1
|
Millward DJ. Post-natal muscle growth and protein turnover: a narrative review of current understanding. Nutr Res Rev 2024; 37:141-168. [PMID: 37395180 DOI: 10.1017/s0954422423000124] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
A model explaining the dietary-protein-driven post-natal skeletal muscle growth and protein turnover in the rat is updated, and the mechanisms involved are described, in this narrative review. Dietary protein controls both bone length and muscle growth, which are interrelated through mechanotransduction mechanisms with muscle growth induced both from stretching subsequent to bone length growth and from internal work against gravity. This induces satellite cell activation, myogenesis and remodelling of the extracellular matrix, establishing a growth capacity for myofibre length and cross-sectional area. Protein deposition within this capacity is enabled by adequate dietary protein and other key nutrients. After briefly reviewing the experimental animal origins of the growth model, key concepts and processes important for growth are reviewed. These include the growth in number and size of the myonuclear domain, satellite cell activity during post-natal development and the autocrine/paracrine action of IGF-1. Regulatory and signalling pathways reviewed include developmental mechanotransduction, signalling through the insulin/IGF-1-PI3K-Akt and the Ras-MAPK pathways in the myofibre and during mechanotransduction of satellite cells. Likely pathways activated by maximal-intensity muscle contractions are highlighted and the regulation of the capacity for protein synthesis in terms of ribosome assembly and the translational regulation of 5-TOPmRNA classes by mTORC1 and LARP1 are discussed. Evidence for and potential mechanisms by which volume limitation of muscle growth can occur which would limit protein deposition within the myofibre are reviewed. An understanding of how muscle growth is achieved allows better nutritional management of its growth in health and disease.
Collapse
Affiliation(s)
- D Joe Millward
- Department of Nutritional Sciences, School of Biosciences & Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
2
|
Kwon Y. YAP/TAZ as Molecular Targets in Skeletal Muscle Atrophy and Osteoporosis. Aging Dis 2024; 16:AD.2024.0306. [PMID: 38502585 PMCID: PMC11745433 DOI: 10.14336/ad.2024.0306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/06/2024] [Indexed: 03/21/2024] Open
Abstract
Skeletal muscles and bones are closely connected anatomically and functionally. Age-related degeneration in these tissues is associated with physical disability in the elderly and significantly impacts their quality of life. Understanding the mechanisms of age-related musculoskeletal tissue degeneration is crucial for identifying molecular targets for therapeutic interventions for skeletal muscle atrophy and osteoporosis. The Hippo pathway is a recently identified signaling pathway that plays critical roles in development, tissue homeostasis, and regeneration. The Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are key downstream effectors of the mammalian Hippo signaling pathway. This review highlights the fundamental roles of YAP and TAZ in the homeostatic maintenance and regeneration of skeletal muscles and bones. YAP/TAZ play a significant role in stem cell function by relaying various environmental signals to stem cells. Skeletal muscle atrophy and osteoporosis are related to stem cell dysfunction or senescence triggered by YAP/TAZ dysregulation resulting from reduced mechanosensing and mitochondrial function in stem cells. In contrast, the maintenance of YAP/TAZ activation can suppress stem cell senescence and tissue dysfunction and may be used as a basis for the development of potential therapeutic strategies. Thus, targeting YAP/TAZ holds significant therapeutic potential for alleviating age-related muscle and bone dysfunction and improving the quality of life in the elderly.
Collapse
Affiliation(s)
- Youngjoo Kwon
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
3
|
van Amstel R, Noten K, Malone S, Vaes P. Fascia Tissue Manipulations in Chronic Low Back Pain: A Pragmatic Comparative Randomized Clinical Trial of the 4xT Method ® and Exercise Therapy. Life (Basel) 2023; 14:7. [PMID: 38276256 PMCID: PMC10820544 DOI: 10.3390/life14010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND The 4xT method is a protocolized practice in treating musculoskeletal disorders. The 4xT method consists of four components: Test (functional diagnostic test), Trigger (fascia tissue manipulations), Tape (elastic taping), and Train (exercise). There is a lack of clinical studies evaluating the treatment effects of the use of the 4xT method. METHODS A randomized controlled trial was conducted to compare the effectiveness of the 4xT method and exercise therapy-only in patients with chronic nonspecific low back pain. Based on a priori sample size calculation, fifty-one individuals with chronic nonspecific low back pain were randomly assigned to either the 4xT or exercise group. Both groups underwent a six-week rehabilitation program with two treatments per week. The primary outcomes were trunk flexion and extension mobility, trunk flexion, and extension mobility-dependent pain, and quality of life evaluated during a 6-week therapy period and after a 6-week therapy-off period. RESULTS Interaction effects were noted in all outcomes. The 4xT group showed significant improvements over time for trunk flexion and extension mobility, trunk flexion and extension mobility-dependent pain, and quality of life (p < 0.05), with no significant relapse post-therapy (except for extension mobility). The exercise group exhibited significant within-time changes in the quality of life, as measured with the VAS (p < 0.05), but not for EQ-5D-3L. CONCLUSIONS The results of this study demonstrate that the 4xT method stands out as a promising and impactful treatment option for chronic nonspecific low back pain individuals, as it demonstrated significant reductions in mobility-dependent pain, increased trunk mobility, and improved quality of life compared to exercise-only treatments.
