1
|
Mallek A, Albedah A, Bouziane MM, Bouiadjra BAB, Mohammed SMAK, Gill RHS. Topological optimization of hip spacer reinforcement. J Mech Behav Biomed Mater 2024; 160:106763. [PMID: 39369618 DOI: 10.1016/j.jmbbm.2024.106763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/09/2024] [Accepted: 09/28/2024] [Indexed: 10/08/2024]
Abstract
The use of an antibiotic-enriched hip spacer represents the optimal treatment for periprosthetic joint infections (PJI). The addition of reinforcement significantly enhances its mechanical properties. Employing the explicit method enables accurate prediction of the mechanical behavior of both the spacer and its reinforcement. Topological optimization of the reinforcement emerges as the most effective strategy to prevent bone demineralization, enhance antibiotic diffusion, and improve spacer resistance. The objective of this study is to conduct topological optimization of a validated numerical model of a reinforced hip spacer and to select, from the obtained topologies, the one that best improves mechanical properties and prevents stress shielding while minimizing volume. The results indicate that an 8 mm thick titanium reinforcement, optimized to 70% of its original volume, proves to be the most effective choice.
Collapse
Affiliation(s)
- Abdelhafid Mallek
- LMPM, Department of Mechanical Engineering, University of Sidi Bel Abbes, BP 89, Cité Ben M'hidi, Sidi Bel Abbes, 22000, Algeria
| | - Abdulmohsen Albedah
- Mechanical Engineering Department, College of Engineering King Saud University, Riyadh, Saudi Arabia; King Salman Center for Disability Research, Riyadh, 11614, Saudi Arabia.
| | - Mohammed Mokhtar Bouziane
- LMPM, Department of Mechanical Engineering, University of Sidi Bel Abbes, BP 89, Cité Ben M'hidi, Sidi Bel Abbes, 22000, Algeria; Department of Mechanical Engineering, Faculty of Technology, University of Mascara, BP 305 Route de Mamounia, Mascara 29000, Algeria
| | - Bel Abbes Bachir Bouiadjra
- LMPM, Department of Mechanical Engineering, University of Sidi Bel Abbes, BP 89, Cité Ben M'hidi, Sidi Bel Abbes, 22000, Algeria; Mechanical Engineering Department, College of Engineering King Saud University, Riyadh, Saudi Arabia; King Salman Center for Disability Research, Riyadh, 11614, Saudi Arabia
| | - Sohail M A K Mohammed
- Department of Mechanical and Materials Engineering, Florida International University, 10555 West Flagler Street, Miami, FL 33174, USA
| | - Richie H S Gill
- Centre for Orthopedic Biomechanics, Department of Mechanical Engineering, University of Bath, Bath, United Kingdom
| |
Collapse
|
2
|
Loha T, Bhattacharya R, Pal B, Amis AA. A novel design of hip-stem with reduced strain-shielding. Proc Inst Mech Eng H 2024; 238:471-482. [PMID: 38644528 DOI: 10.1177/09544119241244537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The use of uncemented stems in hip arthroplasty has been increasing, even in osteoporotic patients. The major concerns of uncemented hip-stems, however, are peri-prosthetic fracture, thigh pain, and proximal femoral stress-/strain-shielding. In this study, a novel design of uncemented hip-stem is proposed that will reduce such concerns, improve osseointegration, and benefit both osteoporotic and arthritic patients. The stem has a central titanium alloy core surrounded by a set of radial buttresses that are partly porous titanium, as is the stem tip. The aim of the study was to investigate the mechanical behaviour of the proposed partly-porous design, examining load transfer in the short-term, and comparing its strain-shielding behaviour with a solid metal implant. The long-term effect of implant-induced bone remodelling was also simulated. Computed tomography based three-dimensional finite element models of an intact proximal femur, and the same femur implanted with the proposed design, were developed. Peak hip contact and major muscle forces corresponding to level-walking and stair climbing were applied. The proposed partly-porous design had approximately 50% lower strain-shielding than the solid-metal counterpart. Results of bone remodelling simulation indicated that only 16% of the total bone volume is subjected to reduction of bone density. Strain concentrations were observed in the bone around the stem-tip for both solid and porous implants; however, it was less prominent for the porous design. Lower strain-shielding and reduced bone resorption are advantageous for long-term fixation, and the reduced strain concentration around the stem-tip indicates a lower risk of peri-prosthetic fracture.
Collapse
Affiliation(s)
- Tanmoy Loha
- Department of Mechanical Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, India
| | - Rounak Bhattacharya
- Department of Mechanical Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, India
| | - Bidyut Pal
- Department of Mechanical Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, India
- Department of Mechanical Engineering, Imperial College London, London, UK
| | - Andrew A Amis
- Department of Mechanical Engineering, Imperial College London, London, UK
| |
Collapse
|
3
|
Gao Q, Liu J, Wang M, Liu X, Jiang Y, Su J. Biomaterials regulates BMSCs differentiation via mechanical microenvironment. BIOMATERIALS ADVANCES 2024; 157:213738. [PMID: 38154401 DOI: 10.1016/j.bioadv.2023.213738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/11/2023] [Accepted: 12/16/2023] [Indexed: 12/30/2023]
Abstract
Bone mesenchymal stem cells (BMSCs) are crucial for bone tissue regeneration, the mechanical microenvironment of hard tissues, including bone and teeth, significantly affects the osteogenic differentiation of BMSCs. Biomaterials may mimic the microenvironment of the extracellular matrix and provide mechanical signals to regulate BMSCs differentiation via inducing the secretion of various intracellular factors. Biomaterials direct the differentiation of BMSCs via mechanical signals, including tension, compression, shear, hydrostatic pressure, stiffness, elasticity, and viscoelasticity, which can be transmitted to cells through mechanical signalling pathways. Besides, biomaterials with piezoelectric effects regulate BMSCs differentiation via indirect mechanical signals, such as, electronic signals, which are transformed from mechanical stimuli by piezoelectric biomaterials. Mechanical stimulation facilitates achieving vectored stem cell fate regulation, while understanding the underlying mechanisms remains challenging. Herein, this review summarizes the intracellular factors, including translation factors, epigenetic modifications, and miRNA level, as well as the extracellular factor, including direct and indirect mechanical signals, which regulate the osteogenic differentiation of BMSCs. Besides, this review will also give a comprehensive summary about how mechanical stimuli regulate cellular behaviours, as well as how biomaterials promote the osteogenic differentiation of BMSCs via mechanical microenvironments. The cellular behaviours and activated signal pathways will give more implications for the design of biomaterials with superior properties for bone tissue engineering. Moreover, it will also provide inspiration for the construction of bone organoids which is a useful tool for mimicking in vivo bone tissue microenvironments.
