pax7/MyoD); fibers expressing myosin heavy-chain (MHC) I and II, MHC neonatal, and fiber cross-sectional area. Magnetic resonance imaging was performed to measure quadriceps cross-sectional area and isokinetic testing for the measurement of quadriceps strength. RESULTS CON/ECC induced a significantly (P = 0.002) greater increase in quadriceps cross-sectional area than did CON/ECC. There also was a significant increase in the fiber cross-sectional areas of all fiber types and in quadriceps strength, but without significant difference between training groups. Only CON/ECC training led to a significant (P < 0.05) increase in percent type I fibers. After training, the number of MHC I/MHCneo fibers was significantly (P < 0.05) greater in the CON/ECC than after in the CON/ECC group. The proportion of hybrid fibers tended to decrease in both groups; percent type II fibers, SC number, and activated SC number remained unchanged. CONCLUSIONS CON/ECC leads to significantly greater muscle hypertrophy compared with CON/ECC, but without the hypothesized enhancing effect on SC activation. At the same time, CON/ECC+ induces a less favorable slower muscle phenotype for strong and fast movements.
Collapse
Affiliation(s)
- Birgit Friedmann-Bette
- Department of Sports Medicine (Internal Medicine VII), Medical Clinic, University Hospital, Heidelberg, GERMANY
| | - Francesca Profit
- Department of Sports Medicine (Internal Medicine VII), Medical Clinic, University Hospital, Heidelberg, GERMANY
| | - Thomas Gwechenberger
- Clinic for Orthopedics and Trauma Surgery, University Hospital, Heidelberg, GERMANY.,Olympic Training Center, Heidelberg, GERMANY
| | - Nadine Weiberg
- Department of Sports Medicine (Internal Medicine VII), Medical Clinic, University Hospital, Heidelberg, GERMANY
| | - Mario Parstorfer
- Department of Sports Medicine (Internal Medicine VII), Medical Clinic, University Hospital, Heidelberg, GERMANY
| | - Marc-André Weber
- Department of Diagnostic and Interventional Radiology, University Hospital, Heidelberg, GERMANY.,Institute of Diagnostic and Interventional Radiology, University Medical Center, Rostock, GERMANY
| | | | - Alexander Barié
- Clinic for Orthopedics and Trauma Surgery, University Hospital, Heidelberg, GERMANY
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Obesity rates worldwide continue to increase and will disproportionately affect older adults because of population aging. This review highlights recent progress pertaining to therapeutic approaches to obesity in older adults. RECENT FINDINGS Caloric restriction alone improves physical function and quality of life in older adults with obesity but is associated with loss of lean mass and increases fracture risk. Adding progressive resistance training to caloric restriction attenuates loss of muscle and bone mass and increasing protein intake enhances this effect. Adding aerobic endurance training to caloric restriction further improves cardiorespiratory fitness but adding both aerobic endurance training and resistance training to caloric restriction results in the greatest improvement in overall physical function while still preserving lean mass. Future promising therapeutic interventions include testosterone, myostatin inhibitors, and bariatric surgery, but there are few studies specific to obese older adults. SUMMARY The optimal approach toward obesity in older persons is lifestyle intervention incorporating caloric restriction and exercise consisting of aerobic endurance training and resistance training. Maintenance of adequate protein intake, calcium, and vitamin D is advisable. There is insufficient evidence specific to obese older adults to recommend testosterone or bariatric surgery at this time. Myostatin inhibitors may become a future treatment, and clinical trials are ongoing.