Collapse
Affiliation(s)
- Robbert van Amstel
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, 1081 Amsterdam, The Netherlands
- Fysio Science Department, Fysio Physics Groups, 3401 IJsselstein, The Netherlands
| | - Karl Noten
- Fysio Science Department, Fysio Physics Groups, 3401 IJsselstein, The Netherlands
| | - Shaun Malone
- Department of Rehabilitation Sciences and Physiotherapy (MOVANT), University of Antwerp, Wilrijk, 2000 Antwerpen, Belgium
| | - Peter Vaes
- Faculty of Rehabilitation Science and Physical Therapy, Vrije Universiteit Brussel, 1050 Brussels, Belgium;
| |
Collapse
|
4
|
Park JYC, King A, Björk V, English BW, Fedintsev A, Ewald CY. Strategic outline of interventions targeting extracellular matrix for promoting healthy longevity. Am J Physiol Cell Physiol 2023; 325:C90-C128. [PMID: 37154490 DOI: 10.1152/ajpcell.00060.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/10/2023]
Abstract
The extracellular matrix (ECM), composed of interlinked proteins outside of cells, is an important component of the human body that helps maintain tissue architecture and cellular homeostasis. As people age, the ECM undergoes changes that can lead to age-related morbidity and mortality. Despite its importance, ECM aging remains understudied in the field of geroscience. In this review, we discuss the core concepts of ECM integrity, outline the age-related challenges and subsequent pathologies and diseases, summarize diagnostic methods detecting a faulty ECM, and provide strategies targeting ECM homeostasis. To conceptualize this, we built a technology research tree to hierarchically visualize possible research sequences for studying ECM aging. This strategic framework will hopefully facilitate the development of future research on interventions to restore ECM integrity, which could potentially lead to the development of new drugs or therapeutic interventions promoting health during aging.
Collapse
Affiliation(s)
- Ji Young Cecilia Park
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, Switzerland
| | - Aaron King
- Foresight Institute, San Francisco, California, United States
| | | | - Bradley W English
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | | | - Collin Y Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, Switzerland
| |
Collapse
|
5
|
Bernareggi A, Bosutti A, Massaria G, Giniatullin R, Malm T, Sciancalepore M, Lorenzon P. The State of the Art of Piezo1 Channels in Skeletal Muscle Regeneration. Int J Mol Sci 2022; 23:ijms23126616. [PMID: 35743058 PMCID: PMC9224226 DOI: 10.3390/ijms23126616] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 02/07/2023] Open
Abstract
Piezo1 channels are highly mechanically-activated cation channels that can sense and transduce the mechanical stimuli into physiological signals in different tissues including skeletal muscle. In this focused review, we summarize the emerging evidence of Piezo1 channel-mediated effects in the physiology of skeletal muscle, with a particular focus on the role of Piezo1 in controlling myogenic precursor activity and skeletal muscle regeneration and vascularization. The disclosed effects reported by pharmacological activation of Piezo1 channels with the selective agonist Yoda1 indicate a potential impact of Piezo1 channel activity in skeletal muscle regeneration, which is disrupted in various muscular pathological states. All findings reported so far agree with the idea that Piezo1 channels represent a novel, powerful molecular target to develop new therapeutic strategies for preventing or ameliorating skeletal muscle disorders characterized by an impairment of tissue regenerative potential.
Collapse
Affiliation(s)
- Annalisa Bernareggi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (A.B.); (G.M.); (M.S.); (P.L.)
- Correspondence:
| | - Alessandra Bosutti
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (A.B.); (G.M.); (M.S.); (P.L.)
| | - Gabriele Massaria
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (A.B.); (G.M.); (M.S.); (P.L.)
| | - Rashid Giniatullin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (R.G.); (T.M.)
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (R.G.); (T.M.)
| | - Marina Sciancalepore
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (A.B.); (G.M.); (M.S.); (P.L.)
| | - Paola Lorenzon
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (A.B.); (G.M.); (M.S.); (P.L.)
| |
Collapse
|
6
|
van Santen VJB, Klein-Nulend J, Bakker AD, Jaspers RT. Stiff matrices enhance myoblast proliferation, reduce differentiation, and alter the response to fluid shear stress in vitro. Cell Biochem Biophys 2022; 80:161-170. [DOI: 10.1007/s12013-021-01050-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2021] [Indexed: 11/03/2022]
|
7
|
Haroon M, Boers HE, Bakker AD, Bloks NGC, Hoogaars WMH, Giordani L, Musters RJP, Deldicque L, Koppo K, Le Grand F, Klein-Nulend J, Jaspers RT. Reduced growth rate of aged muscle stem cells is associated with impaired mechanosensitivity. Aging (Albany NY) 2022; 14:28-53. [PMID: 35023852 PMCID: PMC8791224 DOI: 10.18632/aging.203830] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 01/03/2022] [Indexed: 11/25/2022]
Abstract
Aging-associated muscle wasting and impaired regeneration are caused by deficiencies in muscle stem cell (MuSC) number and function. We postulated that aged MuSCs are intrinsically impaired in their responsiveness to omnipresent mechanical cues through alterations in MuSC morphology, mechanical properties, and number of integrins, culminating in impaired proliferative capacity. Here we show that aged MuSCs exhibited significantly lower growth rate and reduced integrin-α7 expression as well as lower number of phospho-paxillin clusters than young MuSCs. Moreover, aged MuSCs were less firmly attached to matrigel-coated glass substrates compared to young MuSCs, as 43% of the cells detached in response to pulsating fluid shear stress (1 Pa). YAP nuclear localization was 59% higher than in young MuSCs, yet YAP target genes Cyr61 and Ctgf were substantially downregulated. When subjected to pulsating fluid shear stress, aged MuSCs exhibited reduced upregulation of proliferation-related genes. Together these results indicate that aged MuSCs exhibit impaired mechanosensitivity and growth potential, accompanied by altered morphology and mechanical properties as well as reduced integrin-α7 expression. Aging-associated impaired muscle regenerative capacity and muscle wasting is likely due to aging-induced intrinsic MuSC alterations and dysfunctional mechanosensitivity.