Collapse
Affiliation(s)
- Qianmin Gao
- Institute of Translational Medicine, Shanghai University, NO.333 Nanchen Road, Shanghai 200444, PR China; Organoid Research Centre, Shanghai University, NO.333 Nanchen Road, Shanghai 200444, PR China; National Centre for Translational Medicine (Shanghai) SHU Branch, NO.333 Nanchen Road, Shanghai University, Shanghai 200444, PR China
| | - Jinlong Liu
- Institute of Translational Medicine, Shanghai University, NO.333 Nanchen Road, Shanghai 200444, PR China; Organoid Research Centre, Shanghai University, NO.333 Nanchen Road, Shanghai 200444, PR China; National Centre for Translational Medicine (Shanghai) SHU Branch, NO.333 Nanchen Road, Shanghai University, Shanghai 200444, PR China
| | - Mingkai Wang
- Institute of Translational Medicine, Shanghai University, NO.333 Nanchen Road, Shanghai 200444, PR China; Organoid Research Centre, Shanghai University, NO.333 Nanchen Road, Shanghai 200444, PR China; National Centre for Translational Medicine (Shanghai) SHU Branch, NO.333 Nanchen Road, Shanghai University, Shanghai 200444, PR China
| | - Xiangfei Liu
- Department of Orthopedics, Shanghai Zhongye Hospital, NO. 456 Chunlei Road, Shanghai 200941, PR China.
| | - Yingying Jiang
- Institute of Translational Medicine, Shanghai University, NO.333 Nanchen Road, Shanghai 200444, PR China.
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, NO.333 Nanchen Road, Shanghai 200444, PR China; Organoid Research Centre, Shanghai University, NO.333 Nanchen Road, Shanghai 200444, PR China; National Centre for Translational Medicine (Shanghai) SHU Branch, NO.333 Nanchen Road, Shanghai University, Shanghai 200444, PR China; Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, NO.1665 Kongjiang Road, Shanghai 200092, PR China.
| |
Collapse
|
4
|
Hijazi KM, Dixon SJ, Armstrong JE, Rizkalla AS. Titanium Alloy Implants with Lattice Structures for Mandibular Reconstruction. MATERIALS (BASEL, SWITZERLAND) 2023; 17:140. [PMID: 38203994 PMCID: PMC10779528 DOI: 10.3390/ma17010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/30/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024]
Abstract
In recent years, the field of mandibular reconstruction has made great strides in terms of hardware innovations and their clinical applications. There has been considerable interest in using computer-aided design, finite element modelling, and additive manufacturing techniques to build patient-specific surgical implants. Moreover, lattice implants can mimic mandibular bone's mechanical and structural properties. This article reviews current approaches for mandibular reconstruction, their applications, and their drawbacks. Then, we discuss the potential of mandibular devices with lattice structures, their development and applications, and the challenges for their use in clinical settings.
Collapse
Affiliation(s)
- Khaled M. Hijazi
- School of Biomedical Engineering, Faculty of Engineering, The University of Western Ontario, London, ON N6A 3K7, Canada
- Bone and Joint Institute, The University of Western Ontario, London, ON N6G 2V4, Canada
| | - S. Jeffrey Dixon
- Bone and Joint Institute, The University of Western Ontario, London, ON N6G 2V4, Canada
- Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Jerrold E. Armstrong
- Division of Oral and Maxillofacial Surgery, Department of Otolaryngology Head and Neck Surgery, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Amin S. Rizkalla
- School of Biomedical Engineering, Faculty of Engineering, The University of Western Ontario, London, ON N6A 3K7, Canada
- Bone and Joint Institute, The University of Western Ontario, London, ON N6G 2V4, Canada
- Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
- Chemical and Biochemical Engineering, Faculty of Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
| |
Collapse
|
5
|
Kamel Shehata MEM, Mustapha K, Shehata E. Finite Element and Multivariate Random Forests Modelling for Stress Shield Attenuation in Customized Hip Implants. FORCES IN MECHANICS 2022. [DOI: 10.1016/j.finmec.2022.100151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Alkentar R, Máté F, Mankovits T. Investigation of the Performance of Ti6Al4V Lattice Structures Designed for Biomedical Implants Using the Finite Element Method. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15186335. [PMID: 36143651 PMCID: PMC9504521 DOI: 10.3390/ma15186335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 05/27/2023]
Abstract
The development of medical implants is an ongoing process pursued by many studies in the biomedical field. The focus is on enhancing the structure of the implants to improve their biomechanical properties, thus reducing the imperfections for the patient and increasing the lifespan of the prosthesis. The purpose of this study was to investigate the effects of different lattice structures under laboratory conditions and in a numerical manner to choose the best unit cell design, able to generate a structure as close to that of human bone as possible. Four types of unit cell were designed using the ANSYS software and investigated through comparison between the results of laboratory compression tests and those of the finite element simulation. Three samples of each unit cell type were 3D printed, using direct metal laser sintering technology, and tested according to the ISO standards. Ti6Al4V was selected as the material for the samples. Stress-strain characteristics were determined, and the effective Young's modulus was calculated. Detailed comparative analysis was conducted between the laboratory and the numerical results. The average Young's modulus values were 11 GPa, 9 GPa, and 8 GPa for the Octahedral lattice type, both the 3D lattice infill type and the double-pyramid lattice and face diagonals type, and the double-pyramid lattice with cross type, respectively. The deviation between the lab results and the simulated ones was up to 10%. Our results show how each type of unit cell structure is suitable for each specific type of human bone.