Collapse
Affiliation(s)
- Bryan C. Jiang
- Center for Translational Research in Inflammatory Diseases (CTRID), Michael E DeBakey VA Medical Center, Houston, TX, 77030
- Department of Medicine – Endocrinology, Diabetes, and Metabolism, Baylor College of Medicine, Houston, TX, 77030
| | - Dennis T. Villareal
- Center for Translational Research in Inflammatory Diseases (CTRID), Michael E DeBakey VA Medical Center, Houston, TX, 77030
- Department of Medicine – Endocrinology, Diabetes, and Metabolism, Baylor College of Medicine, Houston, TX, 77030
| |
Collapse
|
23
|
Iskenderian A, Liu N, Deng Q, Huang Y, Shen C, Palmieri K, Crooker R, Lundberg D, Kastrapeli N, Pescatore B, Romashko A, Dumas J, Comeau R, Norton A, Pan J, Rong H, Derakhchan K, Ehmann DE. Myostatin and activin blockade by engineered follistatin results in hypertrophy and improves dystrophic pathology in mdx mouse more than myostatin blockade alone. Skelet Muscle 2018; 8:34. [PMID: 30368252 PMCID: PMC6204036 DOI: 10.1186/s13395-018-0180-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 10/14/2018] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Myostatin antagonists are being developed as therapies for Duchenne muscular dystrophy due to their strong hypertrophic effects on skeletal muscle. Engineered follistatin has the potential to combine the hypertrophy of myostatin antagonism with the anti-inflammatory and anti-fibrotic effects of activin A antagonism. METHODS Engineered follistatin was administered to C57BL/6 mice for 4 weeks, and muscle mass and myofiber size was measured. In the mdx model, engineered follistatin was dosed for 12 weeks in two studies comparing to an Fc fusion of the activin IIB receptor or an anti-myostatin antibody. Functional measurements of grip strength and tetanic force were combined with tissue analysis for markers of necrosis, inflammation, and fibrosis to evaluate improvement in dystrophic pathology. RESULTS In wild-type and mdx mice, dose-dependent increases in muscle mass and quadriceps myofiber size were observed for engineered follistatin. In mdx, increases in grip strength and tetanic force were combined with improvements in muscle markers for necrosis, inflammation, and fibrosis. Improvements in dystrophic pathology were greater for engineered follistatin than the anti-myostatin antibody. CONCLUSIONS Engineered follistatin generated hypertrophy and anti-fibrotic effects in the mdx model.
Collapse
Affiliation(s)
- Andrea Iskenderian
- Discovery Therapeutics, Shire Pharmaceuticals, Lexington, MA, USA.,Drug Discovery, Shire, Cambridge, MA, USA
| | - Nan Liu
- Discovery Therapeutics, Shire Pharmaceuticals, Lexington, MA, USA.,Drug Discovery, Shire, Cambridge, MA, USA
| | - Qingwei Deng
- Research, Shire Pharmaceuticals, Lexington, MA, 02421, USA.,Drug Discovery, Shire, Cambridge, MA, USA
| | - Yan Huang
- Discovery Therapeutics, Shire Pharmaceuticals, Lexington, MA, USA.,Drug Discovery, Shire, Cambridge, MA, USA
| | - Chuan Shen
- Discovery Therapeutics, Shire Pharmaceuticals, Lexington, MA, USA.,Drug Discovery, Shire, Cambridge, MA, USA
| | - Kathleen Palmieri
- Research, Shire Pharmaceuticals, Lexington, MA, 02421, USA.,Drug Discovery, Shire, Cambridge, MA, USA
| | - Robert Crooker
- Research, Shire Pharmaceuticals, Lexington, MA, 02421, USA.,Drug Discovery, Shire, Cambridge, MA, USA
| | - Dianna Lundberg
- Discovery Therapeutics, Shire Pharmaceuticals, Lexington, MA, USA.,Drug Discovery, Shire, Cambridge, MA, USA
| | - Niksa Kastrapeli
- Discovery Therapeutics, Shire Pharmaceuticals, Lexington, MA, USA.,Drug Discovery, Shire, Cambridge, MA, USA
| | - Brian Pescatore
- Discovery Therapeutics, Shire Pharmaceuticals, Lexington, MA, USA.,Drug Discovery, Shire, Cambridge, MA, USA
| | - Alla Romashko
- Discovery Therapeutics, Shire Pharmaceuticals, Lexington, MA, USA.,Drug Discovery, Shire, Cambridge, MA, USA
| | - John Dumas
- Discovery Therapeutics, Shire Pharmaceuticals, Lexington, MA, USA.,Drug Discovery, Shire, Cambridge, MA, USA
| | - Robert Comeau
- Discovery Therapeutics, Shire Pharmaceuticals, Lexington, MA, USA.,Drug Discovery, Shire, Cambridge, MA, USA
| | - Angela Norton
- Discovery Therapeutics, Shire Pharmaceuticals, Lexington, MA, USA.,Drug Discovery, Shire, Cambridge, MA, USA
| | - Jing Pan
- Discovery Therapeutics, Shire Pharmaceuticals, Lexington, MA, USA.,Drug Discovery, Shire, Cambridge, MA, USA
| | - Haojing Rong
- Nonclinical Development, Shire Pharmaceuticals, Lexington, MA, USA.,Drug Discovery, Shire, Cambridge, MA, USA
| | - Katayoun Derakhchan
- Nonclinical Development, Shire Pharmaceuticals, Lexington, MA, USA.,Drug Discovery, Shire, Cambridge, MA, USA
| | - David E Ehmann
- Research, Shire Pharmaceuticals, Lexington, MA, 02421, USA. .,Drug Discovery, Shire, Cambridge, MA, USA.