Collapse
Affiliation(s)
- Mohammad Haroon
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam 1081 HZ, The Netherlands
| | - Heleen E Boers
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam 1081 HZ, The Netherlands
| | - Astrid D Bakker
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam 1081 LA, The Netherlands
| | - Niek G C Bloks
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam 1081 HZ, The Netherlands
| | - Willem M H Hoogaars
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam 1081 HZ, The Netherlands
| | - Lorenzo Giordani
- Sorbonne Université, INSERM UMRS974, Center for Research in Myology, Paris 75013, France
| | - René J P Musters
- Department of Physiology, Amsterdam University Medical Center VUmc, Amsterdam Cardiovascular Sciences, Amsterdam 1081 HZ, The Netherlands
| | - Louise Deldicque
- Institute of Neuroscience, Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Katrien Koppo
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven 3001, Belgium
| | - Fabien Le Grand
- Faculty of Medicine and Pharmacy, NeuroMyoGène UCBL-CNRS UMR 5310, INSERM U1217, Lyon 69008, France
| | - Jenneke Klein-Nulend
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam 1081 LA, The Netherlands
| | - Richard T Jaspers
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam 1081 HZ, The Netherlands
| |
Collapse
|
8
|
Larouche JA, Mohiuddin M, Choi JJ, Ulintz PJ, Fraczek P, Sabin K, Pitchiaya S, Kurpiers SJ, Castor-Macias J, Liu W, Hastings RL, Brown LA, Markworth JF, De Silva K, Levi B, Merajver SD, Valdez G, Chakkalakal JV, Jang YC, Brooks SV, Aguilar CA. Murine muscle stem cell response to perturbations of the neuromuscular junction are attenuated with aging. eLife 2021; 10:e66749. [PMID: 34323217 PMCID: PMC8360658 DOI: 10.7554/elife.66749] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/28/2021] [Indexed: 01/29/2023] Open
Abstract
During aging and neuromuscular diseases, there is a progressive loss of skeletal muscle volume and function impacting mobility and quality of life. Muscle loss is often associated with denervation and a loss of resident muscle stem cells (satellite cells or MuSCs); however, the relationship between MuSCs and innervation has not been established. Herein, we administered severe neuromuscular trauma to a transgenic murine model that permits MuSC lineage tracing. We show that a subset of MuSCs specifically engraft in a position proximal to the neuromuscular junction (NMJ), the synapse between myofibers and motor neurons, in healthy young adult muscles. In aging and in a mouse model of neuromuscular degeneration (Cu/Zn superoxide dismutase knockout - Sod1-/-), this localized engraftment behavior was reduced. Genetic rescue of motor neurons in Sod1-/- mice reestablished integrity of the NMJ in a manner akin to young muscle and partially restored MuSC ability to engraft into positions proximal to the NMJ. Using single cell RNA-sequencing of MuSCs isolated from aged muscle, we demonstrate that a subset of MuSCs are molecularly distinguishable from MuSCs responding to myofiber injury and share similarity to synaptic myonuclei. Collectively, these data reveal unique features of MuSCs that respond to synaptic perturbations caused by aging and other stressors.