Collapse
Affiliation(s)
- Rashwan Alkentar
- Doctoral School of Informatics, Faculty of Informatics, University of Debrecen, Kassai u. 26., H-4028 Debrecen, Hungary
| | - File Máté
- Department of Mechanical Engineering, Faculty of Engineering, University of Debrecen, Ótemető u. 2-4., H-4028 Debrecen, Hungary
| | - Tamás Mankovits
- Department of Mechanical Engineering, Faculty of Engineering, University of Debrecen, Ótemető u. 2-4., H-4028 Debrecen, Hungary
| |
Collapse
|
7
|
Sharpe FE, Sharpe KP, McCarty CP, Ebramzadeh E. Load Sharing in the Femur Using Strut Allografts: A Biomechanical Study. Arthroplast Today 2022; 15:68-74. [PMID: 35464338 PMCID: PMC9018542 DOI: 10.1016/j.artd.2022.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 02/01/2022] [Accepted: 02/12/2022] [Indexed: 11/28/2022] Open
Abstract
Background Femoral strut allografts are used in revision hip arthroplasty for management of bone loss associated with implant failure or periprosthetic fractures. They have also been used to treat unremitting thigh pain in well-fixed cementless femoral stems, to address the differential in structural stiffness between the stem and femoral shaft. Our study used an in vitro biomechanical model to measure the effect of placement of allografts on femoral strains, to determine their load-sharing capacity. Material and methods Three rosette strain gauges were applied to the femoral surface of each of 6 cadaveric femurs, at the stem tip level on anterior, medial, and lateral cortices. After stem implantation, cortical strut allografts were applied to the lateral femoral shaft and secured with 4 Dall-Miles cables. A fourth gauge was placed on the midpoint of the allograft. Strains were recorded in the intact femur, then the implanted femur with and without the allograft under simulated physiologic loading in a load frame. Results Reduction in distal femoral principal strains, between 12% and 59%, was seen in all cortices following placement of the allograft. Under axial loading, 30% of the strain in the lateral cortex was borne by the allograft. Greater reductions in strain, by as much as 59%, occurred under axial load and torque. Conclusion The results of this biomechanical model indicate that by placement of an allograft, cortical strains can be reduced to levels approaching those in an intact femur, supporting this technique for treatment of unremitting thigh pain in well-fixed prostheses.
Collapse
Affiliation(s)
- Frances E. Sharpe
- Department of Hand and Orthopedic Surgery, Southern California Permanente Medical Group and University of Southern California Keck School of Medicine, Fontana Medical Center, Fontana, CA, USA
| | | | - Colin P. McCarty
- The J. Vernon Luck, Sr., M.D. Orthopaedic Research Center, Orthopaedic Institute for Children and UCLA Department of Orthopaedic Surgery, Los Angeles, CA, USA
| | - Edward Ebramzadeh
- The J. Vernon Luck, Sr., M.D. Orthopaedic Research Center, Orthopaedic Institute for Children and UCLA Department of Orthopaedic Surgery, Los Angeles, CA, USA
- Corresponding author. The J. Vernon Luck, Sr., M.D. Orthopaedic Research Center, Department of Orthopaedic Surgery, 403 West Adams Blvd, Los Angeles, CA 90007, USA. Tel.: +1 213 742 1440.
| |
Collapse
|
8
|
Risse L, Woodcock S, Brüggemann JP, Kullmer G, Richard HA. Stiffness optimization and reliable design of a hip implant by using the potential of additive manufacturing processes. Biomed Eng Online 2022; 21:23. [PMID: 35366884 PMCID: PMC8976951 DOI: 10.1186/s12938-022-00990-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/07/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Due to the steadily increasing life expectancy of the population, the need for medical aids to maintain the previous quality of life is growing. The basis for independent mobility is a functional locomotor system. The hip joint can be so badly damaged by everyday wear or accelerated by illness that reconstruction by means of endoprostheses is necessary. RESULTS In order to ensure a high quality of life for the patient after this procedure as well as a long service life of the prosthesis, a high-quality design is required, so that many different aspects have to be taken into account when developing prostheses. Long-term medical studies show that the service life and operational safety of a hip prosthesis by best possible adaptation of the stiffness to that of the bone can be increased. The use of additive manufacturing processes enables to specifically change the stiffness of implant structures. CONCLUSIONS Reduced implant stiffness leads to an increase in stress in the surrounding bone and thus to a reduction in bone resorption. Numerical methods are used to demonstrate this fact in the hip implant developed. The safety of use is nevertheless ensured by evaluating and taking into account the stresses that occur for critical load cases. These results are a promising basis to enable longer service life of prostheses in the future.
Collapse
Affiliation(s)
- Lena Risse
- Institute of Applied Mechanics, Paderborn University, Pohlweg 47-49, 33098, Paderborn, Germany.
- Direct Manufacturing Research Center, Paderborn University, Pohlweg 47-49, 33098, Paderborn, Germany.
| | - Steven Woodcock
- Institute of Applied Mechanics, Paderborn University, Pohlweg 47-49, 33098, Paderborn, Germany
- Direct Manufacturing Research Center, Paderborn University, Pohlweg 47-49, 33098, Paderborn, Germany
| | - Jan-Peter Brüggemann
- Advanced Mechanical Engineering GmbH, Carlo-Schmid-Allee 3, 44263, Dortmund, Germany
| | - Gunter Kullmer
- Institute of Applied Mechanics, Paderborn University, Pohlweg 47-49, 33098, Paderborn, Germany
- Direct Manufacturing Research Center, Paderborn University, Pohlweg 47-49, 33098, Paderborn, Germany
| | - Hans Albert Richard
- Institute of Applied Mechanics, Paderborn University, Pohlweg 47-49, 33098, Paderborn, Germany
- Direct Manufacturing Research Center, Paderborn University, Pohlweg 47-49, 33098, Paderborn, Germany
| |
Collapse
|
9
|
He S, Zhao Y, Wang L, Bao Y, Xu R. Finite element analysis of optimal design of distal geometry of cementless femoral prosthesis. Niger J Clin Pract 2022; 25:1476-1483. [DOI: 10.4103/njcp.njcp_1888_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
10
|
Tan N, van Arkel RJ. Topology Optimisation for Compliant Hip Implant Design and Reduced Strain Shielding. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7184. [PMID: 34885337 PMCID: PMC8658148 DOI: 10.3390/ma14237184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/01/2021] [Accepted: 11/22/2021] [Indexed: 01/12/2023]
Abstract
Stiff total hip arthroplasty implants can lead to strain shielding, bone loss and complex revision surgery. The aim of this study was to develop topology optimisation techniques for more compliant hip implant design. The Solid Isotropic Material with Penalisation (SIMP) method was adapted, and two hip stems were designed and additive manufactured: (1) a stem based on a stochastic porous structure, and (2) a selectively hollowed approach. Finite element analyses and experimental measurements were conducted to measure stem stiffness and predict the reduction in stress shielding. The selectively hollowed implant increased peri-implanted femur surface strains by up to 25 percentage points compared to a solid implant without compromising predicted strength. Despite the stark differences in design, the experimentally measured stiffness results were near identical for the two optimised stems, with 39% and 40% reductions in the equivalent stiffness for the porous and selectively hollowed implants, respectively, compared to the solid implant. The selectively hollowed implant's internal structure had a striking resemblance to the trabecular bone structures found in the femur, hinting at intrinsic congruency between nature's design process and topology optimisation. The developed topology optimisation process enables compliant hip implant design for more natural load transfer, reduced strain shielding and improved implant survivorship.