| |
Collapse
|
24
|
Konopka AR, Wolff CA, Suer MK, Harber MP. Relationship between intermuscular adipose tissue infiltration and myostatin before and after aerobic exercise training. Am J Physiol Regul Integr Comp Physiol 2018; 315:R461-R468. [PMID: 29718700 DOI: 10.1152/ajpregu.00030.2018] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Intermuscular adipose tissue (IMAT) is associated with impaired skeletal muscle contractile and metabolic function. Myostatin and downstream signaling proteins such as cyclin-dependent kinase 2 (CDK2) contribute to the regulation of adipose and skeletal muscle mass in cell culture and animals models, but this relationship remains incompletely understood in humans. The purpose of this study was to determine if the infiltration of IMAT was associated with skeletal muscle myostatin and downstream proteins before and after 12 wk of aerobic exercise training (AET) in healthy older women (OW; 69 ± 2 yr), older men (OM; 74 ± 3 yr), and young men (YM; 20 ± 1 yr). We found that the infiltration of IMAT was correlated with myostatin and phosphorylated CDK2 at tyrosine 15 [P-CDK2(Tyr15)]. IMAT infiltration was greater in the older subjects and was associated with lower skeletal muscle function and exercise capacity. After 12 wk of AET, there was no change in body weight. Myostatin and P-CDK2(Tyr15) were both decreased after AET, and the reduction in myostatin was associated with decreased IMAT infiltration. The decrease in myostatin and IMAT occurred concomitantly with increased exercise capacity, skeletal muscle size, and function after AET. These findings demonstrate that the reduction in IMAT infiltration after AET in weight stable individuals was accompanied by improvements in skeletal muscle function and exercise capacity. Moreover, the association between myostatin and IMAT was present in the untrained state and in response to exercise training, strengthening the potential regulatory role of myostatin on IMAT.
Collapse
Affiliation(s)
- Adam R Konopka
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign , Urbana, Illinois
| | | | - Miranda K Suer
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Matthew P Harber
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| |
Collapse
|
25
|
Gumucio JP, Sugg KB, Enselman ERS, Konja AC, Eckhardt LR, Bedi A, Mendias CL. Anterior cruciate ligament tear induces a sustained loss of muscle fiber force production. Muscle Nerve 2018; 58:10.1002/mus.26075. [PMID: 29346717 PMCID: PMC6051936 DOI: 10.1002/mus.26075] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/14/2018] [Accepted: 01/16/2018] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Patients with anterior cruciate ligament (ACL) tears have persistent quadriceps strength deficits that are thought to be due to altered neurophysiological function. Our goal was to determine the changes in muscle fiber contractility independent of the ability of motor neurons to activate fibers. METHODS We obtained quadriceps biopsies of patients undergoing ACL reconstruction, and additional biopsies 1, 2, and 6 months after surgery. Muscles fiber contractility was assessed in vitro, along with whole muscle strength testing. RESULTS Compared with controls, patients had a 30% reduction in normalized muscle fiber force at the time of surgery. One month later, the force deficit was 41%, and at 6 months the deficit was 23%. Whole muscle strength testing demonstrated similar trends. DISCUSSION While neurophysiological dysfunction contributes to whole muscle weakness, there is also a reduction in the force generating capacity of individual muscle cells independent of alpha motor neuron activation. Muscle Nerve, 2018.