Collapse
Affiliation(s)
- Jacqueline A Larouche
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
| | - Mahir Mohiuddin
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of TechnologyAtlantaUnited States
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
- Wallace Coulter Departmentof Biomedical Engineering, Georgia Institute of TechnologyAtlantaUnited States
| | - Jeongmoon J Choi
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of TechnologyAtlantaUnited States
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
- Wallace Coulter Departmentof Biomedical Engineering, Georgia Institute of TechnologyAtlantaUnited States
| | - Peter J Ulintz
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
- Internal Medicine-Hematology/Oncology, University of MichiganAnn ArborUnited States
| | - Paula Fraczek
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
| | - Kaitlyn Sabin
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
| | | | - Sarah J Kurpiers
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
| | - Jesus Castor-Macias
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
| | - Wenxuan Liu
- Department of Pharmacology and Physiology, University of Rochester Medical CenterRochesterUnited States
- Department of Biomedical Engineering, University of Rochester Medical CenterRochesterUnited States
- Wilmot Cancer Institute, Stem Cell and Regenerative Medicine Institute, and The Rochester Aging Research Center, University of Rochester Medical CenterRochesterUnited States
| | - Robert Louis Hastings
- Departmentof Molecular Biology, Cell Biology and Biochemistry, Brown UniversityProvidenceUnited States
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown UniversityProvidenceUnited States
| | - Lemuel A Brown
- Department of Molecular & Integrative Physiology, University of MichiganAnn ArborUnited States
| | - James F Markworth
- Department of Molecular & Integrative Physiology, University of MichiganAnn ArborUnited States
| | - Kanishka De Silva
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
| | - Benjamin Levi
- Department of Surgery, University of Texas SouthwesternDallasUnited States
- Childrens Research Institute and Center for Mineral MetabolismDallasUnited States
- Program in Cellular and Molecular Biology, University of MichiganAnn ArborUnited States
| | - Sofia D Merajver
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Internal Medicine-Hematology/Oncology, University of MichiganAnn ArborUnited States
| | - Gregorio Valdez
- Departmentof Molecular Biology, Cell Biology and Biochemistry, Brown UniversityProvidenceUnited States
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown UniversityProvidenceUnited States
| | - Joe V Chakkalakal
- Department of Pharmacology and Physiology, University of Rochester Medical CenterRochesterUnited States
- Department of Biomedical Engineering, University of Rochester Medical CenterRochesterUnited States
- Wilmot Cancer Institute, Stem Cell and Regenerative Medicine Institute, and The Rochester Aging Research Center, University of Rochester Medical CenterRochesterUnited States
| | - Young C Jang
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of TechnologyAtlantaUnited States
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
- Wallace Coulter Departmentof Biomedical Engineering, Georgia Institute of TechnologyAtlantaUnited States
| | - Susan V Brooks
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Department of Molecular & Integrative Physiology, University of MichiganAnn ArborUnited States
| | - Carlos A Aguilar
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Biointerfaces Institute, University of MichiganAnn ArborUnited States
- Childrens Research Institute and Center for Mineral MetabolismDallasUnited States
- Program in Cellular and Molecular Biology, University of MichiganAnn ArborUnited States
| |
Collapse
|
9
|
Jin J, Seddiqi H, Bakker AD, Wu G, Verstappen JFM, Haroon M, Korfage JAM, Zandieh‐Doulabi B, Werner A, Klein‐Nulend J, Jaspers RT. Pulsating fluid flow affects pre-osteoblast behavior and osteogenic differentiation through production of soluble factors. Physiol Rep 2021; 9:e14917. [PMID: 34174021 PMCID: PMC8234477 DOI: 10.14814/phy2.14917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 11/24/2022] Open
Abstract
Bone mass increases after error-loading, even in the absence of osteocytes. Loaded osteoblasts may produce a combination of growth factors affecting adjacent osteoblast differentiation. We hypothesized that osteoblasts respond to a single load in the short-term (minutes) by changing F-actin stress fiber distribution, in the intermediate-term (hours) by signaling molecule production, and in the long-term (days) by differentiation. Furthermore, growth factors produced during and after mechanical loading by pulsating fluid flow (PFF) will affect osteogenic differentiation. MC3T3-E1 pre-osteoblasts were either/not stimulated by 60 min PFF (amplitude, 1.0 Pa; frequency, 1 Hz; peak shear stress rate, 6.5 Pa/s) followed by 0-6 h, or 21/28 days of post-incubation without PFF. Computational analysis revealed that PFF immediately changed distribution and magnitude of fluid dynamics over an adherent pre-osteoblast inside a parallel-plate flow chamber (immediate impact). Within 60 min, PFF increased nitric oxide production (5.3-fold), altered actin distribution, but did not affect cell pseudopodia length and cell orientation (initial downstream impact). PFF transiently stimulated Fgf2, Runx2, Ocn, Dmp1, and Col1⍺1 gene expression between 0 and 6 h after PFF cessation. PFF did not affect alkaline phosphatase nor collagen production after 21 days, but altered mineralization after 28 days. In conclusion, a single bout of PFF with indirect associated release of biochemical factors, stimulates osteoblast differentiation in the long-term, which may explain enhanced bone formation resulting from mechanical stimuli.