Collapse
Affiliation(s)
| | - Richard J. van Arkel
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK;
| |
Collapse
|
11
|
Mallek A, Miloudi A, Khaldi M, Bouziane MM, Bouiadjra BB, Bougherara H, Gill RHS. Quasi-static analysis of hip cement spacers. J Mech Behav Biomed Mater 2021; 116:104334. [PMID: 33497959 DOI: 10.1016/j.jmbbm.2021.104334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 11/25/2022]
Abstract
The use of temporary hip prosthesis made of orthopedic cement (spacer) in conjunction with antibiotics became a widespread method used for treating prosthetic infections despite the fact that this method makes bone cement (PMMA) more fragile. The necessity to incorporate reinforcement is therefore crucial to strengthen the bone cement. In this study, a validated Finite Element Modelling (FEM) was used to analyze the behavior of spacers. This FEM model uses a non-linear dynamic explicit integration to simulate the mechanical behavior of the spacer under quasi-static loading. In addition to this FEM, Extended Finite Element Method (XFEM) was also used to investigate the fracture behavior of the spacers reinforced with titanium, ceramic and stainless-steel spacer stems. The effect of the material on the performance of the reinforced spacers was also analyzed. The results showed that numerical modelling based on explicit finite element using ABAQUS/Explicit is an effective method to predict the different spacers' mechanical behavior. The simulated crack initiation and propagation were in a good agreement with experimental observations. The FEM models developed in this study can help mechanical designers and engineers to improve the prostheses' quality and durability.
Collapse
Affiliation(s)
- Abdelhafid Mallek
- LMPM, Department of Mechanical Engineering, University of Sidi Bel Abbes, BP 89, Cité Ben M'hidi, Sidi Bel Abbes, 22000, Algeria
| | - Abdelkader Miloudi
- LMSR, Department of Mechanical Engineering, University of Sidi Bel Abbes, BP 89, Cité Ben M'hidi, Sidi Bel Abbes, 22000, Algeria
| | - Mokhtar Khaldi
- Laboratory of Applied Biomechanics and Biomaterials (LABAB), ENP Oran-MA, Oran, Algeria; Department of Mechanical Engineering, Faculty of Technology, University of Mascara, BP 305 Route de Mamounia, Mascara, 29000, Algeria
| | - Mohammed-Mokhtar Bouziane
- LMPM, Department of Mechanical Engineering, University of Sidi Bel Abbes, BP 89, Cité Ben M'hidi, Sidi Bel Abbes, 22000, Algeria; Department of Mechanical Engineering, Faculty of Technology, University of Mascara, BP 305 Route de Mamounia, Mascara, 29000, Algeria.
| | - Belabbes Bachir Bouiadjra
- LMPM, Department of Mechanical Engineering, University of Sidi Bel Abbes, BP 89, Cité Ben M'hidi, Sidi Bel Abbes, 22000, Algeria
| | - Habiba Bougherara
- Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, Ontario, Canada
| | - Richie H S Gill
- Centre for Orthopedic Biomechanics, Department of Mechanical Engineering, University of Bath, Bath, United Kingdom
| |
Collapse
|
12
|
Nazari-Farsani S, Vuopio M, Löyttyniemi E, Aro HT. Contributing factors to the initial femoral stem migration in cementless total hip arthroplasty of postmenopausal women. J Biomech 2021; 117:110262. [PMID: 33508723 DOI: 10.1016/j.jbiomech.2021.110262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 01/01/2021] [Accepted: 01/10/2021] [Indexed: 02/06/2023]
Abstract
In cementless total hip arthroplasty (THA), femoral stems rely on the initial press-fit fixation against cortical bone to achieve osseointegration. Decreased bone mineral density (BMD) in postmenopausal women poses natural difficulties in achieving axial and rotational femoral stem stability. The present study examined contributing demographic, surgery-related and postoperative factors in determining the magnitude of early stem migration prior to osseointegration. A prospective cohort of 65 postmenopausal women with hip osteoarthritis (Dorr type A or B femur anatomy) underwent THA with implantation of an uncemented parallel-sided femoral component. Postoperative femoral stem translation and rotation were measured using model-based radiostereometric analysis. Based on analysis of covariance, which controlled for outliers and randomized antiresorptive treatment with denosumab or placebo, none of the analyzed demographics (including BMI) and surgery-related variables (including the stem-to-canal fil ratio) was associated with stem subsidence. Stem subsidence (mean 1.8 mm, 95% CI 1.2 to 2.4) occurred even in women with normal hip BMD. Total hip BMD and postoperative walking activity (measured three months after surgery) were significantly associated with stem rotation, and height acted as a confounding factor. The effect of walking activity on stem rotation was significant at 5 months (p = 0.0083) and at 11 months (p = 0.0117). This observation confirms the previous results of instrumented hip prostheses on torsional moments affecting stems during daily activities. High-resolution imaging modalities of local bone quality are needed to explore reasons for RSA-measurable stem subsidence even in women with normal hip BMD.
Collapse
Affiliation(s)
- Sanaz Nazari-Farsani
- Department of Orthopaedic Surgery and Traumatology, Turku University Hospital and University of Turku, Turku, Finland
| | - Mia Vuopio
- Department of Orthopaedic Surgery and Traumatology, Turku University Hospital and University of Turku, Turku, Finland
| | - Eliisa Löyttyniemi
- Unit of Biostatistics, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Hannu T Aro
- Department of Orthopaedic Surgery and Traumatology, Turku University Hospital and University of Turku, Turku, Finland.