Collapse
Affiliation(s)
- Jonathan P Gumucio
- Department of Orthopaedic Surgery, Section of Plastic Surgery, University of Michigan Medical School, Ann Arbor, MI
- Department of Molecular & Integrative Physiology, Section of Plastic Surgery, University of Michigan Medical School, Ann Arbor, MI
| | - Kristoffer B Sugg
- Department of Orthopaedic Surgery, Section of Plastic Surgery, University of Michigan Medical School, Ann Arbor, MI
- Department of Molecular & Integrative Physiology, Section of Plastic Surgery, University of Michigan Medical School, Ann Arbor, MI
- Department of Surgery, Section of Plastic Surgery, University of Michigan Medical School, Ann Arbor, MI
| | | | - Alexis C Konja
- Department of Orthopaedic Surgery, Section of Plastic Surgery, University of Michigan Medical School, Ann Arbor, MI
| | - Logan R Eckhardt
- Department of Orthopaedic Surgery, Section of Plastic Surgery, University of Michigan Medical School, Ann Arbor, MI
| | - Asheesh Bedi
- Department of Orthopaedic Surgery, Section of Plastic Surgery, University of Michigan Medical School, Ann Arbor, MI
| | - Christopher L Mendias
- Department of Orthopaedic Surgery, Section of Plastic Surgery, University of Michigan Medical School, Ann Arbor, MI
- Department of Molecular & Integrative Physiology, Section of Plastic Surgery, University of Michigan Medical School, Ann Arbor, MI
- Hospital for Special Surgery, New York, NY
| |
Collapse
|
26
|
Gosch M, Wicklein S. [Antibodies as treatment option in older adults]. Z Gerontol Geriatr 2017; 51:152-156. [PMID: 29264687 DOI: 10.1007/s00391-017-1352-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 10/30/2017] [Accepted: 11/17/2017] [Indexed: 10/18/2022]
Abstract
Monoclonal antibodies are already used for many different clinical indications. Besides oncology and rheumatology, denosumab is the only antibody that is currently prescribed in older adults with osteoporosis; however, apart from osteoporosis there might be more possible indications for the use of antibodies in chronic diseases and geriatric syndromes. Particularly, with respect to sarcopenia the transition to "doping for older adults" seems to be fluent. The present review provides an overview on the newest developments and prospective options.
Collapse
Affiliation(s)
- M Gosch
- Medizinische Klinik 2 - Schwerpunkt Geriatrie, Universitätsklinik für Geriatrie, Klinikum Nürnberg, Paracelsus Medizinische Privatuniversität, Campus Nürnberg, Prof.-Ernst-Nathan-Str. 1, 90419, Nürnberg, Deutschland.
| | - S Wicklein
- Medizinische Klinik 2 - Schwerpunkt Geriatrie, Universitätsklinik für Geriatrie, Klinikum Nürnberg, Paracelsus Medizinische Privatuniversität, Campus Nürnberg, Prof.-Ernst-Nathan-Str. 1, 90419, Nürnberg, Deutschland
| |
Collapse
|
27
|
The role of exercise-induced myokines in regulating metabolism. Arch Pharm Res 2017; 41:14-29. [DOI: 10.1007/s12272-017-0994-y] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 11/21/2017] [Indexed: 12/25/2022]
|
28
|
Abstract
OBJECTIVE This study evaluated whether low bone density, a condition related to aging, is associated with low muscle mass, a surrogate for sarcopenia, and whether it could be used as a marker of the condition. METHODS We studied 483 women aged 35 to 69 years old who appeared healthy and attended a preventive gynecological examination. Dual-energy X-ray absorptiometry was used to measure bone mineral density (BMD) and regional body composition. BMD was assessed using the T-score. Low appendicular lean mass (aLM) adjusted by height (aLM index) was defined according to Baumgartner et al (<5.45 kg/m). The association of low aLM index with bone mass was evaluated with a binary logistic regression using a cutoff point on the receiver operating characteristic curves for the T-score of -1.5. RESULTS The participants had a mean age of 54.7 ± 9.1 years, body mass index of 24.6 ± 3.6 kg/m, aLM index of 5.9 ± 0.6 kg/m (22.6% showed sarcopenia), abdominal fat percentage of 44.0 ± 9.1%, and T-score of -0.48 ± 0.97. In the logistic regression model, we found that low BMD implied a significant risk for sarcopenia (odds ratio [OR] 1.77; 95% CI, 1.02-3.06). In contrast, excess body weight was a protective factor (OR 0.12; 95% CI, 0.06-0.25). Neither age nor abdominal fat percentage, however, influenced the likelihood of sarcopenia in these women. CONCLUSIONS A BMD T-score below -1.5 suggests low muscle mass in middle-aged women, which is a central element in the diagnosis of sarcopenia. Early diagnosis provides the opportunity to introduce preventive and therapeutic options.
Collapse
|