Collapse
Affiliation(s)
- Jianfeng Jin
- Department of Oral Cell BiologyAcademic Centre for Dentistry Amsterdam (ACTA)University of Amsterdam and Vrije Universiteit AmsterdamAmsterdam Movement SciencesAmsterdamThe Netherlands
| | - Hadi Seddiqi
- Department of Oral Cell BiologyAcademic Centre for Dentistry Amsterdam (ACTA)University of Amsterdam and Vrije Universiteit AmsterdamAmsterdam Movement SciencesAmsterdamThe Netherlands
| | - Astrid D. Bakker
- Department of Oral Cell BiologyAcademic Centre for Dentistry Amsterdam (ACTA)University of Amsterdam and Vrije Universiteit AmsterdamAmsterdam Movement SciencesAmsterdamThe Netherlands
| | - Gang Wu
- Department of Oral Implantology and Prosthetic DentistryAcademic Centre for Dentistry Amsterdam (ACTA)University of Amsterdam and Vrije Universiteit AmsterdamAmsterdam Movement SciencesAmsterdamThe Netherlands
| | - Johanna F. M. Verstappen
- Division of Molecular Intensive Care MedicineDepartment of Anesthesiology and Intensive Care MedicineUniversity Hospital TuebingenTübingenGermany
| | - Mohammad Haroon
- Laboratory for MyologyFaculty of Behavioral and Movement SciencesVrije Universiteit AmsterdamAmsterdam Movement SciencesAmsterdamThe Netherlands
| | - Joannes A. M. Korfage
- Department of Functional AnatomyAcademic Centre for Dentistry Amsterdam (ACTA)University of Amsterdam and Vrije Universiteit AmsterdamAmsterdam Movement SciencesAmsterdamThe Netherlands
| | - Behrouz Zandieh‐Doulabi
- Department of Oral Cell BiologyAcademic Centre for Dentistry Amsterdam (ACTA)University of Amsterdam and Vrije Universiteit AmsterdamAmsterdam Movement SciencesAmsterdamThe Netherlands
| | - Arie Werner
- Department of Dental Materials ScienceAcademic Centre for Dentistry Amsterdam (ACTA)University of Amsterdam and Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Jenneke Klein‐Nulend
- Department of Oral Cell BiologyAcademic Centre for Dentistry Amsterdam (ACTA)University of Amsterdam and Vrije Universiteit AmsterdamAmsterdam Movement SciencesAmsterdamThe Netherlands
| | - Richard T. Jaspers
- Laboratory for MyologyFaculty of Behavioral and Movement SciencesVrije Universiteit AmsterdamAmsterdam Movement SciencesAmsterdamThe Netherlands
| |
Collapse
|
10
|
Millward DJ. Interactions between Growth of Muscle and Stature: Mechanisms Involved and Their Nutritional Sensitivity to Dietary Protein: The Protein-Stat Revisited. Nutrients 2021; 13:729. [PMID: 33668846 PMCID: PMC7996181 DOI: 10.3390/nu13030729] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
Childhood growth and its sensitivity to dietary protein is reviewed within a Protein-Stat model of growth regulation. The coordination of growth of muscle and stature is a combination of genetic programming, and of two-way mechanical interactions involving the mechanotransduction of muscle growth through stretching by bone length growth, the core Protein-Stat feature, and the strengthening of bone through muscle contraction via the mechanostat. Thus, growth in bone length is the initiating event and this is always observed. Endocrine and cellular mechanisms of growth in stature are reviewed in terms of the growth hormone-insulin like growth factor-1 (GH-IGF-1) and thyroid axes and the sex hormones, which together mediate endochondral ossification in the growth plate and bone lengthening. Cellular mechanisms of muscle growth during development are then reviewed identifying (a) the difficulties posed by the need to maintain its ultrastructure during myofibre hypertrophy within the extracellular matrix and the concept of muscle as concentric "bags" allowing growth to be conceived as bag enlargement and filling, (b) the cellular and molecular mechanisms involved in the mechanotransduction of satellite and mesenchymal stromal cells, to enable both connective tissue remodelling and provision of new myonuclei to aid myofibre hypertrophy and (c) the implications of myofibre hypertrophy for protein turnover within the myonuclear domain. Experimental data from rodent and avian animal models illustrate likely changes in DNA domain size and protein turnover during developmental and stretch-induced muscle growth and between different muscle fibre types. Growth of muscle in male rats during adulthood suggests that "bag enlargement" is achieved mainly through the action of mesenchymal stromal cells. Current understanding of the nutritional regulation of protein deposition in muscle, deriving from experimental studies in animals and human adults, is reviewed, identifying regulation by amino acids, insulin and myofibre volume changes acting to increase both ribosomal capacity and efficiency of muscle protein synthesis via the mechanistic target of rapamycin complex 1 (mTORC1) and the phenomenon of a "bag-full" inhibitory signal has been identified in human skeletal muscle. The final section deals with the nutritional sensitivity of growth of muscle and stature to dietary protein in children. Growth in length/height as a function of dietary protein intake is described in the context of the breastfed child as the normative growth model, and the "Early Protein Hypothesis" linking high protein intakes in infancy to later adiposity. The extensive paediatric studies on serum IGF-1 and child growth are reviewed but their clinical relevance is of limited value for understanding growth regulation; a role in energy metabolism and homeostasis, acting with insulin to mediate adiposity, is probably more important. Information on the influence of dietary protein on muscle mass per se as opposed to lean body mass is limited but suggests that increased protein intake in children is unable to promote muscle growth in excess of that linked to genotypic growth in length/height. One possible exception is milk protein intake, which cohort and cross-cultural studies suggest can increase height and associated muscle growth, although such effects have yet to be demonstrated by randomised controlled trials.
Collapse
Affiliation(s)
- D Joe Millward
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| |
Collapse
|
11
|
Thompson CL, Fu S, Knight MM, Thorpe SD. Mechanical Stimulation: A Crucial Element of Organ-on-Chip Models. Front Bioeng Biotechnol 2020; 8:602646. [PMID: 33363131 PMCID: PMC7758201 DOI: 10.3389/fbioe.2020.602646] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Organ-on-chip (OOC) systems recapitulate key biological processes and responses in vitro exhibited by cells, tissues, and organs in vivo. Accordingly, these models of both health and disease hold great promise for improving fundamental research, drug development, personalized medicine, and testing of pharmaceuticals, food substances, pollutants etc. Cells within the body are exposed to biomechanical stimuli, the nature of which is tissue specific and may change with disease or injury. These biomechanical stimuli regulate cell behavior and can amplify, annul, or even reverse the response to a given biochemical cue or drug candidate. As such, the application of an appropriate physiological or pathological biomechanical environment is essential for the successful recapitulation of in vivo behavior in OOC models. Here we review the current range of commercially available OOC platforms which incorporate active biomechanical stimulation. We highlight recent findings demonstrating the importance of including mechanical stimuli in models used for drug development and outline emerging factors which regulate the cellular response to the biomechanical environment. We explore the incorporation of mechanical stimuli in different organ models and identify areas where further research and development is required. Challenges associated with the integration of mechanics alongside other OOC requirements including scaling to increase throughput and diagnostic imaging are discussed. In summary, compelling evidence demonstrates that the incorporation of biomechanical stimuli in these OOC or microphysiological systems is key to fully replicating in vivo physiology in health and disease.