| |
Collapse
|
13
|
Mohammadi H, Muhamad N, Sulong AB, Ahmadipour M. Recent advances on biofunctionalization of metallic substrate using ceramic coating: How far are we from clinically stable implant? J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Tatani I, Megas P, Panagopoulos A, Diamantakos I, Nanopoulos P, Pantelakis S. Comparative analysis of the biomechanical behavior of two different design metaphyseal-fitting short stems using digital image correlation. Biomed Eng Online 2020; 19:65. [PMID: 32814586 PMCID: PMC7437017 DOI: 10.1186/s12938-020-00806-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/04/2020] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND The progressive evolution in hip replacement research is directed to follow the principles of bone and soft tissue sparing surgery. Regarding hip implants, a renewed interest has been raised towards short uncemented femoral implants. A heterogeneous group of short stems have been designed with the aim to approximate initial, post-implantation bone strain to the preoperative levels in order to minimize the effects of stress shielding. This study aims to investigate the biomechanical properties of two distinctly designed femoral implants, the TRI-LOCK Bone Preservation Stem, a shortened conventional stem and the Minima S Femoral Stem, an even shorter and anatomically shaped stem, based on experiments and numerical simulations. Furthermore, finite element models of implant-bone constructs should be evaluated for their validity against mechanical tests wherever it is possible. In this work, the validation was performed via a direct comparison of the FE calculated strain fields with their experimental equivalents obtained using the digital image correlation technique. RESULTS Design differences between Trilock BPS and Minima S femoral stems conditioned different strain pattern distributions. A distally shifting load distribution pattern as a result of implant insertion and also an obvious decrease of strain in the medial proximal aspect of the femur was noted for both stems. Strain changes induced after the implantation of the Trilock BPS stem at the lateral surface were greater compared to the non-implanted femur response, as opposed to those exhibited by the Minima S stem. Linear correlation analyses revealed a reasonable agreement between the numerical and experimental data in the majority of cases. CONCLUSION The study findings support the use of DIC technique as a preclinical evaluation tool of the biomechanical behavior induced by different implants and also identify its potential for experimental FE model validation. Furthermore, a proximal stress-shielding effect was noted after the implantation of both short-stem designs. Design-specific variations in short stems were sufficient to produce dissimilar biomechanical behaviors, although their clinical implication must be investigated through comparative clinical studies.
Collapse
Affiliation(s)
- I Tatani
- Orthopaedic Department, University Hospital of Patras, Papanikolaou 1, Rio-Patra, 26504, Patras, Greece.
| | - P Megas
- Orthopaedic Department, University Hospital of Patras, Papanikolaou 1, Rio-Patra, 26504, Patras, Greece
| | - A Panagopoulos
- Orthopaedic Department, University Hospital of Patras, Papanikolaou 1, Rio-Patra, 26504, Patras, Greece
| | - I Diamantakos
- Laboratory of Technology and Strength of Materials, Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece
| | - Ph Nanopoulos
- Department of Computer Engineering & Informatics, University of Patras, Patras, Greece
| | - Sp Pantelakis
- Laboratory of Technology and Strength of Materials, Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece
| |
Collapse
|
15
|
Reengineering Bone-Implant Interfaces for Improved Mechanotransduction and Clinical Outcomes. Stem Cell Rev Rep 2020; 16:1121-1138. [DOI: 10.1007/s12015-020-10022-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Strain shielding for cemented hip implants. Clin Biomech (Bristol, Avon) 2020; 77:105027. [PMID: 32447179 DOI: 10.1016/j.clinbiomech.2020.105027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Long-term survival of hip implants is of increasing relevance due to the rising life expectancy. The biomechanical effect of strain shielding as a result of implant insertion may lead to bone resorption, thus increasing risk for implant loosening and periprosthetic fractures. Patient-specific quantification of strain shielding could assist orthopedic surgeons in choosing the biomechanically most appropriate prosthesis. METHODS Validated quantitative CT-based finite element models of five femurs in intact and implanted states were considered to propose a systematic algorithm for strain shielding quantification. Three different strain measures were investigated and the most appropriate measure for strain shielding quantification is recommended. It is used to demonstrate a practical femur-specific implant selection among three common designs. FINDINGS Strain shielding measures demonstrated similar trends in all Gruen zones except zone 1, where the volumetric strain measure differed from von-Mises and maximum principal strains. The volumetric strain measure is in better agreement with clinical bone resorption records. It is also consistent with the biological mechanism of bone remodeling so it is recommended for strain shielding quantification. Applying the strain shielding algorithm on three different implants for a specific femur suggests that the collared design is preferable. Such quantitative biomechanical input is valuable for practical patient specific implant selection. INTERPRETATION Volumetric strain should be considered for strain shielding examination. The presented methodology may potentially enable patient-specific pre-operative strain shielding evaluation so to minimize strain shielding. It should be further used in a longitudinal study so to correlate between strain shielding predictions and clinical bone resorption.
Collapse
|
17
|
Xie P, Deng Y, Tan J, Wang M, Yang Y, Ouyang H, Huang W. The effect of rotational degree and routine activity on the risk of collapse in transtrochanteric rotational osteotomy for osteonecrosis of the femoral head-a finite element analysis. Med Biol Eng Comput 2020; 58:805-814. [PMID: 32016806 PMCID: PMC7156356 DOI: 10.1007/s11517-020-02137-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 01/22/2020] [Indexed: 11/24/2022]
Abstract
To explore the mechanical mechanism and provide preoperative planning basis for transtrochanteric rotational osteotomy (TRO) procedure, a joint-preserving procedure for osteonecrosis of the femoral head. Eleven TRO finite element femurs with the most common types of necrosis were analyzed under multi-loading conditions. Thereafter, we made a comprehensive evaluation by considering the anatomy characters, daily activities, and risk indicators contain necrosis expansion trend, necrotic blood supply pressure, and the risk of fracture. The risk of fracture (ROF) is the lowest when standing on feet and increases gradually during normal walking and walking upstairs and downstairs. Compared with posterior rotation, rotating forward keeps more elements at low risk. Additionally, the correlation analysis shows it has a strong negative correlation (R2 = 0.834) with the average modulus of the roof. TRO finally decreased the stress and energy effectively. However, the stress and strain energy arise when rotated posteriorly less than 120°. The comprehensive evaluation observed that rotating forward 90°could reduce the total risks to 64%. TRO is an effective technique to prevent collapse. For the anterior and superior large necrosis, we recommend to rotate forward 60° to 90° (more efficient) or backward 180°. The methodology followed in this study could provide accurate and personalize preoperative planning. Graphical Abstract A proximal femur was reconstructed and modified using Mimics from a series of computed tomography. The models were meshed after solidified and performed different osteotomy, and then assigned material based on the Hounsfield Unit from CT images. Finally, 44 different TRO finite element femurs were analyzed under multi-loading conditions and evaluated comprehensively.