Collapse
Affiliation(s)
- Clare L Thompson
- Centre for Predictive in vitro Models, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Su Fu
- Centre for Predictive in vitro Models, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Martin M Knight
- Centre for Predictive in vitro Models, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Stephen D Thorpe
- UCD School of Medicine, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| |
Collapse
|
12
|
Silva BSDA, Lira FSD, de Freitas MC, Uzeloto JS, Dos Santos VR, Freire APCF, Bertolini GN, Gobbo LA. Traditional and elastic resistance training enhances functionality and lipid profile in the elderly. Exp Gerontol 2020; 135:110921. [PMID: 32151736 DOI: 10.1016/j.exger.2020.110921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 11/24/2022]
Affiliation(s)
- Bruna Spolador de Alencar Silva
- Skeletal Muscle Assessment Laboratory, School of Technology and Sciences, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil; Postgraduate Program in Movement Sciences, School of Technology and Sciences, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil.
| | - Fábio Santos de Lira
- Postgraduate Program in Movement Sciences, School of Technology and Sciences, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil
| | - Marcelo Conrado de Freitas
- Skeletal Muscle Assessment Laboratory, School of Technology and Sciences, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil; Postgraduate Program in Movement Sciences, School of Technology and Sciences, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil
| | - Juliana Souza Uzeloto
- Postgraduate Program in Physical Therapy, School of Technology and Sciences, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil
| | - Vanessa Ribeiro Dos Santos
- Skeletal Muscle Assessment Laboratory, School of Technology and Sciences, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil; Postgraduate Program in Movement Sciences, School of Technology and Sciences, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil
| | - Ana Paula Coelho Figueira Freire
- Postgraduate Program in Physical Therapy, School of Technology and Sciences, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil
| | - Giovana Navarro Bertolini
- Skeletal Muscle Assessment Laboratory, School of Technology and Sciences, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil; Postgraduate Program in Movement Sciences, School of Technology and Sciences, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil
| | - Luís Alberto Gobbo
- Skeletal Muscle Assessment Laboratory, School of Technology and Sciences, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil; Postgraduate Program in Movement Sciences, School of Technology and Sciences, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil; Postgraduate Program in Physical Therapy, School of Technology and Sciences, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil.
| |
Collapse
|
13
|
A focused review of myokines as a potential contributor to muscle hypertrophy from resistance-based exercise. Eur J Appl Physiol 2020; 120:941-959. [PMID: 32144492 DOI: 10.1007/s00421-020-04337-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 02/27/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Resistance exercise induces muscle growth and is an important treatment for age-related losses in muscle mass and strength. Myokines are hypothesized as a signal conveying physiological information to skeletal muscle, possibly to "fine-tune" other regulatory pathways. While myokines are released from skeletal muscle following contraction, their role in increasing muscle mass and strength in response to resistance exercise or training is not established. Recent research identified both local and systemic release of myokines after an acute bout of resistance exercise. However, it is not known whether myokines with putative anabolic function are mechanistically involved in producing muscle hypertrophy after resistance exercise. Further, nitric oxide (NO), an important mediator of muscle stem cell activation, upregulates the expression of certain myokine genes in skeletal muscle. METHOD In the systemic context of complex hypertrophic signaling, this review: (1) summarizes literature on several well-recognized, representative myokines with anabolic potential; (2) explores the potential mechanistic role of myokines in skeletal muscle hypertrophy; and (3) identifies future research required to advance our understanding of myokine anabolism specifically in skeletal muscle. RESULT This review establishes a link between myokines and NO production, and emphasizes the importance of considering systemic release of potential anabolic myokines during resistance exercise as complementary to other signals that promote hypertrophy. CONCLUSION Investigating adaptations to resistance exercise in aging opens a novel avenue of interdisciplinary research into myokines and NO metabolites during resistance exercise, with the longer-term goal to improve muscle health in daily living, aging, and rehabilitation.