Collapse
Affiliation(s)
- Pusheng Xie
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, 1023 ShaTai Rd, Guangzhou, 510515 People’s Republic of China
- Department of Anatomy, School of Basic Medicine Science, Guangdong Provincial Key laboratory of Medical Biomechanics, Southern Medical University, 1023 ShaTai Rd, Baiyun District, Guangzhou, 510515 People’s Republic of China
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Southern Medical University, 1023 ShaTai Rd, Guangzhou, 510515 People’s Republic of China
| | - Yuping Deng
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, 1023 ShaTai Rd, Guangzhou, 510515 People’s Republic of China
- Department of Anatomy, School of Basic Medicine Science, Guangdong Provincial Key laboratory of Medical Biomechanics, Southern Medical University, 1023 ShaTai Rd, Baiyun District, Guangzhou, 510515 People’s Republic of China
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Southern Medical University, 1023 ShaTai Rd, Guangzhou, 510515 People’s Republic of China
| | - Jinchuan Tan
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, 1023 ShaTai Rd, Guangzhou, 510515 People’s Republic of China
- Department of Anatomy, School of Basic Medicine Science, Guangdong Provincial Key laboratory of Medical Biomechanics, Southern Medical University, 1023 ShaTai Rd, Baiyun District, Guangzhou, 510515 People’s Republic of China
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Southern Medical University, 1023 ShaTai Rd, Guangzhou, 510515 People’s Republic of China
| | - Mian Wang
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, 1023 ShaTai Rd, Guangzhou, 510515 People’s Republic of China
- Department of Anatomy, School of Basic Medicine Science, Guangdong Provincial Key laboratory of Medical Biomechanics, Southern Medical University, 1023 ShaTai Rd, Baiyun District, Guangzhou, 510515 People’s Republic of China
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Southern Medical University, 1023 ShaTai Rd, Guangzhou, 510515 People’s Republic of China
| | - Yang Yang
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, 1023 ShaTai Rd, Guangzhou, 510515 People’s Republic of China
- Department of Anatomy, School of Basic Medicine Science, Guangdong Provincial Key laboratory of Medical Biomechanics, Southern Medical University, 1023 ShaTai Rd, Baiyun District, Guangzhou, 510515 People’s Republic of China
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Southern Medical University, 1023 ShaTai Rd, Guangzhou, 510515 People’s Republic of China
| | - Hanbin Ouyang
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, 524002 People’s Republic of China
| | - Wenhua Huang
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, 1023 ShaTai Rd, Guangzhou, 510515 People’s Republic of China
- Department of Anatomy, School of Basic Medicine Science, Guangdong Provincial Key laboratory of Medical Biomechanics, Southern Medical University, 1023 ShaTai Rd, Baiyun District, Guangzhou, 510515 People’s Republic of China
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Southern Medical University, 1023 ShaTai Rd, Guangzhou, 510515 People’s Republic of China
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, 524002 People’s Republic of China
| |
Collapse
|
18
|
Katz Y, Yosibash Z. New insights on the proximal femur biomechanics using Digital Image Correlation. J Biomech 2020; 101:109599. [DOI: 10.1016/j.jbiomech.2020.109599] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 12/27/2019] [Accepted: 12/31/2019] [Indexed: 01/22/2023]
|
19
|
Brunello G, Elsayed H, Biasetto L. Bioactive Glass and Silicate-Based Ceramic Coatings on Metallic Implants: Open Challenge or Outdated Topic? MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2929. [PMID: 31510062 PMCID: PMC6766230 DOI: 10.3390/ma12182929] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/05/2019] [Accepted: 09/07/2019] [Indexed: 12/19/2022]
Abstract
The overall success and long-term life of the medical implants are decisively based on the convenient osseointegration at the hosting tissue-implant interface. Therefore, various surface modifications and different coating approaches have been utilized to the implants to enhance the bone formation and speed up the interaction with the surrounding hosting tissues, thereby enabling the successful fixation of implants. In this review, we will briefly present the main metallic implants and discuss their biocompatibility and osseointegration ability depending on their chemical and mechanical properties. In addition, as the main goal of this review, we explore the main properties of bioactive glasses and silica-based ceramics that are used as coating materials for both orthopedic and dental implants. The current review provides an overview of these bioactive coatings, with a particular emphasis on deposition methods, coating adhesion to the substrates and apatite formation ability tested by immersion in Simulated Body Fluid (SBF). In vitro and in vivo performances in terms of biocompatibility, biodegradability and improved osseointegration are examined as well.
Collapse
Affiliation(s)
- Giulia Brunello
- Department of Management and Engineering, University of Padova, Stradella San Nicola 3, 36100 Vicenza, Italy.
- Department of Neurosciences, Section of Dentistry, University of Padova, Via Giustiniani 2, 35128 Padova, Italy.
| | - Hamada Elsayed
- Department of Industrial Engineering, University of Padova, Via F. Marzolo 9, 35131 Padova, Italy.
- Ceramics Department, National Research Centre, El-Bohous Street, Cairo 12622, Egypt.
| | - Lisa Biasetto
- Department of Management and Engineering, University of Padova, Stradella San Nicola 3, 36100 Vicenza, Italy.
| |
Collapse
|
20
|
Alkhatib SE, Tarlochan F, Mehboob H, Singh R, Kadirgama K, Harun WSBW. Finite element study of functionally graded porous femoral stems incorporating body‐centered cubic structure. Artif Organs 2019; 43:E152-E164. [DOI: 10.1111/aor.13444] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/14/2019] [Accepted: 02/21/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Sami E. Alkhatib
- Mechanical and Industrial Engineering Department, College of Engineering Qatar University Doha Qatar
| | - Faris Tarlochan
- Mechanical and Industrial Engineering Department, College of Engineering Qatar University Doha Qatar
| | - Hassan Mehboob
- Mechanical and Industrial Engineering Department, College of Engineering Qatar University Doha Qatar
| | - Ramesh Singh
- Department of Mechanical Engineering, Faculty of Engineering University of Malaya Kuala Lumpur Malaysia
| | - Kumaran Kadirgama
- Faculty of Mechanical Engineering Universiti Malaysia Pahang Pekan Malaysia
| | | |
Collapse
|
21
|
Heyland M, Checa S, Kendoff D, Duda GN. Anatomic grooved stem mitigates strain shielding compared to established total hip arthroplasty stem designs in finite-element models. Sci Rep 2019; 9:482. [PMID: 30679467 PMCID: PMC6345751 DOI: 10.1038/s41598-018-36503-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 11/19/2018] [Indexed: 01/30/2023] Open
Abstract
Aseptic loosening remains a major problem for uncemented femoral components in primary total hip arthroplasty (THA). Ideally, bone adaptation after THA manifests minimally and local bone density reduction is widely avoided. Different design features may help to approximate initial, post-THA bone strain to levels pre-THA. Strain-shielding effects of different SP-CL stem design features are systematically analyzed and compared to CLS Spotorno and CORAIL using finite element models and physiological musculoskeletal loading conditions. All designs show substantial proximal strain-shielding: 50% reduced medial surface strain, 40–50% reduction at lateral surface, >120 µm/m root mean square error (RMSE) compared to intact bone in Gruen zone 1 and >60 µm/m RMSE in Gruen zones 2, 6, and 7. Geometrical changes (ribs, grooves, cross sections, stem length, anatomic curvature) have a considerable effect on strain-shielding; up to 20%. Combinations of reduced stem stiffness with larger proximal contact area (anatomically curved, grooves) lead to less strain-shielding compared to clinically established implant designs. We found that only the combination of a structurally flexible stem with anatomical curvature and grooves improves strain-shielding compared to other designs. The clinical implications in vivo of this initial strain-shielding difference are currently under evaluation in an ongoing clinical analysis.
Collapse
Affiliation(s)
- Mark Heyland
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| | - Sara Checa
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | | | - Georg N Duda
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
22
|
Katz Y, Lubovsky O, Yosibash Z. Patient-specific finite element analysis of femurs with cemented hip implants. Clin Biomech (Bristol, Avon) 2018; 58:74-89. [PMID: 30053643 DOI: 10.1016/j.clinbiomech.2018.06.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 06/19/2018] [Accepted: 06/22/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Over 1.6 million hip replacements are performed annually in Organisation for Economic Cooperation and Development countries, half of which involve cemented implants. Quantitative computer tomography based finite element methods may be used to assess the change in strain field in a femur following such a hip replacement, and thus determine a patient-specific optimal implant. A combined experimental-computational study on fresh frozen human femurs with different cemented implants is documented, aimed at verifying and validating the methods. METHODS Ex-vivo experiments on four fresh-frozen human femurs were conducted. Femurs were scanned, fractured in a stance position loading, and thereafter implanted with four different prostheses. All femurs were reloaded in stance positions at three different inclination angles while recording strains on bones' and prosthesis' surfaces. High-order FE models of the intact and implanted femurs were generated based on the computer tomography scans and X-ray radiographs. The models were virtually loaded mimicking the experimental conditions and FE results were compared to experimental observations. FINDINGS Strains predicted by finite element analyses in all four femurs were in excellent correlation with experimental observations FE = 1.01 × EXP - 0.07,R2 = 0.976, independent of implant's type, loading angle and fracture location. INTERPRETATION Computer tomography based finite element models can reliably determine strains on femur surface and on inserted implants at the contact with the cement. This allows to investigate suitable norms to rank implants for a patient-specific femur so to minimize changes in strain patterns in the operated femur.
Collapse
Affiliation(s)
- Yekutiel Katz
- School of Mechanical Engineering, Faculty of Engineering, Tel-Aviv University, Ramat-Aviv, Israel
| | - Omri Lubovsky
- Department of Orthopedic Surgery, Barzilai Medical Center, Ashqelon, Israel
| | - Zohar Yosibash
- School of Mechanical Engineering, Faculty of Engineering, Tel-Aviv University, Ramat-Aviv, Israel.
| |
Collapse
|
23
|
Aro E, Moritz N, Mattila K, Aro HT. A long-lasting bisphosphonate partially protects periprosthetic bone, but does not enhance initial stability of uncemented femoral stems: A randomized placebo-controlled trial of women undergoing total hip arthroplasty. J Biomech 2018; 75:35-45. [PMID: 29747966 DOI: 10.1016/j.jbiomech.2018.04.041] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/10/2018] [Accepted: 04/22/2018] [Indexed: 01/29/2023]
Abstract
Low bone quality may compromise the success of cementless total hip arthroplasty in high-risk patients such as elderly women. Zoledronic acid is a long-lasting antiresorptive agent, which is known to reduce short-term periprosthetic bone loss. However, its effect on femoral stem stability is not well known. Forty-nine female patients with a mean age of 68 years (range, 51-85 years) scheduled to undergo cementless total hip arthroplasty due to osteoarthritis were randomized in this double-blind, placebo-controlled trial to receive a single postoperative infusion of zoledronic acid or placebo. Patients were evaluated for up to four years postoperatively for femoral stem migration measured by radiostereometric analysis, bone mineral density (BMD) measured by dual X-ray absorptiometry, functional recovery, and patient-reported outcome scores. Implant survival was determined at nine years postoperatively. Zoledronic acid did not reduce the femoral stem migration that occurred predominantly during the settling period of the first 3-6 months. Subsequently, all femoral stems were radiographically osseointegrated. Zoledronic acid maintained periprosthetic BMD, while the expected loss of periprosthetic bone during the first 12 months was found in controls. Thereafter, periprosthetic BMD of Gruen zone 7 decreased even in the zoledronic acid group but remained 14.6% higher than that in the placebo group at four years postoperatively. Functional recovery was comparable across the groups. At nine years postoperatively, no revision arthroplasty had been performed. In conclusion, in women at high-risk for low BMD, zoledronic acid had a long-lasting, partially protective effect on periprosthetic bone loss, but the treatment did not enhance the initial femoral stem stability.
Collapse
Affiliation(s)
- Erik Aro
- Department of Orthopedic Surgery and Traumatology, Turku University Hospital and University of Turku, FI-20521 Turku, Finland.
| | - Niko Moritz
- Department of Orthopedic Surgery and Traumatology, Turku University Hospital and University of Turku, FI-20521 Turku, Finland.
| | - Kimmo Mattila
- Department of Diagnostic Imaging, Turku University Hospital, FI-20521 Turku, Finland.
| | - Hannu T Aro
- Department of Orthopedic Surgery and Traumatology, Turku University Hospital and University of Turku, FI-20521 Turku, Finland.
| |
Collapse
|
24
|
Vining KH, Mooney DJ. Mechanical forces direct stem cell behaviour in development and regeneration. Nat Rev Mol Cell Biol 2017; 18:728-742. [PMID: 29115301 PMCID: PMC5803560 DOI: 10.1038/nrm.2017.108] [Citation(s) in RCA: 1031] [Impact Index Per Article: 128.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Stem cells and their local microenvironment, or niche, communicate through mechanical cues to regulate cell fate and cell behaviour and to guide developmental processes. During embryonic development, mechanical forces are involved in patterning and organogenesis. The physical environment of pluripotent stem cells regulates their self-renewal and differentiation. Mechanical and physical cues are also important in adult tissues, where adult stem cells require physical interactions with the extracellular matrix to maintain their potency. In vitro, synthetic models of the stem cell niche can be used to precisely control and manipulate the biophysical and biochemical properties of the stem cell microenvironment and to examine how the mode and magnitude of mechanical cues, such as matrix stiffness or applied forces, direct stem cell differentiation and function. Fundamental insights into the mechanobiology of stem cells also inform the design of artificial niches to support stem cells for regenerative therapies.