Collapse
|
14
|
Hillege MMG, Galli Caro RA, Offringa C, de Wit GMJ, Jaspers RT, Hoogaars WMH. TGF-β Regulates Collagen Type I Expression in Myoblasts and Myotubes via Transient Ctgf and Fgf-2 Expression. Cells 2020; 9:E375. [PMID: 32041253 PMCID: PMC7072622 DOI: 10.3390/cells9020375] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 12/27/2022] Open
Abstract
Transforming Growth Factor β (TGF-β) is involved in fibrosis as well as the regulation of muscle mass, and contributes to the progressive pathology of muscle wasting disorders. However, little is known regarding the time-dependent signalling of TGF-β in myoblasts and myotubes, as well as how TGF-β affects collagen type I expression and the phenotypes of these cells. Here, we assessed effects of TGF-β on gene expression in C2C12 myoblasts and myotubes after 1, 3, 9, 24 and 48 h treatment. In myoblasts, various myogenic genes were repressed after 9, 24 and 48 h, while in myotubes only a reduction in Myh3 expression was observed. In both myoblasts and myotubes, TGF-β acutely induced the expression of a subset of genes involved in fibrosis, such as Ctgf and Fgf-2, which was subsequently followed by increased expression of Col1a1. Knockdown of Ctgf and Fgf-2 resulted in a lower Col1a1 expression level. Furthermore, the effects of TGF-β on myogenic and fibrotic gene expression were more pronounced than those of myostatin, and knockdown of TGF-β type I receptor Tgfbr1, but not receptor Acvr1b, resulted in a reduction in Ctgf and Col1a1 expression. These results indicate that, during muscle regeneration, TGF-β induces fibrosis via Tgfbr1 by stimulating the autocrine signalling of Ctgf and Fgf-2.
Collapse
Affiliation(s)
| | | | | | | | - Richard T. Jaspers
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, 1081 BT Amsterdam, The Netherlands; (M.M.G.H.); (R.A.G.C.); (C.O.); (G.M.J.d.W.); (W.M.H.H.)
| | | |
Collapse
|
15
|
Al Dahamsheh Z, Al Rashdan K, Al Hadid A, Jaradat R, Al Bakheet M, Bataineh ZS. The Impact of Aerobic Exercise on Female Bone Health Indicators. Med Arch 2019; 73:35-38. [PMID: 31097858 PMCID: PMC6445629 DOI: 10.5455/medarh.2019.73.35-38] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Introduction: Females usually suffer from bone health problems, particularly with aging. Aerobic exercise has been shown to have health benefits for females. Aim: The main objective of this study was to investigate the impact of aerobic exercise on female bone health by measuring serum trace elements and bone metabolism markers. Methods: Prospective interventional study was conducted at rehabilitation clinics in Royal Medical Services, Jordan. A total of 65 female participants were included. Participants were assigned into three groups: control group (N = 20), osteopenic group (N = 22), and osteoporotic group (N = 23). A standard aerobic exercise protocol was followed for 12 weeks. Endurance exercise protocol involved three sessions weekly for 60 minutes each. At basal level and after the experiment, the following parameters were assessed: body mass index (BMI), bone-specific alkaline phosphatase (BAP), T-score, bone mineral density (BMD), and calcium. The analysis of data was carried out using SPSS version 21. The difference in means was computed based on t-test. Significance was considered at p < 0.05. Results: Aerobic training exercise improved the levels of all parameters in all groups for both sexes significantly, including BMI, BAP, T-score, BMD, and calcium (p < 0.05). Conclusion: Aerobic training exercise improves bone health and restores the hemostasis of bone tissue by restoring bone biomarkers, including BAP and calcium.
Collapse
|
16
|
Jin J, Bakker AD, Wu G, Klein-Nulend J, Jaspers RT. Physicochemical Niche Conditions and Mechanosensing by Osteocytes and Myocytes. Curr Osteoporos Rep 2019; 17:235-249. [PMID: 31428977 PMCID: PMC6817749 DOI: 10.1007/s11914-019-00522-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Bone and muscle mass increase in response to mechanical loading and biochemical cues. Bone-forming osteoblasts differentiate into early osteocytes which ultimately mature into late osteocytes encapsulated in stiff calcified matrix. Increased muscle mass originates from muscle stem cells (MuSCs) enclosed between their plasma membrane and basal lamina. Stem cell fate and function are strongly determined by physical and chemical properties of their microenvironment, i.e., the cell niche. RECENT FINDINGS The cellular niche is a three-dimensional structure consisting of extracellular matrix components, signaling molecules, and/or other cells. Via mechanical interaction with their niche, osteocytes and MuSCs are subjected to mechanical loads causing deformations of membrane, cytoskeleton, and/or nucleus, which elicit biochemical responses and secretion of signaling molecules into the niche. The latter may modulate metabolism, morphology, and mechanosensitivity of the secreting cells, or signal to neighboring cells and cells at a distance. Little is known about how mechanical loading of bone and muscle tissue affects osteocytes and MuSCs within their niches. This review provides an overview of physicochemical niche conditions of (early) osteocytes and MuSCs and how these are sensed and determine cell fate and function. Moreover, we discuss how state-of-the-art imaging techniques may enhance our understanding of these conditions and mechanisms.
Collapse
Affiliation(s)
- Jianfeng Jin
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Astrid D Bakker
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Gang Wu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Jenneke Klein-Nulend
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Richard T Jaspers
- Laboratory for Myology, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.