Collapse
Affiliation(s)
- Kyle H. Vining
- Wyss Institute for Biologically Inspired Engineering and John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - David J. Mooney
- Wyss Institute for Biologically Inspired Engineering and John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
25
|
Cilla M, Checa S, Preininger B, Winkler T, Perka C, Duda GN, Pumberger M. Femoral head necrosis: A finite element analysis of common and novel surgical techniques. Clin Biomech (Bristol, Avon) 2017; 48:49-56. [PMID: 28728078 DOI: 10.1016/j.clinbiomech.2017.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 06/27/2017] [Accepted: 07/05/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Femoral head necrosis is a common cause of secondary osteoarthritis. At the early stages, treatment strategies are normally based on core decompression techniques, where the number, location and diameter of the drilling holes varies depending on the selected approach. The purpose of this study was to investigate the risk of femoral head, neck and subtrochanteric fracture following six different core decompression techniques. MATERIALS Five common and a newly proposed techniques were analyzed in respect to their biomechanical consequences using finite element analysis. The geometry of a femur was reconstructed from computed-tomography images. Thereafter, the drilling configurations were simulated. The strains in the intact and drilled femurs were determined under physiological, patient-specific, muscle and joint contact forces. FINDINGS The following results were observed: i) - an increase in collapse and fracture risk of the femur head by disease progression ii) - for a single hole approach at the subtrochanteric region, the fracture risk increases with the diameter iii) - the highest fracture risks occur for an 8mm single hole drilling at the subtrochanteric region and approaches with multiple drilling at various entry points iv) - the proposed novel approach resulted in the most physiological strains (closer to the experienced by the healthy bone). INTERPRETATION Our results suggest that all common core decompression methods have a significant impact on the biomechanical competence of the proximal femur and impact its mechanical potential. Fracture risk increases with drilling diameter and multiple drilling with smaller diameter. We recommend the anterior approach due to its reduced soft tissue trauma and its biomechanical performance.
Collapse
Affiliation(s)
- Myriam Cilla
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Berlin, Germany; Centro Universitario de la Defensa (CUD) de Zaragoza, Academia General Militar de Zaragoza, Spain; Aragón Institute of Engineering Research (I3A), University of Zaragoza, Spain
| | - Sara Checa
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Bernd Preininger
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Tobias Winkler
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany; Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Carsten Perka
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Germany; Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Georg N Duda
- Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Germany; Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Matthias Pumberger
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Germany.
| |
Collapse
|
26
|
Cilla M, Borgiani E, Martínez J, Duda GN, Checa S. Machine learning techniques for the optimization of joint replacements: Application to a short-stem hip implant. PLoS One 2017; 12:e0183755. [PMID: 28873093 PMCID: PMC5584793 DOI: 10.1371/journal.pone.0183755] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/10/2017] [Indexed: 12/28/2022] Open
Abstract
Today, different implant designs exist in the market; however, there is not a clear understanding of which are the best implant design parameters to achieve mechanical optimal conditions. Therefore, the aim of this project was to investigate if the geometry of a commercial short stem hip prosthesis can be further optimized to reduce stress shielding effects and achieve better short-stemmed implant performance. To reach this aim, the potential of machine learning techniques combined with parametric Finite Element analysis was used. The selected implant geometrical parameters were: total stem length (L), thickness in the lateral (R1) and medial (R2) and the distance between the implant neck and the central stem surface (D). The results show that the total stem length was not the only parameter playing a role in stress shielding. An optimized implant should aim for a decreased stem length and a reduced length of the surface in contact with the bone. The two radiuses that characterize the stem width at the distal cross-section in contact with the bone were less influential in the reduction of stress shielding compared with the other two parameters; but they also play a role where thinner stems present better results.
Collapse
Affiliation(s)
- Myriam Cilla
- Centro Universitario de la Defensa (CUD), Academia General Militar, Zaragoza, Spain
- Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| | - Edoardo Borgiani
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Javier Martínez
- Centro Universitario de la Defensa (CUD), Escuela Naval Militar, Marín, Spain
| | - Georg N. Duda
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sara Checa
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
27
|
Korabi R, Shemtov-Yona K, Rittel D. On stress/strain shielding and the material stiffness paradigm for dental implants. Clin Implant Dent Relat Res 2017; 19:935-943. [PMID: 28608498 DOI: 10.1111/cid.12509] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 05/22/2017] [Accepted: 05/22/2017] [Indexed: 11/30/2022]
Abstract
BACKGROUND Stress shielding considerations suggest that the dental implant material's compliance should be matched to that of the host bone. However, this belief has not been confirmed from a general perspective, either clinically or numerically. PURPOSE To characterize the influence of the implant stiffness on its functionality using the failure envelope concept that examines all possible combinations of mechanical load and application angle for selected stress, strain and displacement-based bone failure criteria. Those criteria represent bone yielding, remodeling, and implant primary stability, respectively MATERIALS AND METHODS: We performed numerical simulations to generate failure envelopes for all possible loading configurations of dental implants, with stiffness ranging from very low (polymer) to extremely high, through that of bone, titanium, and ceramics. RESULTS Irrespective of the failure criterion, stiffer implants allow for improved implant functionality. The latter reduces with increasing compliance, while the trabecular bone experiences higher strains, albeit of an overall small level. Micromotions remain quite small irrespective of the implant's stiffness. CONCLUSION The current paradigm favoring reduced implant material's stiffness out of concern for stress or strain shielding, or even excessive micromotions, is not supported by the present calculations, that point exactly to the opposite.
Collapse
Affiliation(s)
- Raoof Korabi
- Faculty of Mechanical Engineering, Technion, Haifa, 32000, Israel
| | | | - Daniel Rittel
- Faculty of Mechanical Engineering, Technion, Haifa, 32000, Israel
| |
Collapse
|