| |
Collapse
|
17
|
Hunt ER, Confides AL, Abshire SM, Dupont‐Versteegden EE, Butterfield TA. Massage increases satellite cell number independent of the age-associated alterations in sarcolemma permeability. Physiol Rep 2019; 7:e14200. [PMID: 31496052 PMCID: PMC6732494 DOI: 10.14814/phy2.14200] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 01/10/2023] Open
Abstract
Massage is a widely accepted manual therapy used to modulate the inflammatory response of muscle and restore function, but prolonged compression of muscle potentially causes overt injury and damage to muscle fibers. Therefore, a balance exists between the positive effects of massage and the induction of mechanical damage and injury. In addition, skeletal muscle of aged individuals displays increased stiffness, and therefore, the response to massage is likely different compared with young. We hypothesized that the aged skeletal muscle exhibits increased sarcolemmal permeability when subjected to massage compared with young skeletal muscle. Male Brown Norway/F344 rats, 10 and 30 months of age, were each divided into control, non-massaged (n = 8) and massaged (n = 8) groups. The right gastrocnemius muscle received one bout of cyclic compressive loading for 30 min at 4.5 N as a massage-mimetic. Muscles were dissected and frozen 24 h after massage. Alterations in sarcolemma permeability were quantified by measuring the level of intracellular IgG within the muscle fibers. Immunohistochemistry was performed to determine IgG inside fibers and Pax7+ cell number as an indicator of stem cell abundance. Average IgG intensity was not different between control and massaged animals at either age. However, a significant shift to the right of the density histogram indicated that massaged animals had more fibers with higher IgG intensity than control at 10 months. In addition, Pax7+ cell number was significantly elevated in massaged muscles compared with control at both ages. One bout of massage did not induce overt muscle injury, but facilitated membrane permeability, which was associated with an increase in satellite cell number. Data suggest that the load applied here, which was previously shown to induce immunomodulatory changes, does not induce overt muscle injury in young and old muscles but may result in muscle remodeling. Funded by NIH grant AG042699 and AT009268.
Collapse
Affiliation(s)
- Emily R. Hunt
- Department of Rehabilitation Sciences, Center for Muscle BiologyUniversity of KentuckyLexingtonKentucky
| | - Amy L. Confides
- Department of Rehabilitation Sciences, Center for Muscle BiologyUniversity of KentuckyLexingtonKentucky
| | - Sarah M. Abshire
- Department of Rehabilitation Sciences, Center for Muscle BiologyUniversity of KentuckyLexingtonKentucky
| | | | - Timothy A. Butterfield
- Department of Rehabilitation Sciences, Center for Muscle BiologyUniversity of KentuckyLexingtonKentucky
| |
Collapse
|
18
|
Kalampouka I, van Bekhoven A, Elliott BT. Differing Effects of Younger and Older Human Plasma on C2C12 Myocytes in Vitro. Front Physiol 2018. [PMID: 29535644 PMCID: PMC5835329 DOI: 10.3389/fphys.2018.00152] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Ageing is associated with a general reduction of physiological function and a reduction of muscle mass and strength. Endocrine factors such as myostatin, activin A, growth and differentiation factor 11 (GDF-11) and their inhibitory peptides influence muscle mass in health and disease. We hypothesised that myocytes cultured in plasma from older and younger individuals would show an ageing effect, with reduced proliferation and differentiation in older environments. C2C12 myoblasts were grown as standard and stimulated with media conditioned with 5% plasma from healthy male participants that were either younger (n = 6, 18–35 years of age) or older (n = 6, >57 years of age). Concentration of plasma myostatin (total and free), follistatin-like binding protein (FLRG), GDF-11 and activin A were quantified by ELISA. Both FLRG and activin A were elevated in older individuals (109.6 and 35.1% increase, respectively), whilst myostatin (free and total) and GDF-11 were not. Results indicated that plasma activin A and FLRG were increased in older vs. younger participants, GDF11 and myostatin did not differ. Myoblasts in vitro showed no difference in proliferation rate between ages, however scratch closure was greater in younger vs. older plasma stimulated myoblasts (78.2 vs. 87.2% of baseline scratch diameter, respectively). Myotube diameters were larger in cells stimulated with younger plasma than with older at 24 and 48 h, but not at 2 h. A significant negative correlation was noted between in vivo plasma FLRG concentration and in vitro myotube diameter 48 h following plasma stimulation (r2 = 0.392, p = 0.030). Here we show that myoblasts and myotubes cultured in media conditioned with plasma from younger or older individuals show an ageing effect, and further this effect moderately correlates with circulating FLRG concentration in vivo. The effect of ageing on muscle function may not be innate to the tissue, but involve a general cellular environment change. Further work is needed to examine the effect of increased FLRG concentration on muscle function in ageing populations.
Collapse
Affiliation(s)
- Ifigeneia Kalampouka
- Translational Physiology Research Group, Faculty of Science & Technology, University of Westminster, London, United Kingdom
| | - Angel van Bekhoven
- Translational Physiology Research Group, Faculty of Science & Technology, University of Westminster, London, United Kingdom.,Engineering and Applied Science, Hogeschool Rotterdam, Rotterdam, Netherlands
| | - Bradley T Elliott
- Translational Physiology Research Group, Faculty of Science & Technology, University of Westminster, London, United Kingdom
| |
Collapse
|
19
|
Guo XE, Hung CT, Sandell LJ, Silva MJ. Musculoskeletal mechanobiology: A new era for MechanoMedicine. J Orthop Res 2018; 36:531-532. [PMID: 29409134 DOI: 10.1002/jor.23789] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- X Edward Guo
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Avenue, New York, NY 10027
| | - Clark T Hung
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Avenue, New York, NY 10027
| | - Linda J Sandell
- Department of Orthopaedic Surgery, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110
| | - Matthew J Silva
- Department of Orthopaedic Surgery, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110
| |
Collapse
|